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Abstract: Our study used the full-potential linearized augmented plane waves (FP-LAPW) method
to conduct a first-principles evaluation of the structural, electronic, and magnetic properties of
ThMn2X2 (X = Si and Ge) compounds. To establish theoretical dependability with the currently avail-
able experimental results, computations for the structural findings of ternary intermetallic thorium
(Th)-based compounds were achieved using the generalized gradient approximation in the scheme
of Perdew–Burke–Ernzerhof (PBE–GGA) potential, while the generalized gradient approximation
plus the Hubbard U (GGA + U) approach was employed to improve the electrical and magnetic
properties. In contrast with both the paramagnetic (PM) and antiferromagnetic (AFM) phases, the
ThMn2X2 compounds were optimized in a stable ferromagnetic (FM) phase, which was more suited
for studying and analyzing magnetic properties. The electronic band structures (BS) and the density
of state (DOS) were computed using the two PBE–GGA and GGA + U approximations. The thorium
(Th)-based ThMn2X2 compound has full metallic character, due to the crossing and overlapping of
bands across the Fermi level of energy, as well as the absence of a gap through both spin (up and
down) channels. There was a significant hybridization between (Mn-d and (X = Si and Ge)-p states
of conduction band with Th-f states in the valence band. The total magnetic moment of ThMn2Si2
in the ferromagnetic phase was 7.94534 µB, while for ThMn2Ge2 it was 8.73824 µB with a major
contribution from the Mn atom. In addition, the ThMn2Ge2 compound’s total magnetic moment
confirmed that it exhibits higher ferromagnetism than does the ThMn2Si2 compound.

Keywords: magnetic properties; ThMn2Si2; ThMn2Ge2; ferromagnetic phase

1. Introduction

Interest in the search for intermetallic phase materials has been rising over the last
few decades because of their mysterious features and the diverse range of sensible and
modern applications, such as the computer readings by shape memory alloys (SMAs) in
the jewelry and dentistry industries [1,2], as well as the rapid utilization of intermetallic
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materials for polishing various attractive and intriguing giant magneto resistive (GMR)
and colossal magneto resistive (CMR) materials. Magnetoresistance inside metallic thin
films varies and regulates resistivity, due to the presence of an external magnetic field to
progress the technology [3]. To date, the achieved applications of GMR materials have been
uses as spin valves, as spin filters collectively with magnetic field dependent sensors [4,5]
(in which the most significant and critical part is the GMR material that is further used to
deal with read heads in modern hard disk drives), in several biosensors, and in advanced
micro-electro mechanical (MEMS) systems. These intermetallic materials have a distinct
electronic structure and deserve special attention; if further investigated, they could lead to
a variety of novel quantum characteristic features.

Normally, intermetallic phases with the formula AM2X2 (where A belongs to rare/alkaline
earth metals), M belongs to d-block metals), and X represents Group 13–15 elements) are
typically found in various structural types, such as the body-centered tetragonal of space
groups ThCr2Si2 and CeAl2Ge2 (14/mmm) and CaAl2Si2 (P3m1), respectively. In numerous
works, the latter group, in particular, was utilized to investigate various physical aspects of
intermetallic ternary compounds [6–10].

The discovery of several isostructural thorium-based ThM2X2, (M = Cr, Mn, Fe, Co,
Ni, and Cu; X = Si or Ge) ternary intermetallic silicide and germanide compounds that
crystallize in the tetragonal CeAl2Ge2-type structure at temperatures ranging from 100 K
to 570 K by means of the Faraday method [11,12] was reported early in 1971, wherein all
three components can be replaced while maintaining the same structure. Furthermore, all
of these compounds have ordered BaA14-type crystal structures. In contrast to the pure
elements, the transition metal atoms in the crystal structure are spaced much farther apart
by X-Th-X sandwiches, implying that metamagnetic activity is expected [13]. Depending on
the atomic number of the attached transition metal atoms, the thorium containing silicide
and germanide compounds were found to be ferromagnetic or antiferromagnetic.

Omejec and Ban [13] were the first to study the magnetic properties of these com-
pounds experimentally. They discovered a maximum of magnetic susceptibility of ap-
proximately 500 K in ThMn2Si2, but a small saturation magnetization below 400 K in
ThMn2Ge2. They claimed that by comparing inverse susceptibility curves of ThM2X2
compounds with Curie–Weiss law curves for magnetic susceptibility measurement, they
were able to determine “a complete magnetic parameter, numeric values for Neel and Curie
temperatures, along with the effective magnetization per atom of transition metal”. They
further noted the ferromagnetic ordering at positive Curie temperatures in the thorium
compound ThMn2X2 [13]. Because thorium (Th) has no magnetic dipole moment, the
ordering is caused by 3d-transition elements.

Magnetic studies on Mn-containing compounds were carried out to see how changing
the Mn–Mn distance affects magnetic ordering, Curie temperature, and anisotropy [11,12].
The first-principles approach and XPS studies was used to examine the magnetic structures
and magnetic phase transitions in intermetallic-layered RMn2Si2 compounds [14,15]. In
accordance with experimental results, it was discovered that the distances between the Mn
ions in the ab plane, as opposed to the interplane distances, influence the type of ordering
of Mn magnetic moments along the c-axis [14].

Over a wide temperature range (4.2 K to 1200 K)., the magnetic properties of RMn2Ge2
and RMn2Si2 compounds were examined. The Curie temperatures were found to be above
300 K when rare earth (R) was replaced with La, Ce, Pr, and Nd, and the easiest direction
of magnetization was discovered to be along the c-axis [16]. When R was replaced with a
heavy rare earth, an antiferromagnetic coupling between the R and manganese moments
was observed at about 4.2 K, whereas a ferromagnetic coupling was observed when R
was replaced with a light rare earth. At 4.2 K, YMn2Si2, ThMn2Si2, and ThMn2Ge2 all
had a small moment at less than 0.2 µB [16]. Furthermore, by using the self-consistent
Korringa–Kohn–Rostoker approach, the electronic structure of the tetragonal RMn2Ge2
(R = Ca, Y, La, and Ba) antiferromagnets was reported by a few researchers. All of the
reported Mn-based compounds had computed magnetic moments that were in good accord
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with the neutron data. All systems were metallic, according to antiferromagnetic density of
states, although BaMn2Ge2 was discovered to be close to the semi-metallic limit [17].

The magnetic properties of the RMn2Ge2 compounds have been studied were between
the temperature range 4.2 and 500 K. Only R = La, Ce, Pr, and Nd are ferromagnetic, with
Curie temperatures of 306, 316, 334, and 334 K, respectively [18]. Until very low temper-
atures are reached, the heavier rare-earth compounds do not arrange ferromagnetically.
In both magnetization and resistivity-vs-temperature measurements, GdMn2Ge2 exhibits
an abrupt magnetic transition at 97 K. It is hypothesized that the Mn moments in this
compound order antiferromagnetically among themselves above 97 K, whereas the Gd
moments are disordered. Mn moments pair ferromagnetically with each other below 97 K,
but they oppose the ordered Gd sublattice [18]. An antiferromagnetic interaction between
Mn and rare-earth spins can explain the magnetic moment reported at 4.2 K for all of the
investigated compounds. McCall et al. [19] studied the RC02Ge2 compounds for the first
time and determined that cobalt has no moment in these Ge rare-earth-based compounds.
It is important to select a transition metal with a less fully filled d band in order for M
(transition metal) atoms to have a moment. According to Gyorgy et al. [20], the Sm-based
SmMn2Ge2 compound is ferromagnetic below a Curie temperature of T c = 350 K. Further
cooling causes an antiferromagnetic phase, T = 150 K, to form, which is almost stable until
T = 100 K is reached, when it transitions to a ferromagnetic phase.

In line with the preceding discussion, several researchers have tried to physically
explore the physical structure and magnetic properties of ThMn2X2 (X = Si, Ge) compounds
to some extent, although theoretical evidence is still lacking. Because of their attracting
physical properties, some research has already been done on members of the same class of
materials [21–26]. The current study was prompted in part by a knowledge gap in the fun-
damental structural, electronic, and magnetic properties of ternary intermetallic ThMn2Si2
and ThMn2Ge2 compounds, which were not well known or improved, in comparison with
their counterparts.

2. Computational Details

Our investigations for ThMn2X2 (X = Si and Ge) compounds were performed using
the full-potential linearized augmented plane wave (FPLAPW) method and the Wien2 k
algorithm [27]. Muffin-tin sphere radii (RMT) were chosen, so that the atoms did not
overlap at values of 2.5 atom units (a.u.) for thorium (Th), 2.41 and 2.08 a.u. for manganese
(Mn), and 1.78 and 1.98 a.u. for silicon (Si) and germanium (Ge), respectively. The Muffin-
tin minimum radius (RMT) and the greatest possible reciprocal lattice constant, Kmax, were
utilized to determine the cut-off parameter for the basis set’s convergence. RMT*Kmax = 7
illustrates the separation among various valence and core states. This tactic relies on the
partitioning of the entire crystal into the non-overlapping muffin-tin (Mu-T) spheres that are
parted from one another by an interstitial zone. This is where spherical harmonic functions
within MT spheres are supported by a simple basic set function that is chosen and extended,
and basic plane waves are also used in the interstitial area. The biggest vector (Gmax) in
the charge density’s Fourier expansion has a magnitude of 12 atom units (a.u.)−1 [28–31].
We employed energy convergence with the value 0.0001 Ry and charge convergence with
the value 0.001 e for the self-consistency cycle. We did not factor in the impact of spin
orbit coupling in our estimates. The tetrahedron approach [32], with special 195 k-points
(together with 10 × 10 × 10 k-points in the complete BZ) in the irreducible wedge, was
taken into consideration to determine the charge density in every self-consistency step
for the integration of the Brillouin zone (BZ). Furthermore, with both the exchange and
the correlation (GGA + U/GGA–PBE/LDA) potentials [33–36] that are implemented in
Wien-2 k code, the structural characteristics of the compound ThMn2X2 (X = Si and Ge)
were determined. According to previously published research [37], the value employed in
this study for both compounds is U = 6 eV, which is a fairly excellent approximation for
handling d-states of Mn atoms. GGA–PBE and GGA + U potentials were used to find the
electronic and magnetic characteristics of ThMn2X2 (X = Si and Ge) compounds.
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3. Results and Discussion
3.1. Structural Properties

The thorium (Th)-based isostructural ternary intermetallic silicide and germanide
systems, along with general formula ThMn2X2 (X = Si and Ge), has crystallized in the
body-centered tetragonal lattice structure with the space group (14/mmm #139). The site
positions for thorium (Th) atoms are the Wyckoff position 2(a) [38]; for manganese (Mn)
atom, it is 4(d); for (X = Si and Ge) silicon and germanium atoms, it is 4(e). As a result,
atoms of the same element are stacked in the sequence Th-X-Mn-X-Th on alternating layers
that are stacked along the c-axis, as shown in Figure 1.
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Figure 1. Relaxed crystal structure of ThMn2Si2 compound.

The structural morphology of the compounds is determined by computing both the
lattice atomic positions and cell dimensions. The ferromagnetic phase is the most suited
and stable phase for ThMn2X2 (X = Si, Ge), based on optimization. In addition, available
experimental results, up to our literature review, concluded that the most appropriate phase
for these materials is the ferromagnetic phase [13,16].

We estimated the total energy for dissimilar volumes in the vicinity of the calculated
experimental volume to optimize the unit cell and to obtain the ground state energy.
To derive the compound’s ground state parameters, we reported its total energy and
plotted it versus volume, fitting it to the known empirical Murnaghan’s equation of state
(EOS) [39]. Figure 2 depicts the computed total energy of the state as a function of volume
in the paramagnetic (PM), ferromagnetic (FM), and antiferromagnetic (AFM) phases for
compounds ThMn2Si2 and ThMn2Ge2.

Only PM phase energy is provided for both of these reported compounds; the remain-
ing parameters were calculated by PBE–GGA potentials and derived in the FM phase, as in
a prior study [31]. Furthermore, in the FM phase, both compounds were stabilized. Table 1
shows the computed values of the lattice parameters, the ground state energy, the unit cell
volume, the bulk modulus, and the derivative of the bulk modulus for both compounds,
based on structural optimization.

When the Si anion was replaced by Ge, the lattice constants (α and c(Å)) and unit
cell volume (V0) increased as the PM and FM phases were computed. This improvement
was due to an increase in the atomic sizes of the anions as they move from the Si to the
Ge element. Finally, the B(GPa), which describes the natural compressibility of materials,
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showed a definite declining trend in the computed values from Si to Ge, making the
ThMn2Ge2 compound more squeezable or compressible than the ThMn2Si2 compound.
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Table 1. Noted unit cell parameters of ThMn2Si2 and ThMn2Ge2 compounds, together with available
experimental studies.

Compounds
Lattice Constant (A)0

V0 (a.u)3 B (GPa) Bp
E0 (Ry)

a c FM PM AFM

ThMn2Si2
Exp b

4.015
4.019 b

10.480
10.483 b 563.5188 152.9576 5.0 −58,868.125 −58,868.119 −58,868.122

ThMn2Ge2
Expa,b,c

4.088
4.084 a, 4.090 b,

4.690 c

10.904
10.930 a,
10.907 b,
10.907 c

595.9810 118.4229 5.44 −66,104.19 −66,104.13 −66,104.16

a Ref. [11], b Ref. [16], c Ref. [18].

3.2. Electronic Properties
Band Structures and Density of States

Electronic band structure and density of state are important factors in determining
crystal structure [40–43]. The evaluations of the total density of states (TDOS) and partial
density of states (PDOS) are particularly important for a full understanding of a compound’s
bonding character. In the energy range between −6 eV and 6 eV, we estimated the TDOS
and the PDOS using two distinct (exchange and correlation) known approximations, PBE–
GGA and GGA + U. For spins both up and down the channels, Figure 3a,b depicts the DOS
plots of the thorium (Th)-based ThMn2Si2 and ThMn2Ge2 compounds.

Both compounds have a full metallic character, as the total and partial (p, d, f ) states
appear to cross the Fermi energy level in both spin states. As a result, we concluded, as
shown in Figure 3a,b, that the contribution of orbitals in both compounds is relatively
similar. Furthermore, it was obvious from the TDOS that the active progress at (EF) was
primarily because of the Mn-d state. Moreover, in the region of valence band, there was
a substantial hybridization between the Mn-d and X = Si and Ge-p states, with the Th-f
state in the region of the conduction band. These states bore complete responsibility for the
materials with metallic characteristics.

The Mn-d state’s primary appearance and contribution were placed at the Fermi
level, as well as the leading spread ranging from high to low energy with values and
approximations (−0.2 to −4 eV through (GGA–PBE) and −4.9 to −6 eV through (GGA + U))
for ThMn2Si2 while (0 to −3.4 eV through (GGA–PBE) and −5 to −6 eV through (GGA + U))
for ThMn2Ge2 in the region of valence band is clearly observed. This change toward a
lower energy range of d-state for ThMn2X2 was due to the application of (GGA + U), which
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handled the Mn atom-localized d-shell electrons. Furthermore, the elimination of the Mn-d
state from both channels at lower energies when employing (GGA–PBE) and the shift
towards higher energies of the identical Mn-d state by down spin when using (GGA + U)
are visible in the DOS plots of Figure 3 a,b. In addition, the Th-d state with a straight
line emerges throughout the full energy range of the valence band area, with a minor
contribution from the (X = Si and Ge)-p state in the region of the valence band and over the
whole energy range in ThMn2X2, through both approximations. The value employed in
this study for both compounds was U = 6 eV, which is a fair estimate for dealing with Mn
atom d-states, as stated in a previous study [37].
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Furthermore, in the conduction band region across both spin states, the Th-f state
showed pointedly toward with values that were higher in the energy range: 0.8 eV to 3.4 eV
through both potentials for ThMn2Si2 and 0.6 eV to 3 eV (GGA–PBE) and 0.4 eV to 2.8 eV
(GGA + U) for the ThMn2Ge2 compound. Furthermore, the Mn-d state placed at the Fermi
level made a minor contribution in the different spin states of ThMn2X2 toward lower
energy by GGA–PBE and toward higher energy by GGA + U approximation. To conclude
the extremely symmetrical or balanced appearance of ThMn2X2, various states’ spectra
(Th-f, Mn-d and X-p) through both spin states resided in bands of both the valence and the
conduction region, indicating that Stoner’s argument was frequently fulfilled [44,45].
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To further understand the electronic characteristics of ThMn2X2 (X = Si, Ge), the
electronic band structure is displayed in Figure 4a,b for both spin states, using two distinct
approximations, PBE–GGA and GGA + U. The Fermi level of energy was set to origin as a
reference point in these plotted figures, and the analyzed band structures in the Brillouin
zone (BZ) are displayed in Figure 4b, while the calculated Fermi surface of ThMn2Ge2 as
a prototype (shown in Figure 4c) along the Γ, H, N, and (Γ, P) high symmetry directions
are also shown. Furthermore, the minima of CB were more dominant because of Mn-d
and Th-f, while the VB maxima were mostly due to p characters from the Si/Ge in both
spin channels. However, because more continuing d orbitals arise in compounds various
channels, the overlap between the p (Si and Ge) and f (Th) with d (Mn) orbitals twists to
the stronger side. As a result, the overlaps between these bands in the compounds under
study were sufficient for metallicity.
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Figure 4. (a) Band structures of the ThMn2Si2 and ThMn2Ge2 compounds in body-centered tetragonal
ferromagnetic phase while using GGA–PBE in both spin states; (b) band structures of the ThMn2Si2
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both spin states; (c) Fermi surface sheet of ThMn2Ge2 as a prototype of ThMn2X2, in the body-centered
tetragonal Brillouin zone boundaries. The character of Fermi surfaces are primarily constituted by
the Th f, Mn d, and X p states.
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It is easy to notice the valence band maximum’s considerable dispersion at the high-
symmetry (H) point. By utilizing PBE–GGA and GGA + U approximations with small
adjustments in the features, the bands with dominant shoulders appeared on both sides
while crossing the Fermi energy level and remained in the region of the conduction band,
especially in the up-spin states of ThMn2X2. This was similar to the disappearance of the
same single band at the H point in the spin-down channel of the ThMn2Si2 compound and
the minor appearance of a single narrow band dispersion among the high symmetry (Γ
and H, Γ and N, Γ and P) basal points in the compound ThMn2Ge2 spin-down state. In
addition, the conduction band minimum for the ThMn2X2 compounds exhibited the same
pattern of dispersion of a few bands between the high symmetry points (Γ and H, Γ and
N, Γ and P) from both spin states, indicating that the conduction bands held additional
electrons and were fully filled, as well as meeting and overlapping the mechanisms with
the available valence bands by both (PBE–GGA and GGA + U) approximations.

The bands clearly split when the GGA + U approximation was computed; however,
both thorium compounds continued to show their metallic nature. The CB traveled up and
the VB traveled down at high symmetry (Γ point) by bounding d-states and computing
the approximation GGA + U. Furthermore, the calculation using the GGA + U resulted in
peculiar behavior, such as the absence of gaps in the ThMn2X2 compounds where the va-
lence and conduction bands met at both high Γ symmetry points in up-spin channels while
shifting the same meeting bands back to their original locations in spin-down channels.

In addition, there was no energy (absent) gap at the Femi level of energy, expressing
the pure metallic nature, although the spin-up channel states were significantly closer
to one another than the spin-down channels that were nearby the Fermi level. Even the
closer states allowed for simple electron mobility, which over time affected the materials’
conductivity. Moreover, the compounds adopted the tetragonal ThCr2Si2-type structure
with three-dimensional electron and hole-like multiband Fermi surfaces (FSs), as appeared
in the majority of the same types [46,47] and other types [41,48,49] of compounds that were
related to the phonon-mediated types that were currently under electron-phonon mediated
superconductivity, according to a few other research studies that calculated Fermi surfaces
(FSs). Due to the crossing and overlapping of bands across the Fermi level of energy, as
well as the absence of a gap in both spin states when utilizing two separate (PBE–GGA and
GGA + U) approximations, the thorium compound ThMn2X2 band structures generally
described the full metallic nature.

3.3. Magnetic Properties

The spin polarization calculations using the PBE–GGA and GGA + U potentials
were computed to explore the magnetic characteristics of the ThMn2Si2 and ThMn2Ge2
compounds. Table 2 summarizes the overall mc magnetic moment (MM) of each cell,
interstitial and local (Th, Mn, Si, and Ge) individual (MM) magnetic moments of the
materials under study. According to the noted data, the active and most contributing atom
in the total cell magnetic moment (MM) of ThMn2X2 (X = Si and Ge) is the Mn, contributing
high values of a parallel ferromagnetic nature, in contrast to other atoms such as those at
the interstitial and individual Th, Si and Ge atoms that were participating with negative
anti-parallel values by both PBE–GGA and GGA + U approximations.

The fundamental source of magnetization in these thorium (Th) ternary intermetallic
materials predominantly originates from unoccupied or empty Th-f and Mn-d orbitals.
However, except for the leading manganese site, the remaining sites had a tendency to lower
the ferromagnetic nature of the materials under study. These thorium ternary intermetallic
compounds’ fundamental source of magnetism, in particular, derived from unoccupied
or empty Th-f and Mn-d orbitals. As a result, with the exception of the dominating
manganese site, the remaining spots tended to reduce the overall ferromagnetic character
of the aforementioned compounds.

The stable or steady magnetic ground state, as shown in optimization plots in Figure 2,
was ferromagnetic, as previously reported in experimental works [13,16]. This is sup-
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ported by the non-negative or positive values of the net magnetic moments (MM) of the
ThMn2Si2 and ThMn2Ge2 compounds by both the PBE–GGA and GGA + U approximations.
Due to the compounds’ ferromagnetic nature, both in this study and in earlier research
[13,16,21,22,28,30,31], the parallel magnetic moment was the primary focus of our work.
Furthermore, the calculation due to the GGA + U approximation provided a value with a
higher scale or magnitude, compared with other currently known potentials, as it frequently
dealt with d-shell-localized electrons of the Mn atom and raised its MM to some level in
comparison with the PBE–GGA approximation. In addition, the calculation due to the
GGA + U yielded a value with a larger magnitude, compared with other approximations
that were previously identified, because it primarily dealt with d-shell-localized electrons
of the Mn atom and raised its MM to a greater extent than the PBE–GGA.

Table 2. Magnetic moments of the interstitial region (minte), single atoms (MTh/Mn/Si/Ge), and overall
cell for the ThMn2Si2 and ThMn2Ge2 compounds computing both schemes (Bohr magnetrons µB).

Compounds minte MTh MMn MSi/Ge mcell ∆ = mcell − MMn

ThMn2Si2(PBE-GGA) −0.04156 −0.00300 1.90730 −0.04194 3.68615 1.77885
GGA + U −0.15905 −0.08126 4.18022 −0.08740 7.94534 3.76512

Exp. ———– ———– 2.98 a ———– ———– ———–
Other calc. ———– ———– ———– ———– ———– ———–

ThMn2Ge2(PBE-GGA) −0.17642 −0.05845 2.17623 −0.03884 4.03992 1.86369
GGA + U 0.01043 −0.02784 4.42327 −0.04544 8.73824 4.31497

Exp. ———– ———– 1.57 a, 0.10 b ———– ———– ———–

Other calc. ———– ———– ———– ———– ———– ———–
a Ref. [13], b Ref. [16].

In addition, the computed values of ThMn2X2 (MM) by both approximations, precisely
at interstitial and individual Th, Si, and Ge atoms, opposed the net magnetic moment,
whereas Mn supported it due to the dominant appearance of the Mn-d state over the entire
range of energy in both spin states, as previously mentioned, whereas investigating by both
approximations, as shown in the DOS plots Figure 3a,b, supported this claim. The antifer-
romagnetic (AFM) interaction between the electrons in the valence band (VB) was seen by
the opposing sign appearing in the magnetic moments of the Inst, Th, Si/Ge, total cell, and
Mn element. Due to Mn being oriented in the direction of the compounds’ net magnetic
moment, ThMn2Ge2 exhibited higher ferromagnetism. As seen in Table 2, the value of MMn

changed from 2.17623 to 4.42327 when the d states of the Mn atom were bound through
the GGA + U potential. Finally, the total magnetic moments aligned in parallel by both
the PBE–GGA and GGA + U potentials, indicating that the thorium (Th)-based ThMn2Ge2
metallic compound exhibited stronger FM behavior than the ThMn2Si2 compound, due
to a difference of electro negativity between available Ge (2.01) and Si (1.90) atoms in a
prior study [23–25]. As a result, the greater the electronegativity difference, the greater the
magnetic moment demonstrated by the ThMn2Ge2, confirming stronger ferromagnetism.

4. Conclusions

We used the full-potential linearized augmented plane wave (FPLAPW) method
through DFT within the generalized gradient approximation (GGA), as applied in the
Wien2 k code, to investigate the various physical properties of tetragonal structure thorium
(Th)-based ThMn2X2 (X = Si and Ge) compounds. When the silicon (Si) anion was replaced
by germanium (Ge), the lattice constants (α and c(Å)) and unit cell volume (V0) increased
due to the increase in the atomic sizes of the anions as the PM and FM phases were com-
puted. Furthermore, the B(GPa), which describes the natural compressibility of materials,
showed a definite declining trend in computed values from Si to Ge, making the ThMn2Ge2
compound more squeezable or compressible than ThMn2Si2. While we employed the GGA
+ U approach to enhance the electrical and magnetic properties, the computations for the
structural findings of ternary thorium intermetallic were produced using the PBE–GGA
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potential to establish theoretical reliability with the currently existing experimental works.
The ThMn2X2 were optimized in a ferromagnetic stable phase, which was better suited than
paramagnetic and antiferromagnetic phases for studying a compound’s magnetic prop-
erties. The plotted crossing and overlapping electronic band structures (BS) (with absent
gap) and the density of state (DOS) plots by both spin states indicated that the ThMn2X2
compound had full metallic character, due to the presence of significant hybridization
between (Mn-d and (X = Si and Ge)-p states with Th-f states. The total magnetic moment of
ThMn2Si2 in the ferromagnetic phase was 7.94534 µB, while the total magnetic moment for
ThMn2Ge2 was 8.73824 µB (exhibiting higher ferromagnetism), with a major contribution
from the Mn atom via the GGA + U approach. Additionally, the achieved ferromagnetism
in the examined compounds was revealed by the acquired total magnetic moments (MM),
which were aligned in parallel to the overall ferromagnetic direction.
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