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Abstract: The present study aimed to develop polyethylene glycol–liquid crystals (PEG-LC) ointment
formulations, assess their formulation characteristics, and establish their biocompatibility and impact
on transdermal drug administration. PEG-LC formulations were prepared using a hydrophilic
molecule, p-aminobenzoic acid (PAB). Formulation characterizations such as small-angle X-ray
scattering, viscosity, pH, zeta potential, and the particle sizes of the formulations were examined to
determine the physicochemical properties of the prepared formulations. The drug release profile of
PEG-LC ointment formulations was assessed with a dialysis membrane. In vitro skin permeation
testing was performed to establish whether the PEG-LC formulations improved drug skin penetration.
The MTT and comet assays were performed to assess the biocompatibility of the formulations. Our
data showed that the method is effective in forming hexosome-type PEG-LC formulations and that
they were biocompatible. Furthermore, the PEG-LC formulations significantly improved PAB skin
penetration when compared with commercial PEG. The PEG-LC formulation is a promising carrier
for the delivery of hydrophilic drugs.

Keywords: p-aminobenzoic acid; polyethylene glycol; liquid crystals; formulations; skin penetration

1. Introduction

Skin is the external covering or integument of the human body with a surface area
of 1.8 m2 and offers a site for drugs to be delivered into the body due to its easy and
convenient accessibility, non-invasive nature, and success in treating localized illnesses.
The skin is composed of two major layers, the dermis and the epidermis [1,2]. Furthermore,
the stratum corneum (SC) is the top layer of the human skin (epidermis), which serves as
the first physical membrane against any foreign substances entering the body, including
medications, and presents a substantial difficulty for topical drug delivery systems [2]. Two
important properties of an efficient topical formulation are thermodynamic stability and
excellent drug partitioning across the skin layers [3].

Ointment is a single-phase semisolid pharmaceutical dosage form that allows for the
insertion of either hydrophilic or hydrophobic medicinal components. Ointment dosage
forms are designed for topical application, but they have several disadvantages, including
limited absorption and a lack of penetration into the stratum corneum. The ideal ointment
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formulations are crucial for overcoming the SC. As a result, selecting ointment bases has
to be duly considered, as the extent of medication release is determined by the types of
ointment bases employed, which impacts the drug’s effectiveness [4–8].

Polyethylene glycols (PEGs) are hydrophilic polyether compounds with different
applications and physical properties, varying from odorless, colorless, waxy solids to
viscous liquids [9–11]. Low-molecular-weight PEGs can be used as eye drops, suppository
bases, solvents, and injections. On the other hand, high-molecular-weight PEGs can be
used to prepare film coats and tablets. PEGs have been widely used in the pharmaceutical
industry and cosmetics; however, it is still challenging to ensure the sufficient penetration
of drugs through the skin.

Monoolein’s LC phases have intriguing features ideal for medication delivery sys-
tems through the skin. Glycerol monoolein (GMO), for example, is a biocompatible and
bioadhesive penetration enhancer that can integrate substances regardless of their solubil-
ity. Furthermore, sensitive medications can be protected against physical and enzymatic
degradation while still being delivered for a long period of time [12]. GMOs in liquid
crystal systems have been used in a variety of ways, including transdermal, ocular, oral,
and nose-to-brain delivery. Drug absorption after the oral and topical administration of
LC formulations is dramatically affected by the concentration of LC. The concentration of
LC-forming lipids and the physiochemical properties of entrapped drugs are key issues
for the good performance of LC formulations in various pharmaceutical applications [13].
The main advantages of LCs are mainly related to their easy in situ injection as a lamellar
phase and their instant in situ transition into a cubic phase. In vivo studies have proven
the biocompatibility and the inertia of LCs after their application on the myocardial tissue
of mice [14]. An ex vivo study revealed a significant enhancement, up to six-fold, in the
transdermal permeation of resveratrol-loaded LCs compared to a suspension [15].

LCs are crystalline, lipid-based semisolids that combine the advantages of both the
liquid and crystal states. Glycerol monooleate (GMO) is often described as a self-assembling
amphiphilic molecule that plays a very important role in transdermal drug delivery systems;
it is a synthetic compound that is considered a monoglyceride (Figure 1).
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Figure 1. Glyceryl monooleate (GMO) structure.

GMO is capable of producing inverted micelles with an oily texture in the presence
of a small amount of water [16,17]. Hexagonal or cubic phases develop when more water
(20–40%) is introduced to GMO over a wide temperature range. With the addition of
surfactants, different amphiphilic lipids, such as phytantriol (PHT) or GMO, spontaneously
create LC systems in excess amounts of water. The most prevalent phases identified in
lyotropic LCs are lamellar, cubic, and hexagonal [18–20]. Hexagonal and cubic phases
have gained a lot of interest from scientists because they can be applied as matrices for
the slow-release of active drugs of various polarity and molecular sizes and because
of their highly ordered inner structures [21,22]. This study is the first to develop PEG-
LC formulations incorporating p-amino benzoic acid (PAB)—a hydrophilic model drug.
PAB was chosen as a chemical since it is a vitamin B complex component that is often
used as an antioxidant [23,24]. In addition, dermatomyositis, Peyronie’s disease, and
scleroderma are conditions that require PAB potassium salt for treatment [25–27]. PAB is
currently considered an active ingredient in cosmeceuticals, nutritional supplements, and
as a medicine for skin disorders.
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The present study aimed to develop polyethylene glycol–liquid crystals (PEG-LC)
ointment formulations, assess their formulation characteristics, and establish their bio-
compatibility and impact on transdermal drug administration. In our previous studies,
we emphasized the development of oleaginous bases in LCs [6–8]. However, no studies
were carried out to develop a liquid crystal formulation in conjunction with water-soluble
ointment bases.

The particle sizes, zeta potential, and viscosities of these formulations were measured
to ascertain their physicochemical properties. Small-angle X-ray scattering (SAXS) was
applied to detect the hexosome phase structures of the designed formulations. A dialysis
membrane was performed to determine the PAB released from PEG-LC formulations.
In vitro experiments with Franz diffusion cells showed that LC formulations improve
the skin disposition of the drug. The biocompatibility of the prepared formulations was
assessed with MTT and comet assays.

2. Methods and Materials
2.1. Materials

PEG 3350, PEG 400, GMO (>97%), PAB, and Pluronic® F127 were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Human keratinocytes were obtained from the American
Type Culture Collection, Manassas, VA, USA (HaCaT). Other solvents and reagents utilized
were of either analytical or HPLC grade and were not purified further.

2.2. Optimization of PEG-LC Ointment Formulation

Table 1 lists the PEG-LC ointment formulations prepared in this research. The ingre-
dients were accurately weighed and the GMO was incorporated into the ointment base
(PEG 3350 and PEG 400). The prepared formulations were made by changing the amount
of GMO (which had previously been melted at 70 ◦C before usage). PAB was then added
to the PEG-LC formulations and homogenized.

Table 1. Composition of PEG-LC formulations.

Ingredients (%) PEG PEG-GMO10 PEG-GMO20 PEG-GMO30

PEG 3350 (%) 40 40 40 40
PEG 400 (%) 50 40 30 20

GMO (%) 0 10 20 30
Pluronic® F127 (%) 1 1 1 1

PAB solution
(purified water) (%) 9 9 9 9

Total % 100% 100% 100% 100%

2.3. Zeta Potential Measurements and Particle Size

The zeta potential and particle size of PEG-LC ointment formulations were measured
by a Zetasizer (Malvern, UK). Prior to analysis, a vortex mixer was utilized to agitate and
dilute the PEG-LC samples. Three replicates were used in the measurements.

2.4. Viscosity

A viscometer (Alpha Analytical, Westborough, MA, USA, MCR 301) with a viscosity
measurement range of 0.3–15,000 mPa·s and a relative error of 1% was applied to measure
the viscosity of PEG-LC ointment formulations. The viscosity values of the prepared
formulations were measured as a single point against a shear rate of 100 rotations per
minute (rpm). Three replicates were used in the measurements.

2.5. Small-Angle X-ray Scattering

A nano viewer with a Pilatus (100K/RL 2D) detector was applied to perform SAXS
studies on PEG-LC formulations (Anton Paar, Graz, Austria). Cu K radiation with a voltage
and current of 45 kV and 110 mA and a wavelength of 1.54 Å was used as the X-ray source.
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The distance between the sample and the detector was 375 mm. In a vacuum-resistant glass
capillary cell, each sample was heated to 25 ◦C for ten minutes.

2.6. PAB Release Experiment

A dialysis membrane (with an MW of 10 kDa; Thermo Fisher Scientific, Waltham, MA,
USA; diffusion area of 0.95 cm2) was fixed on a vertical-type Franz diffusion cell with a
receiver portion loaded with phosphate-buffered saline (pH 7.4) and was kept at 32 ◦C.
The donor cell was then loaded with 1.0 mL of the PEG-LC formulation. After the preset
sampling time, the sample from the receiver chamber was withdrawn and replenished
with an equivalent volume of phosphate-buffered saline (500 µL) to maintain the volume
of the chamber. The final time for the release experiment was up to 8 h. The amount of
permeated PAB was measured using an HPLC instrument.

Various mathematical models were applied to evaluate the release kinetics of PAB from
PEG-LC formulations, including zero-order, first-order, Higuchi, and Korsmeyer–Peppas.

Qt = Q0+k0 ∗ t (1)

log Q = log Q0 − k1 ∗ t/2.303 (2)

Qt = kHC ∗ t1/2 (3)

Mt/M∞ = ktn (4)

where

Qt is the amount of drug released at time t;
Q0 is the initial amount of the drug in the formulation;
k0, k1, and kHC are release rate constants for zero-order, first-order, and
Higuchi model equations;
Mt is the amount of drug released at time t;
M∞ is the amount of drug released at time ∞;
k is the kinetic constant;
n is the diffusion coefficient;

The cumulative % of PAB released was fitted using the Higuchi model [28].

2.7. Animals

Permeation membrane (i.e., skin) was sourced from 8-week-old male hairless rats.
The rats were housed in temperature-controlled rooms (25 ± 2 ◦C) with a 12 h light–dark
cycle (07:00–19:00 h). Food and water were made freely available to the rats. The animal
experiment protocol was reviewed by Wasit University’s Animal Care and Use Committee.

2.8. In Vitro Penetration through the Skin

Abdominal skin was isolated from the abdominal area of the hairless rats under anes-
thesia (pentobarbital at 50 mg/kg, intraperitoneally). Isolated skin, with the epidermal side
upward, was set in a vertical type Franz diffusion cell (effective diffusion area: 0.95 cm2).
The receiver chamber was loaded with phosphate-buffered saline (pH 7.4) and kept at 32 ◦C.
Prior to applying PEG-LC formulations and commencing the skin penetration studies, a
60 min hydration period with PBS was performed. PBS was then loaded onto the receiver
cell similar to the PAB release experiment.

PEG-LC ointment formulations were loaded into the donor chamber (0.1 mL) to begin
the in vitro skin disposition study. At the preset sampling schedule, an aliquot of 500 µL
was taken from the receiver cell and replaced with the same quantity of PBS thereafter.

In order to determine the skin concentration of PAB, the skin piece (0.1 g) was minced
with scissors and homogenized (5 min, 4 ◦C) with water (0.9 mL) using a homogenizer
(Polytron PT-MR 3000; Kinematica Inc., Littau, Switzerland). The homogenate was mixed
with acetonitrile:water = 1:1 (0.5 mL) and agitated for 15 min. After centrifugation (5 min,
4 ◦C), the supernatant (50 µL) was mixed with the same volume of acetonitrile containing
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methylparaben (10 µg/mL) and centrifuged again (5 min, 4 ◦C). The obtained supernatant
(20 µL) was injected into an HPLC system.

2.9. HPLC Conditions

PAB samples (50 µL) were mixed with the same quantity of the internal standard
(acetonitrile containing methylparaben). After centrifugation, the supernatant (20 µL)
was then injected into an HPLC system composed of a pump (LC-20AD), column oven
(CTO-20A), auto-sampler (SIL-20AC), system controller (CBM-20A), and UV detector (SPD-
M20A). A reverse phase column (ODS-3 5µm, 4.6 × 250 mm) was used in the analysis of
PAB, maintained at 40 ◦C (GL Sciences Inc., Atlanta, GA, USA). As for the mobile phase,
acetonitrile (0.1 percent phosphoric acid = 0–4 min (8:52), 4–14 min (35:65), and 14–20 min
(8:92)) was used at 1 mL per minute flow rate. PAB was measured at UV 280 nm [13].

2.10. MTT Assay

PEG-LC formulations were tested for their skin safety on human epidermal ker-
atinocytes using HaCaT. Cells were cultivated at a density of 8 × 103 cells per well (96-well
plates) and incubated for 24 h. PEG-LC formulations were diluted (0.1, 0.5, and 1 mg/mL)
in growth medium and were added to the well. For 12 and 24 h, the cells were subjected
to PEG-LC formulations. After that, the wells were filled with MTT mixed with DMEM
(0.5 mg/mL) and incubated for 4 h at 37 ◦C [29].

2.11. DNA Damage Assessment (Comet Assay)

In a multi-well configuration, cells were plated at a density of 4 × 105 cells/mL of
culture media. After 24 h of development, cells were exposed to various doses of PEG-LC
formulations (0.1–1 mg/mL), as well as 50 µM H2O2 as a positive control. The cells were
washed in PBS and treated with 300 L of trypsin, incubated for 3 min, and then transferred
to 1 mL of DMEM + 10% FBS medium after 24 h. The cells were separated by pipetting.
In Eppendorf tubes, the cell suspension was centrifuged for 3 min at 1000 rpm. After the
supernatant was removed, the cells were resuspended in 100 L of PBS (kept on ice).

On see-through slides (frosted), a first layer of 0.6 percent normal melting agarose
(NMA) coating was applied, followed by a second layer of cell suspension and 0.6 percent
low melting agarose (LMA) and a third layer of 0.6 percent LMA (without cell). Then, a
lysing solution containing NaCl (2.5 M), Na2EDTA (100 mM), Tris (10 mM), and Triton-X
(1%) was added for 1 h and the slides were placed in a horizontal electrophoresis tank.
After that, electrophoresis at 0.3 A and 25 V was performed (20 min). Before being inspected
with a fluorescence microscope, the slides were stained with ethidium bromide and stored
in a humidified airtight container. The degree of DNA damage was visually classified into
five categories based on the amount of DNA in the tail [29].

3. Results and Discussion

The delivery of hydrophilic drugs (e.g., PAB, ibuprofen) through the skin using
semisolid transdermal preparations (i.e., ointments) is considered challenging owing to
their complex physicochemical properties and the tortuous route through the structure of
the skin. PAB alone poorly penetrates the skin, which limits its clinical efficacy.

This study employed product profile identification and characterization to select the
PEG-LC formulations for investigation. First, the physical stability and homogeneity of
the PEG-LC formulations were assessed (Table 1). Formulations with a non-uniform ap-
pearance exhibiting phase separation were rejected, while those formulations presenting
a homogeneous and opaque appearance with no visible aggregations were accepted. In-
creasing the GMO concentration to 30% (PEG-GMO30) resulted in a non-uniform, highly
viscous mixture with apparent phase separation. Furthermore, applying these formulations
topically proved problematic. As a result, no further investigation on this formulation
was conducted.
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The pH, particle size, zeta potential, and viscosity values of the topical PEG-LC
ointment formulations are presented in Table 2. The findings suggest that, at high GMO
concentrations, particle sizes decrease and the negatively charged zeta potential increases.
The zeta potential is a parameter that is applied to measure the stability and biodistribution
of a formulation [30]. High surface charges prevent particles from aggregating by producing
repulsion forces among them [31]. Because of the existence of free oleic acid in the prepared
formulations, the particles may have had a negative charge resulting in negative zeta
potential values. Furthermore, the hydroxyl ion preferential adsorption at the lipid–water
interface can explain the negative charge [6]. The results of the viscosity tests demonstrated
that the amount of GMO in the formulation had a significant impact on these values.
As the GMO concentration in the PEG-LC formulations increased, so did the viscosity.
Increasing the GMO concentration used in the formulation had a significant effect on
the viscosity of the PEG-LC ointment formulations, indicating that viscosity rose as LC-
forming lipid content increased. These results were consistent with previous studies on LC
formulations [22]. The prepared LC formulations had pH values similar to that of the skin.

Table 2. Determination of particle size, viscosity, pH, and zeta potential.

Formulation Particle Size (nm) Viscosity
(mPa.s) pH Zeta Potential (mV)

PEG 602 ± 35 8201 ± 261 4.9 ± 0.4 −14 ± −2
PEG-GMO10 520 ± 29 9822 ± 403 5.3 ± 0.6 −20 ± −3
PEG-GMO20 411 ± 22 1139 ± 557 5.6 ± 0.5 −26 ± −2

The phase structure of the prepared ointment formulations was investigated with
SAXS. The X-ray diffraction characteristics of PEG-GMO10 and PEG-GMO20 formulations
are shown in Figure 2. In the prepared formulations, the existence of the hexagonal phase
(H2 inverted) was shown with reflection patterns at about 1,

√
3, and

√
4. These results

demonstrated that PEG-LC formulations successfully managed to form hexosome-type
liquid crystals.

The release kinetics of PAB from the PEG-LC formulations was evaluated using the
four models (zero-order, first-order, Korsmeyer–Peppas, and Higuchi) that are often used
to describe the phenomenon (Table 3).

Table 3. Release kinetics models used to describe the release of PAB from PEG-LC formulations.

Formulation Zero-Order First-Order Korsmeyer–Peppas Model Higuchi Model

Regression Coefficient R2

PEG 0.932 0.891 0.789 0.993
PEG-GMO10 0.921 0.772 0.767 0.989
PEG-GMO20 0.958 0.833 0.883 0.979

The fitting factor (R2) values in the four models were in the following order: Higuchi >
zero-order > first-order > Korsmeyer–Peppas (suitable for PEG-LC formulations). PAB
release profiles from the PEG-LC formulations were determined using Higuchi’s model.

Figure 3 depicts the PAB release characteristics from the PEG-GMO10 and PEG-
GMO20 LC formulations. The amount of PAB released from the PEG-GMO10 and PEG-
GMO20 formulations was 12.5 and 8.6 percent, respectively, suggesting that, when GMO
concentration is increased, the amount of PAB released from the formulation decreases.
As shown in Figure 3, the content of GMO had an effect on the PAB release profiles of
the prepared formulations. PAB diffusivity from the formulation decreased as the GMO
concentration increased.
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Figure 4 depicts the effect of PEG-GMO10 and PEG-GMO20 LC formulations on PAB
that permeated through hairless rat skin. PEG-GMO10 and PEG-GMO20 dramatically
enhanced the permeation of PAB when compared with PEG alone—a chemical perme-
ation enhancer. At 8 h, the PEG-GMO10 and PEG-GMO20 formulations increased skin
penetration rates by 8.7- and 5.8-fold, respectively.
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The results of in vitro skin penetration were significantly influenced by the GMO
concentration (Figure 4). The skin permeation of PAB was dramatically improved in
formulations of 10% (PEG-GMO10) and 20% GMO (PEG-GMO20). These results clarified
that PEG-LC ointment formulations are better than commercial PEG alone in terms of
improving skin permeability.

The effect of GMO on the skin deposition of PAB in the deeper layers of the skin, such
as the viable epidermis, was confirmed by our experiments. PAB concentration in the skin
(at 8 h) following the application of the PEG-LC formulations (expressed as the amount (µg)
of drug per gram of skin) is shown in Figure 5. PAB skin concentrations were significantly
greater in skin samples treated with PEG-GMO10 and PEG-GMO20 formulations than in
skin samples treated with PEG.

As a result, a significant increase in the skin deposition of PAB was confirmed after the
application of PEG-GMO formulations. The exact mechanism by which LC systems increase
skin permeability is not fully understood [32]. However, a recent study described how the
hexagonal phases of LCs are capable of promoting LC fusion with the SC and the deeper
layers of the skin, resulting in enhanced drug delivery into the skin. Previous studies have
established a number of hexagonal phase advantages, such as high fluidity, a large surface
area for interaction with biological barriers, and allowing for higher amounts of drugs to
be incorporated regardless of solubility. To fully comprehend the mechanism of LC phase
structures in drug penetration through the skin, more investigation is required [33,34].

The biocompatibility of PEG-GMO formulations was also investigated using HaCaT
(Figure 6). PEG-GMO10 and PEG-GMO20 (0.1–1 mg/mL) were added to the HaCaT
cells at varied doses (Figure 6a,b). The HaCaT cell viability was >98% at different con-
centrations of the prepared formulations. The PEG LC formulations’ safety on HaCaT
cells was also proven at a higher dose, 1 mg/mL, where cell survival was >90%. Prior
studies using human keratinocytes to examine the safety of various recently manufactured
formulations [35,36] support our findings.
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Furthermore, even at 1 mg/mL, the PEG-GMO formulations had no genotoxic re-
sponse against HaCaT cells (Tables 4 and 5) according to our findings (Figure 7).

Table 4. Effect of PEG-GMO10 formulation on DNA damage in HaCaT cells estimated with the
comet assay.

Grade of
Genotoxicity Control 50 µM H2O2 0.1 mg/mL 0.5 mg/mL 1 mg/mL

Grade 0 99 15 96 93 95
Grade 1 1 17 2 6 3
Grade 2 0 10 1 1 2
Grade 3 0 28 1 0 0
Grade 4 0 30 0 0 0

Table 5. Effect of PEG-GMO20 formulation on DNA damage in HaCaT cells estimated with the
comet assay.

Grade of
Genotoxicity Control 50 µM H2O2 0.1 mg/mL 0.5 mg/mL 1 mg/mL

Grade 0 97 20 97 91 93
Grade 1 2 12 1 8 5
Grade 2 1 6 1 1 1
Grade 3 0 30 1 0 1
Grade 4 0 32 0 0 0
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Figure 7. Comet assay images of HaCaT cell lines treated with 1 mg/mL of PEG-GMO10 formulation
(a) and 1 mg/mL of PEG-GMO20 formulation (b).

Human keratinocytes treated with hydrogen peroxide (50 µM) caused considerable
DNA damage as a positive control (grade 3, grade 4). The results also demonstrated that
treating HaCaT cells with PEG-GMO10 and PEG-GMO20 at 1 mg/mL does not cause
significant DNA damage (Figure 7), suggesting that PEG-LC formulations are safe for
medicinal applications.

The current study demonstrates how biocompatible materials such as GMO and
PEG can be used to generate hexosome- or cubosome-type LC formulations. Tempera-
ture, LC lipid type, the physiochemical properties of drug, lipid content, and surfactant
type were all hypothesized to influence the phase structure and the performance of LC
ointment formulations.
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4. Conclusions

The current investigation demonstrated that the PEG-GMO is capable of delivering
hydrophilic drugs into the skin at a higher drug payload with GMO acting as a skin
permeation enhancer. The preparation of an ointment base with PEG and GMO effectively
formed hexosome-type liquid crystal formulations. In vitro skin permeation results clearly
showed that the PEG-LC formulations significantly improved PAB skin penetration when
compared with commercial PEG. Formulation characterizations such as small-angle X-ray
scattering, viscosity, pH, zeta potential, and the particle sizes of the formulations were
examined to determine the physicochemical properties of the prepared formulations. More
investigation is required to fully comprehend the mechanism of LC phase structures on
drug penetration through the skin. The MTT and comet assays were performed to assess
the biocompatibility of the formulations. The PEG-LC formulations were biocompatible
with human epidermal keratinocytes (HaCaT). The PEG-LC formulation is a promising
carrier for the transdermal delivery of hydrophilic drugs.
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