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Abstract
Many efficient data gathering approaches have been proposed utilizing a mobile sink (MS). MS significantly alleviates the
energy holes that result from multi-hop data dissemination near the stationary sink in wireless sensor networks (WSNs).
However, most of those approaches design a predetermined MS trajectory that may encounter changes in sensor nodes status
during the MS roaming. Thus, this paper proposed two MS methods called fuzzy A-star sink mobility (FASM) and grey wolf
mobility (GWM). Both methods aim to alleviate the energy holes and data latency by considering the residual energy, sensor
density, source sensors angle, and traffic load as guiding parameters for the next potential position. FASM uses a grid model
with a fuzzy inference system, while GWM uses the grey wolf optimizer to explore the optimal MS position precisely. Both
methods utilize fuzzyA-star routing protocol to run all sensors even if they were far from theMS to reduce the buffers overflow
and provide a balanced energy consumption during data routing. The effectiveness of the proposed schemes for prolonging
the WSNs lifetime is confirmed through strict simulations as they have been compared with two efficient existing protocols
which are WRP and DBRkM.
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1 Introduction

WSNs are large-scale ad hoc networks that consist of tiny,
inexpensive, and battery-powered devices which densely
distributed in the field for sensing the desired physical prop-
erties, aggregating data, and wirelessly transmitting it to a
data collector center known as the sink [1–3]. WSNs have
widespread applications in different fields such as natural
disaster prediction, military monitoring systems, and health-
care [4].

Over the past few years, prolonging the network lifespan
has revolutionized the state of the art, since the data through-
puts are very low in wireless communication model, and
conventionally, thousands of limited battery-powered sen-
sor nodes (SNs) are distributed randomly over dangerous
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unreachable environments; therefore, it is hard to replace or
recharge the dead battery of SNs [5]. In the context of power-
saving, the communication distance plays an essential role in
the energy consumption issues, where the quantity of energy
depleted by the source SN increases super-linearly with the
distance between the source SN and the destination [6].

In multi-hop data transmission techniques, SNs collabo-
rate to deliver the packets hop by hop to a stationary sink
which forces the SNs near the sink to take charge of trans-
mitting the packets from the entire network to the sink, thus
their energy is dissipated more quickly than any other SNs,
due to a significant traffic overhead near the sink [7–9]. This
problem was called “Energy sink-holes problem” [10], or
“bottleneck problem” [1]. Hence, the nearest SNs are to the
sink, the more their battery drains out, whereas those situ-
ated remote to the sink may preserve more than 90% of their
initial energy [11]. As a result of such non-homogeneity in
the energy consumption, if those overloaded SNs die, the
sink would not be able to collect any data packets, although
a tremendous number of away SNs still retain an abundant
amount of energy, and will lead to forming a disconnected
WSN that suffers from a bad coverage and connectivity [11,
12].
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A remarkable improvement in terms of energy hole
avoidance has been attained by usingMS due to the position-
rotation of SNs to be MS neighbors [9]. Many studies have
been conducted to create an MS trajectory for data gathering
that takes into account both random [13] and controlled [14]
mobility of the MS.

The uncontrollable behavior of MS and buffer overflow
of SNs is the main disadvantage of random mobility. Alter-
natively, in early-proposed controllable mobility methods,
MS approaches every SNs to capture their data [15–17]. In a
large-scale sensing network, this behavior significantly over-
flows SNs buffers, hence increasing the data latency caused
by the time longevity of MS tour, before returning to any SN
at the next collecting tour [18]. However, it is still an effec-
tive roaming behavior over small-scale areas with a limited
number of SNs [11].

The other controllable behavior of MS trajectory is accu-
rately and optimally selecting a limited number of SNs (or
positions), called rendezvous points (RPs) that should be vis-
ited by the MS for gathering data. If the RPs were SNs, they
take on the mission of receiving the data from their neigh-
bors and transmitting it to the MS once the MS reach their
spots, while if they were positions, the MS will target those
positions and all nearby SNs deliver their data directly to the
MS once it reaches those positions [19, 20].

The RPs-basedmobilitymitigates the problem ofMS path
longevity and thereby reduces data delivery latency. How-
ever, designing the MS route is a difficult topic, since it
affects data transmission, network coverage, and the life-
time of the network [21]. Artlessly, it is preferable to reduce
the MS trajectory for rapid data gathering. However, con-
structing a short trajectory for MS would increase the count
of hops in data dissemination which results in more energy
consumption [22]. On the other hand, constructing a long
MS trajectory would reduce the hop count, but increase the
traffic load on SNs (i.e., stacking of the sensing data on the
memory of SNs). As a result, while constructing theMSpath,
attention must be made to ensuring that there is a trade-off
between the MS trajectory length and the hop count [23].
Avoiding the energy holes and limiting the data latency are
the X factors for designing a good MS path.

Many MS great techniques that adopted a positional RPs,
such as in [23], aimed to preselect a collection of RPs to
be halting points for MS trajectory that aim to minimize the
number of hops in such manner that the potential RP within
the range of more number of SNs and less distance to them
has the advantage to be selected as a target for MS in the
current tour.WhenMS visits those RPs, the SNs deliver their
data directly by the possible minimum number of hops (i.e.,
one-hop is better). This method has two drawbacks, one is
the predetermination of RPs collection, and the other is the
high data latency.

Regarding the first drawback, in the context of energy
holes avoidance, to conserve more energy, the predetermina-
tion of RPs makes the MS not aware of the real energy status
at those RPs as all the SNs run constantly during the MS
roaming time. As an illustrative example, during the start-
ing of each tour round, the energetic and traffic situation of
SNs at the last RPs is not the same as it was when the MS
start to target the first RP, or start its computation to build the
trajectory. On the other hand, if the RPs-selecting method
hardly enforces the MS to explore the RPs that ensure one-
hop communication distance between the SNs and theMS, it
may lead to high data latency since the SNs of the other RPs
have to wait much more time till the arrival of MS to their
one-hop away RP.

As a result and contribution, in our paper, we claimed
that using an energy-efficient multi-hop transmission tech-
nique along with a non-predetermined RPs mobility method
would significantly extend the network lifetime and reduce
the data latency. Our contribution in this paper was to avoid
the energy sink-holes problem through the proposal of two
different approaches for sink localization that does not adopt
a predetermined trajectory, one is based on a fuzzy inference
system called FuzzyA-star Sink Mobility (FASM), and the
other is based on the grey wolf optimizer (GWO), and called
grey wolf mobility (GWM).

In both approaches, to ensure higher energy conservation,
it has been considered that MS should target the energy-rich
areas with less traffic load. Furthermore, we also enforced
the MS to attract to the position near the SNs that own
the scheduling time to turn their radio on and transmit their
data which will result in reducing the communication hops
between SNs and the MS. On the other hand, for reducing
the data latency, All SNs are allowed to send their data to the
MS current location using a multi-hop transmission method.
In both approaches, we have benefited from the fuzzyA-star
routing protocol proposed in [24], which executes well in
terms of balancing the selection of possible routing paths
from the sender SN to the MS.

The first approach partitions the network area into a grid-
like shape based on the transmission range of SN (TR) which
will assist the MS to make a relocating decision from the
current high traffic grid to the best nearby grid based on
decision parameters. The second approach adopts a swarm
intelligence algorithm, which is GWO, to discover the opti-
mal position inside a specific search space outside the energy
hole area as the next target. Primarily, The concealing of
energy hole near the sink is a priority for both approaches.

The rest of this paper is organized as follows: A liter-
ature review of sink mobility approaches is discussed in
Sect. 2. Section 3 presents some preliminaries of the system
model that is required to implement the proposed approaches.
Section 4 explains the two proposed approaches (i.e., FASM
and GWM). Section 5 describes the simulation setup and
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analyzes the performance results, and finally, the conclusion
is highlighted in Sect. 6.

2 RelatedWork

It was noted practically that utilizing an MS is one of the
perfect techniques to extend the WSNs lifetime. Specifi-
cally for avoiding the energy holes near the sink [25, 26].
In mobile ad hoc networks, sink mobility management is a
key challenge due to the repeated alteration in the topologies
of the network communications. As a result, the continu-
ous topological alteration might affect the data transmission
efficiency positively or in contrast [27]. Furthermore, a long
traveling distance of an MS inevitably raises the data latency
leading to attrite the resources of SNs and reducing the per-
formance of real-time applications [28].

Some important challenges should be accurately consid-
ered to design an efficient MS approach such as the precise
time at which the MS should leave the current position and
the selection of the best next position. Hence, designing effi-
cientMS approaches have piqued the curiosity of researchers
in recent years.

Basagni et al. [29] proposed one of the earliest MS strate-
gies by providing amixed-integer linear programmingmodel
for constructing an MS trajectory method that extends the
WSNs lifetime. They introduced three MS constraints which
were the resident time of MS at a sojourn point (SJ), the MS
maximum traveling distance from one SJ to another, and the
cost of building a new MS trajectory. Then, they developed
a distributed localized algorithm, called greedy maximum
residual energy (GMRE), for determining the energy-rich
position to act as SJs for MS. Motivated therefrom, the
authors in [15] described this issue in the context of SNs
buffers by addressing the mobile element scheduling prob-
lem, thus they proposed an MS path construction technique
that aims to gather the data from the overloaded SNs before
their buffers overflow, and they discussed this problem as an
NP-hard with integer linear programming. However, unlike
the typical travel salesman problem, MS may visit the same
SN multiple times during the same round. Although the
approach is efficient over a small-scale network, it suffers
in large-scale networks due to high computations.

Marta and Cardei [30] have made substantial progress by
proposing a sink mobility approach based on a hexagons
partitioning model. They discussed the MS roaming in two
situations, which arewhen theMS approaches theHexagon’s
corners, and when it approaches multiple positions over
the hexagon’s perimeter. Then, they proposed a distributed
localized method to detect the best energy-rich positions
for multiple MS. They showed a great improvement in bal-
ancing energy consumption among SNs. Nevertheless, this

method suffers from complex computation, and economi-
cally, employingmultipleMSs at each hexagon is very costly.
In [31], the authors proposed a clusters-based network with
a centralized static sink and MS that moves over a grid sys-
tem where each grid is embedded with a cluster. Each cluster
head computes the distances to the centralized static sink and
the regional MS and transmits the data to the nearest sink.

Salarian et al. [11] proposed a heuristic MS trajectory
planning called weighted rendezvous planning (WRP) based
onRPs. TheMS inWRP roams through allRPswithin a delay
bound, thereby the SNs deliver their data toMSvia their near-
est RP considering the data packets size and the hop number
from the tour. In [23], the authors proposed anMS path plan-
ning method called delay bound reduced k-means (DBRkM)
which utilizes the k-means algorithm to design an RPs-based
trajectory that detects the RPs collection that communicates
with their neighboring SNs with one-hop distance.

On the other hand, evolutionary and swarm optimization
algorithms also had their crucial rule in solving real-time
problems. A. K. Srivastava et al. [32] forwarded the genetic
algorithm (GA) to the march of sink mobility. GA designed
an MS trajectory by detecting the optimum number of RPs
based on three decision variables which were the minimum
number of SNs that are tow-hops away fromRP, theminimum
traveling distance ofMS, and traffic load at theRP.The author
in [33] improved the artificial bee colony (ABC)with a cumu-
lative factor that speeds up the convergence and improved the
global search with a mutation operator. The authors formu-
lated a problem based on the fact that a fewer number of hops
between SNs and their RPs mean a low energy consumption
in the network, and therefore, the improved ABC showed
efficient energy conservation and a great performance in col-
lecting the data in real-time.

Preeth et al. [34] proposed an integrated hybrid model
utilizing the adaptive neuro-fuzzy system (ANFS) for cluster-
head organization, and the emperor penguin optimizer (EPO)
to design an efficient path for MS. EPO aims to discover
the minimum number of RPs. They showed a great result;
however, using a swarm intelligence algorithm alongwith the
ANFS is computationally complex in large-scale areas. For
effective data collection, Gupta et al. [35] designed a protocol
for selecting the best set of cluster heads and constructing an
optimal MS path for data gathering based on the blade eagle
search (BES) and a hybrid system combining the seagull
and slap swarm optimizations. BES aims to pick the best
collection of nodes to act as CHs; meanwhile, the hybrid
optimization takes the responsibility to construct anMS path
for collecting the data from the selected CH.

The author in [36] presented a shift toward the imple-
mentation of machine learning paradigms by proposing an
MS path planning called density-aware and energy-limited
path construction algorithm for data collection (DEDC) to
improve the network lifespan. DEDCwas designed over two
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stages. First, the network is partitioned into grids to build a
primary snake-like trajectory for MS. In the second stage,
they used hierarchical clustering to classify each grid in the
network into balanced and unbalanced classes, the predeter-
mined MS path is then modified over both classes using a
mathematical model. This proposal showed a great enhance-
ment for avoiding the energy sink holes and prolonging the
WSNs lifetime.

Several conclusions have been taken from the above
review. TheMS approach must be compatible with the phys-
ical specifications of SNs, roams with a moderate distance,
have an acceptable computation, and fit well with various
SNs densities. Moreover, the majority of the above works
adopted neither a non-predetermined RPs nor combined the
parameters of energy, traffic load, sensor density, and dis-
tance to the transmitting area.

To alleviate the energy sink holes problem around the sink
and reduce the data latency, this paper proposed two inte-
grated energy-efficient WSNs schemes, each comprised of
fusing two methods which are an MS method, and a multi-
hop routing method. Thus, the combination will result in
extending the lifetime of WSNs.

3 SystemModel

In the proposed approaches, we assumed a homogeneous
WSN having SNs that are deployed randomly over a regular
size area. Those SNs transmit their data to a single energy-
unlimited MS which is aware of its position and roaming
in the network to gather the nearby SNs data. Both of the
proposed approaches adopted a low-cost multi-hop routing
technique to transmit the data from the SNs to the MS which
will further help in avoiding uneven energy consumption
problems. Furthermore, the following are some key assump-
tions about the WSN that the system model considers.

1. After the random scattering, every SN remains static in
the area and has a unique ID number.

2. Since the WSN is homogeneous, all SNs have the same
limited initial energy, communication range, and buffer
size and are aware of their location coordinates by using
a positioning system.

3. Every two SNs can communicate with each other over a
shared radio channel if they were within the communi-
cation radius.

4. Each SN can automatically modify the transmission
power based on the communication distance to its
receiver.

5. Each SN can transmit the buffered data based on a time
slot allocating method.

6. The packets that are buffered in SNs can be disseminated
to the MS through a multi-hop routing technique.

The proposed approaches use the time-division multiple
access (TDMA) system as a MAC protocol due to its effec-
tiveness in terms of saving energy, since it changes the status
of the radio transceiver of SN to the sleep mode for a long
time. TDMA constructs a scheduling framework based on
time slots that is each slot belongs to a specific SN. When
the SN time slot is activated, the SN will be able to transmit
the data stored at its buffer. In the proposed system, the sink
initially broadcasts the time slot of the data collection sched-
ule to each SNs in the geographical area. each slot contains
a unique identification number of the related SN, thus the
sensed data, which is stored in the node’s buffer for further
processing, can be forwarded to the next hop only if the time
slot of that SN has come.

3.1 Radio Channel Model

SNs deplete energy during sensing, data processing, and
communication. In this work, we only focused on the energy
depletion that is occurred during communication. As demon-
strated in Fig. 1, the power loss of sending k-bits of data by
a node turns on the radio electronics along with the power
amplifier, whereas the power loss of receiving the k-bits turns
on the radio electronics only. This paper adopted the first-
order radio model which was proposed by [37], and well
simulated by [38]. In the model, the energy is dissipated
based on the communication distance (d), which classifies
the channelmodel into twomodel a “free propagationmodel”
and “multi-path fadingmodel.” Therefore, when the commu-
nication distance between the transmitter and the receiver is
lower than the attenuation threshold (d0), the transmission
model is free propagation, thus the power of transmission is
attenuated by d2 (d2 power loss). In contrast, if the distance
is greater than d0, the transmission model is a multi-path fad-
ing, and the power of transmission is attenuated by d4 (d4

power loss). As a result, the energy consumed by the trans-
mitter when sending K-bits of data by an SN is calculated as
follows.

ETx(k, d) � ETx−elec(k) + ETx−amp(k, d)

�
{

kEelec + kεfsd2, d < d0
kEelec + kεmpd4, d ≤ d0

(1)

The energy consumed for receiving a k-bits packet by an
SN is calculated by Eq. (2).

ERx(k) � ERx−elec(k) � kEelec (2)

where ETx and ERx represent the total amount of energy
consumption at the transmitting and receiving circuits,
respectively. Eelec represent the electronics energy that is
dissipated for sending 1-bit of data.Eelec depends on some
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Fig.1 Radio energy model

factors such as modulation, digital coding, filtering, and sig-
nal spreading.εfs and εmp denoted to the energy dissipated
by the amplifier under the free propagation model and the
multi-path fading model, respectively, which is selected by
the transmitter based on the communication distance. d0 rep-
resent the attenuation thresholdwhich canbe calculatedusing
Eq. (3).

d0 �
√

εfs

εmp
(3)

4 ProposedWork

In the proposed methods, new sink localization algorithms
based on artificial intelligence are proposed to select the best
next position. The first intelligence paradigm is a fuzzy infer-
ence system that controls the MS roaming based on a grid
model, while the secondmodel employs GWO to explore the
optimal MS position. The forthcoming subsections describe
the two approaches.

4.1 Fuzzy-Based SinkMobility Model FASM

After the random deployment of SNs, the MS is placed at
any position in the network to collect the data from SNs. In
the proposed method, initially, the network area is virtually
partitioned into an equal size square-shaped grid system as
illustrated in Fig. 2. The MS starts moving and stabilizes
at the center of the nearest grid and broadcasts the position
coordination along with the scheduling frame to all SNs. In
the grid model, determining the distance value of grid side
length (l) is essential for circling the energy holes area, there-
fore Eq. (4) is utilized to calculate l. For better encirclement
of energy holes area, the consideration is that l has a relation-
ship with the radius of TR of SNs that is if the TR radius has
a low distance value, l should have a higher value than TR.

Fig. 2 Network model of FASM

In contrast, the higher TR radius of SNs, the more equal l to
TR. As mentioned, the basic goal behind such a grid model
is to confine the high overloaded SNs inside the MS grid.

l ≥ TR (4)

Equation (4) has been formulated based on the center
position of MS at any grid. Consequently, the majority of
high traffic SNs which suffer rapid energy dissipation exist
at the current MS grid within the TR radius. Those SNs
are overloaded with traffic loads, energy consumption, and
computations. Since MS should move restrictedly over an
acceptable distance to alleviate the data latency and severe
topological changes, the determination and confiningof those
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SNs help the MS to roam away from them at the next move-
ment.Moreover, it also provides theMS the ability to evaluate
the energy levels at the current grid to decide on the appro-
priate time to leave the current grid.

After the initialization of the network, the SNs transmit
their data to the MS using the fuzzyA-star routing protocol,
which is proposed in [24]. The data packets are forwarded
from the source SNs to the intermediate SNs and reach the
MS with balanced energy consumption; furthermore, the
continuous energy-efficient data delivery would reduce the
data latency. In the fuzzy A-star routing protocol, the fuzzy
inference system and A* heuristic are hybridized into a sin-
gle paradigm to explore the low-cost path from the sender
SNs to the MS based on three parameters that represent the
status of the neighbors of the sender. The parameters are the
remaining energy, traffic loads, and distance from sender to
MS. The more energy, the more SN participates as an inter-
mediate node.On the other hand, the traffic load is considered
to prevent transmitting the data to the intermediate SNs with
overflowed buffers. Lastly, to reduce the end-to-end delay,
the minimum number of hops is considered by minimizing
the distance between the candidate intermediate SN and the
MS. Equation (5) represents the evaluation function of the
candidate SNs that should be maximized to detect the best
next hop.

f (n) � NC(n) +

(
1

MH(n)

)
(5)

where n is the neighbor of the source node. NC(n) is the
cost value of the candidate neighbor which is calculated by
the fuzzy inference system.MH(n) is the distance from the
candidate neighbor to the MS.

In short, the sender SN broadcasts a message to the SNs
within a range of TR, and the SNs within the range send
their information to the sender SN, which further adds them
to an open list. After evaluating the SNs in the open list, the
sender SN selects the SN with the best value, adds it to the
close list, and removes it from the open list of theA-star algo-
rithm. The currently selected intermediate SN performs the
same process to the neighbors by adding them to the open
list which is already containing the neighbors of the previ-
ously selected intermediate SN (or the sender) and selects
the best next intermediate node. This process goes on until
reaching the final destination which is the MS. After deter-
mining the path, the packet will be forwarded throughout
this path, (close list path), from the source SN to the MS.
Two advantages have benefited from utilizing this multi-hop
routing technique. First, determining the area of the over-
loaded SNs surrounding MS. Second, balancing the energy
consumption.

In this proposition, the category of MS method adopts the
controllability-based behavior, where theMS can control the

path considering a set of parameters belonging to the current
and the next potential grids. As previously declared, initially,
theMS is situated at the center of a grid. At each transmission
round k, the MS evaluates the current grid to gain knowledge
about the situation inside that grid. Such an evaluation pro-
cess is performed considering the average residual energy of
the overloaded SNs (REBTS) inside the current grid. Those
SNs are called “bottleneck sensors” (BTS). The BTS that are
involved in the evaluations are those who are one-hop away
and can communicate directly with the MS. In other words,
the distance from BTS to the MS is less than or equal to
the radius of TR. Equation (6) states that If REBTS exceeds
a mobility threshold (τ ), the MS should leave the current
grid and select another nearby grid to prevent the possible
occurrence of energy holes at the current grid.

REBTSk ≤ τ (6)

τ � REinitial(BTS) ∗ α (7)

where REBTSk is the average residual energy of BTS at
a transmission round k·τ represents the mobility threshold
which is calculated using Eq. (7). REinitial(BTS) is the aver-
age residual energy of BTS at the beginning of MS arrival to
a grid; α is the percentage value that represents the desired
energy threshold which defines the time duration of MS resi-
dence at a grid.α is inversely proportional to the SNs density
at the network. By using Eq. (6), the MS continuously mon-
itors REBTS at each round k, if the condition is satisfied,
the MS ends the resident time at the current grid and moves
toward the best nearby grid using the fuzzy system.

The mobility technique of MS is a very critical approach.
As the MS starts roaming over the network, the communica-
tion topologies of SNs may be subjected to major disruption
and rises the data loss problems. Furthermore, a long MS
path significantly extends the data latency in the network.
To overcome those issues, the traveling distance of MS will
be shortened to either diagonally or parallel to one of the
maximum 8 surrounding grids. As illustrated in Fig. 3, MS
uses the fuzzy inference system to analyze the information
of a maximum 8 surrounding grids. The MS then evaluate
the output of each grid and head to the best next target grid.

The fuzzy inference system is a paradigm to solve
decision-making problems under incomplete information
and uncertainty [39]. Figure 4 illustrates the basic structure of
theMS fuzzy systemwhich is built basedonMamdanimodel.
The use of a fuzzy system in the sink mobility is to select
the best grid out of a maximum of 8 grids. The fuzzy system
receives four input parameters derived from the information
at each surrounding grid and outputs one value representing
the grid chance SC to be selected as the next target. The fuzzy
inputs are described as follows.
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Fig. 3 The moving scheme of FASM

Fig. 4 The structure of the fuzzy system

4.1.1 Average Residual Energy (RE)

In various strategies ofWNs lifetime enhancement, the resid-
ual energy of SNs is an essential feature to be considered.
Thus, the grid that owns the SNs with the highest average
residual energy has the opportunity to be selected as the next
target for MS. The rule base system considers this feature
with nearly 40% importance.

4.1.2 Sensors Density (�)

A grid that owns the highest SNs density has a better chance
to host the MS. The density denotes the number of SNs that
are located in a grid. A grid area that has more dense SNs is
an energy-rich grid; nonetheless, this statement is not always
correct because there might be a disparity in the sensing
intensity in various regions of the environment. In the envi-
ronment, there may exist a high-density region that would

have a high traffic load which rapidly depletes the SN energy,
at the same time, there is a low-density region with a very
low traffic load that results in consuming very low energy.
The rule base system considers this feature with nearly 20%
importance.

4.1.3 Average Traffic Load (TL)

The traffic load represents the data processing levels inside
the SNs buffers at a specific grid. Therefore, a grid that owns
SNs with the lowest traffic load is expected to deplete less
energy, since a low number of data packets wait for their
turn inside the overall SNs buffers of that grid. The rule base
system considers this feature with nearly 20% importance.

4.1.4 Source Nodes Angle (̂A)

Based on the TDMA protocol, the source SNs is a set of
nodes located at a specific region in the environment, whose
own the time slots of TDMA to forward their packets. As
a fuzzy input, it represents the distance between the center
of the candidate grid and the center of the source SNs and
can be calculated using the Euclidean distance formula. Con-
sequently, the nearer grid to those SNs, the higher chances
it has. The goal of utilizing such a feature is to reduce the
number of transmission hops to gain an effective data trans-
mission with no data loss and less energy consumption. By
using this parameter, the MS would prefer to approach the
SNs region that has the transmission time, thus decreasing
the number of transmission hops which leads to reducing the
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Fig.5 Inputs and output of the fuzzy system

overall energy consumption in the network. The rule base
system considers this feature with nearly 20% importance.

By using the If–Then rules, the fuzzy output is mapped
with the inputs. The fuzzy rule base set contains a total of 375
If–Then rules to cover all possible implications. The output
SC is defuzzified based on the center of gravity formula. The
MS head to the center of the grid that owns the highest SC.
The MS then broadcast the new position to all SNs in the
network. Figure 5 shows the membership functions of the
inputs and output in the fuzzy system.

4.2 GreyWolf Mobility Model GWM

GWO is a meta-heuristic algorithm proposed by Mirjalili
et al. [40]. GWO is inspired by grey wolves called Canis
Lupus. The GWO algorithm impersonates the grey wolves
hunting style in nature along with the hierarchy of leadership
in their community. Grey wolves have a very rigorous social
hierarchy consisting of four categories of wolves which are
alpha, beta, delta, and omega. The main rule of high-class

alpha wolves is decision-making about sleeping location,
hunting, and wake-up time. The beta grey wolves are the
second level in the hierarchy which are subordinate wolves
that help the alphas in their decision-making by sending com-
mands to the lowest classes. The third class is the deltawolves
which contain sentinels, scouts, elders, and hunters. The low-
est class is the omegaswhich keep the disputes out of the herd
or be a babysitter.

Encircling the prey is the first behavior of grey wolves
throughwhich the prey is encircled bywolves. The following
equations mimic such behavior.

−→
D �

∣∣∣−→C · −→
X p(t) − −→

X (t)
∣∣∣ (8)

−→
X (t + 1) � −→

X p(t) − −→
A · −→

D (9)

where t is the current iteration;
−→
X p is the prey’s position vec-

tor;
−→
X represents a grey wolf’s position vector. The vectors−→

A and
−→
C are coefficient vectors that can be calculated using
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(10) and (11), respectively.

−→
A � 2−→a · −→r1 − −→a (10)

−→
C � 2 · −→r2 (11)

where r1, r2 are random vectors in [0,1]. The components of−→a are decreased linearly with the iteration courses from 2 to
0. The other behavior is the hunting behavior which is guided
by the best three alpha, beta, and delta which have a better
sense of the prey’s position. Consequently, those best three
solutions should be saved and force the entire solutions to
update their position based on them. The following equations
are used in the matter.

−→
Dα �

∣∣∣−→C1 · −→
Xα − −→

X
∣∣∣,

−→
Dβ �

∣∣∣−→C2 · −→
Xβ − −→

X
∣∣∣, −→
Dδ �

∣∣∣−→C3 · −→
Xβ − −→

X
∣∣∣ (12)

(13)

−→
X1 � −→

Xα −−→
A1 ·−→Dα ,

−→
X2 � −→

Xβ −−→
A2 ·−→Dβ ,

−→
X3 � −→

Xδ −−→
A3 ·−→Dδ

−→
X (t + 1) �

−→
X1 +

−→
X2 +

−→
X3

3
(14)

Initially, the sink is placed in the topographical area ran-
domly. There are some common steps between this method
and the fuzzy sink mobility method. The SNs start to send
their data, based on TDMA, to MS using fuzzyA-star rout-
ing protocol. The SNs that are TR radius away from the sink
are considered an overloaded SNs or bottleneck SNs BTS.
Besides, the area that contains these SNs is considered as a
critical area that might be converted to an energy hole, if the
sink remains static.

Moreover, at each transmission round, MS performs an
evaluating process inside the critical area based on its average
remaining energy. Same as in the fuzzymobility method, this
methoduses (6) and (7) tomake themovement decision. If the
average residual energy of BTS exceeds a specific threshold,
the sink will decide to hold the data gathering process and
head to another position found by GWO.

For GWM, a set of search agents (solutions) are gener-
ated randomly in which each search agent represents a wolf.
Each agent is defined as an array of coordinate vectors where
each coordinate vector (x , y), which is a real encoding, rep-
resents the next potential position ofMS. As declared in (15),
N of random solutions n with length s is generated outside
the critical area in the search space which is the bigger cir-
cle that is demonstrated in Fig. 6, The search space can be
defined as the area that contains the next potential position,
thereby it hosts the search agents and can be considered as
the solution boundary. The distance between any two points

Fig. 6 Search space of GWM

in the perimeter of the search space circle and that of the crit-
ical area circle is r . Later on, the search agents continuously
update their position to discover the optimal location for MS
which will exist inside the search space circle and outside the
critical area. Any coordinate vector (xns, yns) is associated
with related characteristics that belong to that position. The
related characteristic can be defined as a set of parameters
embedded at a position (xns, yns) with the intent to evaluate
the fitness of that position using those parameters as will be
seen in the forthcoming step.

N �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
x11, y11

) (
x12, y12,

) · · · (x1s , y1s)(
x21, y21

) (
x22, y22,

) · · · (x2s , y2s)
· · ·
· · ·
· · ·(
xn1, yn1

) (
xn2, yn2,

) · · · (xns , yns)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

It is to be noted that in (15), the population can suffice
with one potential position in each search agent; however,
defining more potential positions in each agent is efficient in
terms of strengthening the relationship and communication
between search agents by which the next optimal position
will be more accurate and more reassuring, especially if the
search space has a large area with a large number of SNs.

The fitness function is calculated based on a variety of
parameters. It should be emphasized that the more important
a parameter has, the more optimized value will be obtained.
In the proposedmodel, the fitness parameters attempt tomin-
imize energy depletion while rendering an extended lifetime
to the network. The fitness value describes the suitability of
any search agent for owning the optimal next location for
MS. Thus, in GWM, each potential position (x, y) in the
search space is associated with four parameters that describe
the situations around that position within a range of TR. As
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shown in (16), the parameters that are involved in the fitness
calculation are the same as that of the FASM approach which
was the average residual energy, sensor nodes density, traf-
fic load, and the distance to the source SNs (or source SNs
Angle).

(x , y) → [
RE, ρ, TL, Â

]
(16)

where RE, TL represent the residual energy and the traf-
fic load of each SN that is located within the search range
of the position vector, respectively. ρ is SNs density within
the potential position’s range. Â is the distance between the
source SNs and the potential position coordination which is
calculated using the Euclidean distance formula. As a result,
the fitness function of each search agent is calculated by using
the following fitness sub-functions.

f1 �
(∑s

i�1(
∑ρ

j�1 RE)∑s
i�1 ρ

)
/s (17)

f2 �
(

s∑
i�1

ρ

)
/s (18)

f3 �
(∑s

i�1(
∑ρ

j�1 T L)∑s
i�1 ρ

)
/s (19)

f4 �
(

s∑
i�1

Â

)
/s (20)

where the first sub-function f1 is for calculating the SNs aver-
age residual energy in each potential position (x, y) within
a range of TR, this factor should be maximized to enforce
the search agent converge at the energy spots. f2 is the sec-
ond sub-function which represents the average of neighbor
SNs inside the potential position range. The more SNs in the
vicinity of position, the more chance it has to be as MS next
position, thereby this factor should be maximized. f3 is the
third factor which represents the average of the SNs traffic
load in the potential position range. This factor should be
minimized to pull the sink toward the areas with less traf-
fic load. The last factor f4 represents the average distance
between the potential position coordination and the source
SNs, and thus, it has to be minimized to pull the sink toward
the SNs that capture the time slot to transmit their data. s is
the dimension of the search agents.

After normalizing each fitness sub-function, Eq. (21) fit-
ness function which should be maximized is used to evaluate
each search agent.

Fitsolution � (c1 ∗ f1) + (c2 ∗ f2) − (c3 ∗ f3) − (c4 f4)

|c1| + |c2| + |c3| + |c4| � 1 (21)

To summarize the process sequentially, after initialization
of search agents, a, A, and C, each search agent is evaluated
using the above equations, and the best threewolves (Xα,Xβ,
Xδ) are determined as the leaders of the optimal convergence
process. Each search agent in the population is repeatedly
updated based on the best three predetermined wolves using
(14) until the termination condition is reached. Finally, the
alpha agent and its fitness will be considered as the optimal
solution and one of its (x, y) positions is considered as the
optimal target location for MS. It is important to draw atten-
tion to the fact that all potential positions in the final alpha
solution will have the same coordination. The flowchart in
Fig. 7 describes the entire GWM procedure.

5 Performance Evaluation

The performance of our proposed sink mobility methods in
homogeneousWSNs was evaluated by comparing themwith
two of the most efficient algorithms in the field of sink local-
ization (i.e., WRP and DBRkM).

In WRP [11], the MS roams in the network based on a
preselected halting points trajectory that adopted a heuristic
search algorithm to select the optimal collection of RPs in
such a way that reduces the path length of MS. This goal
has been achieved by assigning weights to each SN in the
network based on the number of hops from the source SNs
to theMS and the number of data packets delivered to the RP.
In DBRkM [23], the MS path is guided by RPs which can
be selected by employing the k-means clustering. DBRkM
also uses a weight function to examine the possibility of a
potential position to act as RP meanwhile, the path plan of
MS could be designed by using the Christofides heuristic.

WRP and DBRkM aim to minimize the number of RPs
along with the reduction of the number of hops from SNs
to RPs. Even though those approaches extend the network
lifetime, further development can be achieved. In all of their
parameters, both algorithms have not considered the param-
eter of SNs energy of the targeted area. Furthermore, since
those approaches also try their best to implement a single-
hop pattern for delivering the data to the MS, they assumed
a fixed multi-hop routing protocol when the approach fails
to construct the single-hop RPs-data delivery, which does
not guarantee energy balancing during data dissemination,
and thus, this could be a serious problem in the large-scale
networks that are suffering severe random deployment.

As a result, we have considered the parameters like aver-
age energy, average traffic load, sensor density, and source
nodes angle to pull theMS toward the energy-rich, low traffic,
high-density, and low hop count positions in the topograph-
ical areas.
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Fig. 7 Flowchart of GWM

5.1 Simulation Setup

In order to analyze the efficiency of the proposed approaches
to balancing the energy consumption and extending the net-
work lifespan, the comparison parameters that have been
considered are the number of dead SNs, average remain-
ing energy, the standard deviation of energy consumption,
and the execution time. The proposed protocol fuzzy-based
sink mobility model is called FASM, and the other method is
calledGWM.The simulation of the environment for allmeth-
ods has been programmed using Python 3.8.6 with Spyder
IDEon theAnaconda environment. Packages such asNumpy,
Pandas, andMath were also utilized for network preparation.

The simulation parameters and their values are shown in
Table 1, which are identical to those used in [37]. A homoge-

nousWSN has been simulated where 150 SNs have identical
characteristicswere deployed randomly over a (200×200m)
square area. Each SN is equipped with a 2 Joule battery and
a radio that can communicate to other SNs within a range
of 40 m. Furthermore, the traffic load that is continuously
stacked in the buffers of SNs has been generated randomly
during the network operating timewith a range of 0–10 buffer
sizes in each SN.

The network area of FASM is partitioned into grids based
on the transmission range of SNs which is a low range con-
sidering a (200 × 200) area, therefore, it is better to have
a grid size higher than (25 m). The grid size length was (l
� 50 m). Thus, the MS can move to the center of the opti-
mal grid (vertically/horizontally) about (50 m) or diagonally
(70.5 m).
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Table 1 Simulation parameters

Parameter Value

Region size (m) 200 × 200 m

Node deployment Random

No. of sensor nodes 150

FASM no. of grids 16

GWM population size 40

GWM iterations 300

GWM agent size 4

Search space distance r (m) 50 m

Transmission range (m) 40 m

Initial energy of each sensor (J) 2 J

α (%) 90%

Control packet length (bits) 4000 bit

No. transmissions (round) 10,000

Maximum traffic in each sensor’s queue 10

Eelec 50 NJ/bit

εmp 0.0013 PJ/bit/m4

εfs 10 PJ/bit/m2

Mobile sink speed 2 m/s

In the GWM population, 40 search agents each with
4 potential positions (dimension) were initialized in every
movement decision. It is to be noted that if there is a desire to
get the most optimal position or the environment is a large-
scale area, the search agents and their positions should be
increased. However, the dimension of the search agent is
reduced in the simulation to accomplish an acceptable com-
putation complexity and less simulation time. Besides, for
fear comparison, the search space distance r was equal to
(50 m) which is the same as the vertical movement of the
sink in the fuzzy model.

According to the radio model that is described in the pre-
liminaries, the energy consumption model in the simulations
is carried out using the values 50 nJ/bit and 10 PJ/bit/m2, and
0.0013 PJ/bit/m4 for Eelec,εfs, and εmp, respectively.

5.2 Simulation Result

The majority of proposed works define the lifetime ofWSNs
as the period at which the energy of the (first/last) SN is
fully dissipated. Figure 8 shows the number of SNs that are
still active versus the number of transmission rounds (or net-
work lifetime). Since GWM has the highest load and energy
balancing among SNs, it owns the highest number of active
SNs; moreover, the death of the last SNs in GWM occurs at
a late round than the FASM, WRP, and DBRkM. FASM per-
formed well in terms of latent the first SN death than WRP

and DBRkM; however, it fails to keep such performance till
the end.

On the other hand, many researches claimed that the
network lifetime can be determined from the beginning of
network actions to the period at which the first SN runs out
of energy. Thus, Fig. 9 shows the death of the first SN in
WSNs with diverse densities ranging from 200 to 700 SNs,
where GWM dominates the other approaches in all densities
as the first SN depletes the full energy after a long period.
Regardless of the lifetime of FASM in terms of last SN death,
FASM outperformed the WRP and DBRkM when the life-
time is taken from the first SN death perspective.

The network energy consumption is an essential factor
that clarifies the energy depletion of the network during the
rounds. The method with the lowest consumption has a pri-
ority to gain a better lifetime. This is due to the availability
of an adequate energy amount that can be used for a longer
period. The plot of the network energy consumption is shown
inFig. 10,where theGWMconservedmore amount of energy
as the rounds progressed. FASMandDBRkMalso conserved
an acceptable amount of energy at different rounds.

The standard deviation (SD) of energy consumption,
which is expressed by Eq. (22), is an important factor for
measuring the energy balancing levels at various rounds.
The algorithm with less SD value has more balancing of
energy consumption due to the low differences in energy
levels among SNs. In Fig. 11, which shows the SD of all
approaches, SD of GWM has a more balancing level than
FASM, WRP, and DBRkM.

SD �
√∑n

i�1 (Econs(i) − E)
2

n
(22)

where Econs(i) represents the energy consumed by an SN
at each transmission round. E denotes the overall average
energy consumption.

Running time is an essential indicator of an approach’s
computational complexity levels. Moreover, it also provides
some hints about the data latency resulting from the time
which is consumed during the sink movement and data dis-
semination. FASM executes two procedures, which are the
detection of a low-cost routing path, and a fuzzy inference
system to find a new position for MS. GWO is a swarm intel-
ligence optimization algorithm that runs for 300 iterations for
every movement decision made by theMS. The running time
of all protocols is shown in Fig. 12 in which GWMhas a high
time complexity compared with WRP and FASM. However,
taking into consideration the efficiency GWM for extending
the lifetime of the network, we can assume that there is a
trade-off between time complexity and energy conservation
efficiency, thus such complexity could be ignored.
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Fig. 8 Number of sensor nodes
that still alive

Fig. 9 First sensor node that
exhausts the total energy

Fig. 10 Network energy
consumption at each round
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Fig. 11 Standard deviation of
energy consumption

Fig. 12 Simulation time

6 Conclusion

In real-time WSNs application, sensor nodes state such as
energy, traffic load, and computations change momentarily.
Thus, in large-scale WSNs, an MS with a predetermined
path may suffer SN information changes during the roam-
ing time. Motivated therefrom, this paper has proposed two
methods, called FASM and GWM for selecting the optimal
next position for MS based on a threshold value that controls
the sojourn time at each position. Both methods take into
consideration four parameters that define the SN status of the
targeted area which are the average remaining energy, aver-
age traffic load, SNs densities, and the source nodes angle.
Both methods adopted a multi-hop routing method called
fuzzy-A* protocol for collaborative data gathering. FASM
partitions the network to a grid model and uses a fuzzy infer-
ence system to select the best grid for hosting the MS at the
center. GWM employs the grey wolf optimizer algorithm to
detect the optimal next position from MS. We build a fitness
function to evaluate each solution based on the already men-
tioned parameters to converge at a designated search space
that differentiates the area of potential position and the energy
holes area. Finally, we have compared the proposed methods
with two existing techniques, namely WRP and DBRkm to
show their superiority. The simulation result confirmed that
the proposed method outperformed WRP and DBRkM in

terms of the number of remaining active SNs, the amount
of energy exhausted, the standard deviation of energy con-
sumption, and network lifetime with various SNs densities.
The limitations of our proposed and the existing algorithms
are that we have assumed that the SNs consume energy only
by the radio transceiver during the transmitting and receiv-
ing of the data nevertheless, the SNs deplete some energy
during data processing such as noise elimination and data
aggregation. We will address such issues in the future.
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