See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311709108

On complete (k,3)-arcs in PG(2,8)

Article in Journal of Sciences • January 2011

CITATIONS	READS
0	133

On complete $(k, 3)$-arcs in $\mathbf{P G}(\mathbf{2}, 8)$

Salam A. Falih
Department of Petroleum ,College of Engineering
University of Basra
Email: salamkader2006@yahoo.com
ISSN -1817-2695

Abstract

In this paper, the classification of the $(\mathrm{k}, 3)-\operatorname{arcs}$ in $\operatorname{PG}(2,8)$ with respect to type of their lines has been obtained as well as the group of projectivities of the projectively distinct ($k, 3$)arcs are found. Furthermore all the complete ($k, 3$)-arcs in $\operatorname{PG}(2,8)$ are investigated, also it was shown that $\mathrm{PG}(2,8)$ has no maximum arc.

Introduction

Let $\mathrm{GF}(\mathrm{q})$ be the Galois field of q elements and $\mathrm{V}(3, \mathrm{q})$ be the vector space of dimension three where q is prime power. Let $\mathrm{PG}(2, \mathrm{q})$ be the corresponding projective plane. The number of points of $P G(2, q)$ is $q^{2}+q+1$. and the number of lines is $q^{2}+q+1$, where each line contains exactly $q+1$ points and there are $q+1$ lines throughout every point, and any two distinct points lie exactly on one line, and any two distinct lines have exactly one common point. A (k, n) -arc K in a finite projective plane $P G(2, q)$, is a set of k points, such that there is some n but no $(n+1)$ are collinear where $2 \leq n \leq q+1$ and a $(k, 2)$-arc generally called a $k-\operatorname{arc}$. A $(k, n)-\operatorname{arc}$ is complete if there is no $(k+1, n)-\operatorname{arc}$ containing it. The maximum and smallest size of a complete (k, n) -arcs for which a $(k, n)=$ arc K exist in $P G(2, q)$ will be denoted by $m_{n}(2, q)$ and $t_{n}(2, q)$ respectively.

In (1938) Singer [24] put down the method to array the points and lines in projective plane $\mathrm{PG}(2, \mathrm{q})$. In (1947) Bose[7] proved that $\mathrm{m}_{2}(2, \mathrm{q})=\mathrm{q}+1$ for q odd, and $\mathrm{m}_{2}(2, \mathrm{q})=\mathrm{q}+2$ for q even. In mid of (1950s), Segre [21,22] proved that for q odd every $\mathrm{q}+1$-arc is a conic, for $\mathrm{q}=2, \mathrm{q}=4$ and $\mathrm{q}=8$ every $\mathrm{q}+2-\operatorname{arc}$ is a conic plus its nucleus [23], and for $q=16, q=32, q=2^{h}(h \geq 7)$, there exists a $q+2-\operatorname{arc}$ other than the conic plus its nucleus. In (1956) Barlotti [4] proved that the first of many results in the attempt to determine the value of $m_{n}(2, q)$, and this has proved to be far from simple. Early results by Barlotti bounded $m_{n}(2, q)$ with $m_{n}(2, q) \leq(n-1) q+n$ and proved for $(n, q)=1$ and $\mathrm{n}>2, m_{\mathrm{n}}(2, q) \leq(\mathrm{n}-1) \mathrm{q}+\mathrm{n}-2$. Hirschfeld [15] and Sadeh [20] had shown the classification and construction of k -arcs over the Galois field $\mathrm{GF}(\mathrm{q})$ with $\mathrm{q} \leq 11$ and gave the example of $(21,3)$-arc in $\operatorname{PG}(2,11)$. Bierbrauer [5] proved that any $(15,3)$-arc in $P G(2,8)$ is a maximum. The classification and construction of $(k, 4)$-arcs with respect to the type of lines for $\mathrm{q}=3$ have been given by Abood [2]. Abdul-Hussain [1] also explained the classification of (k,4) -arcs with respect to the type of lines in PG(2,5). In (2001) Hirschfeld and Storme [17] showed that for q odd this implies immediately that the maximum size of $a(k, n)-\operatorname{arc}$, for $n \mid q$ is less than $n q-q+n / 2$. Ibrahim [18] explained the classification of $(k, 4)$-arcs and $(k, 3)$-arcs with respect to the type of lines in $P G(2,7)$. Ball and Hirschfeld [3] reviewed some of the works of the principal and recently discovered lower and upper bounds on the maximum size of $(k, n)=\operatorname{arcs}$ in $P G(2, q)$ for some n, q and put a table for it. The classification of the complete k-arcs in $\mathrm{PG}(2,27)$ has been given by Coolsaet and Sticker [8]. The classification and construction of ($k, 4$) -arcs with respect to
the type of lines for $q=8$ have been given by Falih [10].Classification of complete ($k, 4$)-arcs in the projective plane of order eleven have been given by Khalid [19].

The main purpose of this paper is to find the complete $(k, 3)-\operatorname{arcs}$ in $\mathrm{PG}(2,8)$ through the classification and construction of the projectively distinct $(k, 3)$-arcs with respect to the type of lines and we found the group of projectivities of each projectively distinct $(k, 3)$-arcs.

1. Preliminaries :

Definition 1.1 [6]

For p prime, let $G F(p)$ denote a finite field of p elements that consists of the residue classes of integers module p under the natural addition and multiplication. If $f(x)$ is an irreducible polynomial of degree h over $\mathrm{GF}(\mathrm{p})$, then :
$\operatorname{GF}\left(\mathrm{p}^{\mathrm{h}}\right)=\operatorname{GF}(\mathrm{p})[\mathrm{x}] /(\mathrm{f}(\mathrm{x}))=\left\{\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{t}+\cdots+\mathrm{a}_{\mathrm{h}-1} \mathrm{t}^{\mathrm{h}-1}: \mathrm{a}_{\mathrm{i}} \in \operatorname{GF}(\mathrm{p}), \mathrm{f}(\mathrm{t})=0\right\}$
$\mathrm{GF}\left(\mathrm{p}^{h}\right)$ is called a Galois field of order $\mathrm{q}=\mathrm{p}^{h}$, where $\mathrm{h}>1$ is an integer number. Notice that, the elements of $G F(q)$ satisfy the equation $x^{q}=x$ and there exists $y \in G F(q)$ such that: $\operatorname{GF}(q)=\left\{0,1, y, y^{2}, \ldots, y^{q-2}: y^{q-1}=1\right\}$. The element y is called a primitive element or primitive root of $\mathrm{GF}(\mathrm{q})$.

Definition 1.2 [15]

Let $\mathrm{V}=\mathrm{V}(\mathrm{n}+1, \mathrm{~F})$ be a $(\mathrm{n}+1)$-dimensional vector space over a field F with zero vector 0 . Define an equivalence relation \sim on the vectors of $\mathrm{V}^{*}=\mathrm{V} \backslash\{0\}$ as follows:

If $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{Y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}+1}\right) \in \mathrm{V} \backslash\{0\}$, we say that X is equivalent to Y if, $Y=\lambda X$, for some $\lambda \in F \backslash\{0\}$. Then the space $V(n+1, F) / \sim$ is said to be the $n-$ dimensional projective space over F and is denoted by $P G(n, F)$ or, when $F=G F(q)$, by $P G(n, q)$. The equivalence classes are called points of $P G(n, F)$.

For any $m=0,1,2, \ldots, n$, a subspace of dimension m (or $m-$ space) of $P G(n, q)$ is the set of points all of whose representing vectors form, (together with the zero), a subspace of dimension $\mathrm{m}+1$ of V . A subspace of the dimensions zero, one, two, and three are respectively called a point, a line, a plane, and a solid. Subspaces of dimension $n-1$ and $\mathrm{n}-2$ are respectively called a prime (hyperplane) and secundum. A subspace of dimension $n-r$ is also referred to as a subspace of codimension r. The set of $m-$ spaces is denoted by $P G^{(m)}(\mathrm{n}, \mathrm{q})$.

Theorem 1.1 [15]

The number of points in $P G(n, q)$ is $\theta(n)=\frac{q^{n+1}-1}{q^{-1}}$.
In particular, $\theta(0)=1, \theta(1)=q+1$ and $\theta(2)=q^{2}+q+1$.

Definition 1.3 [15]

A projective plane over $\mathrm{GF}(\mathrm{q})$ is 2-dimensional projective space denoted by $\mathrm{PG}(2, \mathrm{q})$ and it has the following properties:

1. The number of points is $q^{2}+q+1$.
2. The number of lines is $q^{2}+q+1$.
3. Each line contains exactly $q+1$ points.
4. Each point lies on $q+1$ lines.

The fundamental theorem in projective geometry 1.2 [15]

If $\left\{P_{1}, P_{2}, \ldots, P_{n+2}\right\}$ and $\left\{Q_{1}, Q_{2}, \ldots, Q_{n+2}\right\}$ are two sets of points of $P G(n, q)$ such that no $\mathrm{n}+1$ points chosen from the same set lie in a prime, then there exists a unique projectivity T , such that $Q_{i}=P_{i} T$, for all $i=1,2, \ldots, n+2$.

For $\mathrm{n}=1$, there exists a unique projectivity transforming any three distinct points on a line to any other three.

For $\mathrm{n}=2$, there exists a unique projectivity transforming the four points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$ (no three are collinear) to the four points $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$ (no three are collinear) respectively

Primitive and subprimitive roots of polynomials 1.4 [15]

Let $N(m, q)$ be the set of monic irreducible polynomials over $G F(q)$ of degree m then:
1- If $f \in N(m, q)$, then f has exponent e, if e is the smallest positive integer such that $f(x)$ divided $\mathrm{x}^{e}-1$. The exponent e always divides $q^{m}-1$. If $e=q^{m}-1$, then f is called a primitive and has a primitive root in $\mathrm{GF}\left(\mathrm{q}^{m}\right)$. So, if α is a root in $\mathrm{GF}\left(\mathrm{q}^{m}\right)$ of a primitive f , then α has order $\mathrm{q}^{\mathrm{m}}-1$.
2- If $f(x) \in N(m, q)$, then $f(x)$ has a subexponent e, if e is the smallest positive integer number such that $f(x)$ divided $x^{e}-c$ for some $c \in G F(q)$. The subexponent e always divides $\theta(m-1)=\frac{q^{m}-1}{q^{-1}}$.If $e=\frac{q^{m}-1}{q^{-1}}$, then $f(x)$ is subprimitive polynomial and has a subprimitive root.

Definition 1.5 [15]

Let $f(x)=x^{r+1}-a_{2} x^{r}-\cdots-a_{0}$ be any monic polynomial, then its companion matrix, $\mathrm{C}(\mathrm{f})$ is given by the $(\mathrm{r}+1) \times(\mathrm{r}+1)$ matrix;

$$
\begin{aligned}
& C(f)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & 1 & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
a_{0} & a_{1} & a_{2} & \cdots & a_{r}
\end{array}\right] \text {. In particular, when } r=2 \text { therefore; } \\
& f(x)=x^{3}-a_{2} x^{2}-a_{1} x-a_{0} \text {, and } C(f)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a_{0} & a_{1} & a_{2}
\end{array}\right] . \\
& \text { Definition 1.6 [15] }
\end{aligned}
$$

A projectivity T which permutes the $\theta(n)$ points of $P G(n, q)$ in a single cycle is called a cyclic projectivity.

Theorem 1.2 [14]

A projectivity T of $P G(n, q)$ is cyclic if and only if the characteristic polynomial of an associated matrix is subprimitive .

If $f(x) \in N(m, q)$ and $f(x)$ is a subprimitive, then the companion matrix $C(f)$ is the cyclic projectivity of $\operatorname{PG}(\mathrm{n}, \mathrm{q})$.

Theorem 1.4 [14]

The number of cyclic projectivities in $\mathrm{PG}(\mathrm{n}, \mathrm{q})$ is given by; $\sigma(\mathrm{n}, \mathrm{q})=\mathrm{q}^{\mathrm{n}(\mathrm{n}+1) / 2} \prod_{i=1}^{\mathrm{n}}\left(\mathrm{q}^{\mathrm{i}}-1\right) \square(\theta(\mathrm{n})) /(\mathrm{n}+1)$, where \square is the Euler function.

Definition 1.7 [15]

1. A $(k, n)-\operatorname{arc} K$ is a set of k points, such that there is some n but no $(n+1)$ are collinear where $n \geq 2$. When $n=2 a(k, 2)-$ arc is called a k-arc.
2. A $(k, n)-\operatorname{arc}$ is complete if, there is no $(k+1, n)-\operatorname{arc}$ containing it.
3. A line ℓ of $P G(2, q)$ is an $i-$ secant of $a(k, n)-\operatorname{arc} K$ if, $|\ell \cap K|=i$. A $0-$ secant is called an external line of k-arc, a 1 -secant is called unisecant and a 2 -secant is called a bisecant. 4. A $(k, n)-\operatorname{arc} K$ is maximal arc if it satisfies $k=(n-1) q+n$.
4. The maximum and smallest size of a complete (k, n) $-\operatorname{arc}$ for which a (k, n) $-\operatorname{arc} K$ exists in $P G(2, q)$ will be denoted by $m_{n}(2, q)$ and $t_{n}(2, q)$ respectively.

Notation : Let r_{i} denotes the total number of i-secants of (k, n) -arc K in $P G(2, q)$, $R_{i}=R_{i}(P)$ the number of i-secants through a point P of K and $S_{i}=S_{i}(Q)$ the number of i -secants through a point Q of $\mathrm{PG}(2, q) \backslash K$.

Lemma 1.1 [15]

For a $(k, n)=\operatorname{arc} K$, the following equations hold:
$\sum_{i=0}^{n} r_{i}=q^{2}+q+1$
$\sum_{i=1}^{\mathrm{n}} \mathrm{ir}_{\mathrm{i}}=k(\mathrm{q}+1)$
$\sum_{i=2}^{n} \frac{i(i-1) r_{i}}{2}=\frac{k(k-1)}{2}$
$\sum_{i=1}^{n} R_{i}=q+1$
$\sum_{i=2}^{n}(i-1) R_{i}=k-1$
$\sum_{i=0}^{n} S_{i}=q+1$
$\sum_{i=1}^{n} i S_{i}=k$
$\sum_{\mathrm{p}} \mathrm{R}_{\mathrm{i}}=\mathrm{ir} \mathrm{r}_{\mathrm{i}}$
$\sum_{Q} S_{i}=(q+1-i) r_{i}$
Where the summation in the equation (8) taken over all $P \in K$, and taken over all $\mathrm{Q} \in \mathrm{PG}(2, q) \backslash K$ in the equation (9).

Notation : Assume the equations (4) and (5) in the above lemma have v distinct solutions $B_{j}=\left(R_{1 j}, \ldots, R_{n j}\right) ; j=1, \ldots, v$ and the equations (6), (7) have g distinct solutions $M_{j}=\left(S_{0 j}, \ldots, S_{n j}\right) ; j=1, \ldots, g$.
Suppose there are b_{j} points on the $(k, n)-\operatorname{arc} K$ with solution B_{j}, and m_{j} points on $\mathrm{PG}(2, \mathrm{q}) \backslash K$ with solution M_{j}.

Lemma 1.2 [12]

For a $(k, n)-\operatorname{arc} K$ in $P G(2, q)$, the following equations hold:
$\sum_{j=1}^{v} b_{j} \mathrm{R}_{\mathrm{ij}}=\mathrm{ir} \mathrm{r}_{\mathrm{i}}$
$\sum_{j=1}^{v} b_{j}=k$
$\sum_{j=1}^{g} m_{j} S_{i j}=(q+1-i) r_{i}$
$\sum_{j=1}^{\mathrm{E}} \mathrm{m}_{\mathrm{j}}=\mathrm{q}^{2}+\mathrm{q}+1-\mathrm{k}$

Lemma 1.3 [12]

Let $t(P)$ be the number of unisecants through P, where P is a point of the $k-\operatorname{arc} K$. Let r_{i} be the total number of $i-$ secants of K in the plane, then :

1. $\quad \mathrm{t}(\mathrm{p})=\mathrm{q}+2-\mathrm{k}=\mathrm{t}$
2. $r_{2}=k(k-1) / 2, r_{1}=k t$ and $r_{0}=q(q-1) / 2+t(t-1) / 2$

Definition 1.8 [1]

If P is a point of $\mathrm{PG}(2, q)$ not on the $(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{K}$ and not on any $\mathrm{n}-$ secants of the $(k, n)-\operatorname{arc} K$, then P is called a point of index zero.

Theorem 1.5 [7]

$$
m_{2}(2, q)= \begin{cases}q+2 & , \text { for } q \text { even } \\ q+1 & \text { for } q \text { odd }\end{cases}
$$

Theorem 1.6 [13]

For $2 \leq n \leq q+1$,
1- The maximum size $m_{n}(2, q) \leq(n-1) q+n$.
2- If $n \leq q$ and equality occur in (1), then n is a divisor of q.

Corollary 1.1 [16]

$m_{n}(2, q)\left\{\begin{array}{lr}=(n-1) q+n & \text {, for } q \text { even and } n \mid q \\ <(n-1) q+n & \text {,for } q \text { odd }\end{array}\right.$

Theorem 1.7 [15]

If K is a maximal $(k, n)-\operatorname{arc}$ in $\operatorname{PG}(2, q)$, then:
(i) $\quad \mathrm{K}=\mathrm{PG}(2, \mathrm{q})$ if $\mathrm{n}=\mathrm{q}+1$ and;
(ii) $\mathrm{K}=\mathrm{PG}(2, \mathrm{q}) \backslash \ell$, if $\mathrm{n}=\mathrm{q}$, where ℓ is a line.

Corollary 1.2 [15]

A $(k, n)-\operatorname{arc} K$ is maximal if and only if every line in $P G(2, q)$ is either an $n-$ secant or an external line.

Lemma 1.4 [15]

If K is a complete $(k, n)-\operatorname{arc}$, then: $(q+1-n) r_{n} \geq q^{2}+q+1-k$, with equality if and only if $S_{n}=1$ for all Q in $\mathrm{PG}(2, q) \backslash K$.

Definition 1.9 [1]

Let r_{i} be the total number of $\mathrm{i}-$ secants of the $(k, n)-\operatorname{arc} K$ in $P G(2, q)$. Then the type of K with respect to its lines is denoted by ($\mathrm{r}_{\mathrm{n}}, \ldots, \mathrm{r}_{0}$). Let K_{1} be of type ($\mathrm{r}_{\mathrm{n}}, \ldots, \mathrm{r}_{0}$) and K_{2} be of type $\left(t_{n}, \ldots, t_{0}\right)$, then K_{1} and K_{2} have the same type of lines iff $r_{i}=t_{i}$ for all $\mathrm{i}=0,1, \ldots, n$.

Definition 1.10 [1]

Two arcs K_{1} and K_{2} in $\mathrm{PG}(2, q)$ are called projectively equivalents with respect to the types of lines if and only if they have the same type.

Definition 1.11 [1]

Let Q_{1} and Q_{2} be two points of index zero not on the (k, n) -arc K, and let $K_{1}=K \cup\left\{Q_{1}\right\}, K_{2}=K \cup\left\{Q_{2}\right\}$ be two arcs, then Q_{1} and Q_{2} have the same type if and only if K_{1} and K_{2} are projectively equivalents with respect to the types of lines.

Lemma 1.5 [1]

Let Q_{1} and Q_{2} be two points of index zero not on the (k, n) -arc, then:
(1) Q_{1} and Q_{2} are in the same set if they have the same type.
(2) Q_{1} and Q_{2} are in different sets if they have different types.

2.The cyclic projectivity of $\mathrm{PG}(2,8)$

The plane $P G(2,8)$ contains 73 points and 73 lines, every line contains 9 points and every point passes through it 9 lines. It is convenience to use the numbers $0,1,2,3,4,5,6,7$ will be the elements of $\operatorname{GF}(8)$. Let $f(x)=x^{3}+x+\lambda^{4}$ be an irreducible polynomial over $G F(8)$, then
the matrix $\mathrm{T}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & 0\end{array}\right]$ is cyclic projecivity which is given by right multiplication on the points of $\mathrm{PG}(2,8)$.

2.1.The points of $\mathrm{PG}(2,8)$

Let the point P_{1} be represented by the vector $(1,0,0)$. Then $P_{1} T^{i}=P_{i}, i=1, \ldots, 73$ are the 73 points of $\mathrm{PG}(2,8)$.Writing i for P_{i}, the vectors of the 73 points of $\mathrm{PG}(2,8)$ are given in the table $(2,1)$.

Table (2.1)

$\mathrm{P}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$	$\mathrm{P}_{16}=\left(\begin{array}{lll}1 & 3 & 0\end{array}\right)$
$\mathrm{P}_{2}=\left(\begin{array}{llll}0 & 1 & 0\end{array}\right)$	$\mathrm{P}_{17}=\left(\begin{array}{llll}0 & 1 & 3\end{array}\right)$
$\mathrm{P}_{3}=\left(\begin{array}{llll}0 & 0 & 1\end{array}\right)$	$\mathrm{P}_{18}=\left(\begin{array}{lll}1 & 4\end{array}\right)$
$\mathrm{P}_{4}=\left(\begin{array}{lll}1 & 4\end{array}\right)$	$\mathrm{P}_{19}=(166)$
$\mathrm{P}_{5}=\left(\begin{array}{llll}0 & 1 & 4\end{array}\right)$	$\mathrm{P}_{20}=\left(\begin{array}{llll}1 & 4\end{array}\right)$
$\mathrm{P}_{6}=\left(\begin{array}{lll}1 & 4 & 1\end{array}\right)$	$\mathrm{P}_{21}=\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)$
$\mathrm{P}_{7}=\left(\begin{array}{lll}1 & 0 & 7\end{array}\right)$	$\mathrm{P}_{22}=\left(\begin{array}{llll}1 & 1 & 3\end{array}\right)$
$\mathrm{P}_{8}=(170)$	$\mathrm{P}_{23}=\left(\begin{array}{lll}1 & 1 & 2\end{array}\right)$
$\mathrm{P}_{9}=\left(\begin{array}{lll}0 & 1 & 7\end{array}\right)$	$\mathrm{P}_{24}=\left(\begin{array}{ll}1 & 6\end{array}\right)$
$\mathrm{P}_{10}=(145)$	$\mathrm{P}_{25}=\left(\begin{array}{lll}1 & 1 & 7\end{array}\right)$
$\mathrm{P}_{11}=\left(\begin{array}{lll}1 & 5 & 3\end{array}\right)$	$\mathrm{P}_{26}=(175)$
$\mathrm{P}_{12}=\left(\begin{array}{lll}1 & 1 & 6\end{array}\right)$	$\mathrm{P}_{27}=\left(\begin{array}{l}156)\end{array}\right.$
$\mathrm{P}_{13}=\left(\begin{array}{llll}1 & 3 & 6\end{array}\right)$	$\mathrm{P}_{28}=\left(\begin{array}{llll}1 & 3 & 3\end{array}\right)$
$\mathrm{P}_{14}=\left(\begin{array}{lll}1 & 3 & 1\end{array}\right)$	$\mathrm{P}_{29}=\left(\begin{array}{lll}1 & 1 & 4\end{array}\right)$
$\mathrm{P}_{15}=\left(\begin{array}{lll}1 & 0 & 6\end{array}\right)$	$\mathrm{P}_{30}=\left(\begin{array}{llll}1 & 2 & 1\end{array}\right)$

$$
\begin{aligned}
& \mathrm{P}_{31}=(105) \\
& \mathrm{P}_{32}=\left(\begin{array}{ll}
1 & 5
\end{array}\right) \\
& \mathrm{P}_{33}=\left(\begin{array}{lll}
0 & 1 & 5
\end{array}\right) \\
& \mathrm{P}_{34}=\left(\begin{array}{ll}
1 & 4
\end{array}\right) \\
& \mathrm{P}_{35}=\left(\begin{array}{lll}
1 & 7 & 1
\end{array}\right) \\
& \mathrm{P}_{36}=\left(\begin{array}{lll}
1 & 0 & 3
\end{array}\right) \\
& \mathrm{P}_{37}=\left(\begin{array}{ll}
1 & 10
\end{array}\right) \\
& \mathrm{P}_{38}=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) \\
& \mathrm{P}_{39}=\left(\begin{array}{ll}
1 & 4
\end{array}\right) \\
& \mathrm{P}_{40}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \mathrm{P}_{41}=\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right) \\
& \mathrm{P}_{42}=\left(\begin{array}{ll}
1 & 6
\end{array}\right) \\
& \mathrm{P}_{43}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \mathrm{P}_{44}=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \\
& \mathrm{P}_{45}=\left(\begin{array}{ll}
1 & 7
\end{array}\right. \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{46}=(174 \\
& \mathrm{P}_{47}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \mathrm{P}_{48}=(176) \\
& \mathrm{P}_{49}=\left(\begin{array}{lll}
1 & 3 & 5
\end{array}\right) \\
& \mathrm{P}_{50}=\left(\begin{array}{lll}
1 & 5 & 2
\end{array}\right) \\
& P_{51}=(167) \\
& \mathrm{P}_{52}=(173) \\
& \mathrm{P}_{53}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \\
& \mathrm{P}_{54}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& \mathrm{P}_{55}=\left(\begin{array}{lll}
1 & 2 & 0
\end{array}\right) \\
& \mathrm{P}_{56}=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right) \\
& \mathrm{P}_{57}=\left(\begin{array}{ll}
1 & 4
\end{array}\right. \\
& \mathrm{P}_{58}=\left(\begin{array}{lll}
1 & 1 & 5
\end{array}\right) \\
& \mathrm{P}_{59}=(157 \text {) } \\
& \mathrm{P}_{60}=\left(\begin{array}{ll}
1 & 7
\end{array}\right)
\end{aligned}
$$

$\mathrm{P}_{61}=\left(\begin{array}{ll}1 & 6\end{array}\right)$
$\mathrm{P}_{62}=\left(\begin{array}{ll}1 & 6\end{array}\right)$
$\mathrm{P}_{63}=\left(\begin{array}{lll}1 & 0 & 2\end{array}\right)$
$\mathrm{P}_{64}=\left(\begin{array}{ll}1 & 6\end{array}\right)$
$\mathrm{P}_{65}=\left(\begin{array}{lll}0 & 1 & 6\end{array}\right)$
$\mathrm{P}_{66}=(146)$
$\mathrm{P}_{67}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
$\mathrm{P}_{68}=(165)$
$\mathrm{P}_{69}=\left(\begin{array}{l}1 \\ \mathrm{P} \\ 5\end{array}\right)$
$\mathrm{P}_{70}=(154)$
$\mathrm{P}_{71}=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)$
$\mathrm{P}_{72}=\left(\begin{array}{lll}1 & 5 & 1\end{array}\right)$
$\mathrm{P}_{72}=\left(\begin{array}{lll}1 & 5 & 1\end{array}\right)$
$\mathrm{P}_{73}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$

2.1.The lines of $\mathrm{PG}(2,8)$

Let L_{1} be the line which contains the points $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{4}, \mathrm{P}_{8}, \mathrm{P}_{16}, \mathrm{P}_{32}, \mathrm{P}_{37}, \mathrm{P}_{55}, \mathrm{P}_{64}\right\}$
Let $\mathrm{L}_{1} \mathrm{~T}^{\mathrm{i}}=\mathrm{L}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, 73$ are the lines of $\mathrm{PG}(2,8)$. The 73 lines, L_{i} are given by the rows in the table $(2,2)$.

Table (2.2)

L_{1}	P_{1}	P_{2}	P_{4}	P_{8}	P_{16}	P_{32}	P_{37}	P_{55}	P_{64}
L_{2}	P_{2}	P_{3}	P_{5}	P_{9}	P_{17}	P_{33}	P_{38}	P_{56}	P_{65}
L_{3}	P_{3}	P_{4}	P_{6}	P_{10}	P_{18}	P_{34}	P_{39}	P_{57}	P_{66}
L_{4}	P_{4}	P_{5}	P_{7}	P_{11}	P_{19}	P_{35}	P_{40}	P_{58}	P_{67}
L_{5}	P_{5}	P_{6}	P_{8}	P_{12}	P_{20}	P_{36}	P_{41}	P_{59}	P_{68}
L_{6}	P_{6}	P_{7}	P_{9}	P_{13}	P_{21}	P_{37}	P_{42}	P_{60}	P_{69}
L_{7}	P_{7}	P_{8}	P_{10}	P_{14}	P_{22}	P_{38}	P_{43}	P_{61}	P_{70}
L_{8}	P_{8}	P_{9}	P_{11}	P_{15}	P_{23}	P_{39}	P_{44}	P_{62}	P_{71}
L_{9}	P_{9}	P_{10}	P_{12}	P_{16}	P_{24}	P_{40}	P_{45}	P_{63}	P_{72}
L_{10}	P_{10}	P_{11}	P_{13}	P_{17}	P_{25}	P_{41}	P_{46}	P_{64}	P_{73}
L_{11}	P_{11}	P_{12}	P_{14}	P_{18}	P_{26}	P_{42}	P_{47}	P_{65}	P_{1}
L_{12}	P_{12}	P_{13}	P_{15}	P_{19}	P_{27}	P_{43}	P_{48}	P_{66}	P_{2}
L_{13}	P_{13}	P_{14}	P_{16}	P_{20}	P_{28}	P_{44}	P_{49}	P_{67}	P_{3}
L_{14}	P_{14}	P_{15}	P_{17}	P_{21}	P_{29}	P_{45}	P_{50}	P_{68}	P_{4}
L_{15}	P_{15}	P_{16}	P_{18}	P_{22}	P_{30}	P_{46}	P_{51}	P_{69}	P_{5}
L_{16}	P_{16}	P_{17}	P_{19}	P_{23}	P_{31}	P_{47}	P_{52}	P_{70}	P_{6}
L_{17}	P_{17}	P_{18}	P_{20}	P_{24}	P_{32}	P_{48}	P_{53}	P_{71}	P_{7}
L_{18}	P_{18}	P_{19}	P_{21}	P_{25}	P_{33}	P_{49}	P_{54}	P_{72}	P_{8}
L_{19}	P_{19}	P_{20}	P_{22}	P_{26}	P_{34}	P_{50}	P_{55}	P_{73}	P_{9}
L_{20}	P_{20}	P_{21}	P_{23}	P_{27}	P_{35}	P_{51}	P_{56}	P_{1}	P_{10}
L_{21}	P_{21}	P_{22}	P_{24}	P_{28}	P_{36}	P_{52}	P_{57}	P_{2}	P_{11}
L_{22}	P_{22}	P_{23}	P_{25}	P_{29}	P_{37}	P_{53}	P_{58}	P_{3}	P_{12}
L_{23}	P_{23}	P_{24}	P_{26}	P_{30}	P_{38}	P_{54}	P_{59}	P_{4}	P_{13}
L_{24}	P_{24}	P_{25}	P_{27}	P_{31}	P_{39}	P_{55}	P_{60}	P_{5}	P_{14}
L_{25}	P_{25}	P_{26}	P_{28}	P_{32}	P_{40}	P_{56}	P_{61}	P_{6}	P_{15}
L_{26}	P_{26}	P_{27}	P_{29}	P_{33}	P_{41}	P_{57}	P_{62}	P_{7}	P_{16}
L_{27}	P_{27}	P_{28}	P_{30}	P_{34}	P_{42}	P_{58}	P_{63}	P_{8}	P_{17}
L_{28}	P_{28}	P_{29}	P_{31}	P_{35}	P_{43}	P_{59}	P_{64}	P_{9}	P_{18}

L_{29}	P_{29}	P_{30}	P_{32}	P_{36}	P_{44}	P_{60}	P_{65}	P_{10}	P_{19}
L_{30}	P_{30}	P_{31}	P_{33}	P_{37}	P_{45}	P_{61}	P_{66}	P_{11}	P_{20}
L_{31}	P_{31}	P_{32}	P_{34}	P_{38}	P_{46}	P_{62}	P_{67}	P_{12}	P_{21}
L_{32}	P_{32}	P_{33}	P_{35}	P_{39}	P_{47}	P_{63}	P_{68}	P_{13}	P_{22}
L_{33}	P_{33}	P_{34}	P_{36}	P_{40}	P_{48}	P_{64}	P_{69}	P_{14}	P_{23}
L_{34}	P_{34}	P_{35}	P_{37}	P_{41}	P_{49}	P_{65}	P_{70}	P_{15}	P_{24}
L_{35}	P_{35}	P_{36}	P_{38}	P_{42}	P_{50}	P_{66}	P_{71}	P_{16}	P_{25}
L_{36}	P_{36}	P_{37}	P_{39}	P_{43}	P_{51}	P_{67}	P_{72}	P_{17}	P_{26}
L_{37}	P_{37}	P_{38}	P_{40}	P_{44}	P_{52}	P_{68}	P_{73}	P_{18}	P_{27}
L_{38}	P_{38}	P_{39}	P_{41}	P_{45}	P_{53}	P_{69}	P_{1}	P_{19}	P_{28}
L_{39}	P_{39}	P_{40}	P_{42}	P_{46}	P_{54}	P_{70}	P_{2}	P_{20}	P_{29}
L_{40}	P_{40}	P_{41}	P_{43}	P_{47}	P_{55}	P_{71}	P_{3}	P_{21}	P_{30}
L_{41}	P_{41}	P_{42}	P_{44}	P_{48}	P_{56}	P_{72}	P_{4}	P_{22}	P_{31}
L_{42}	P_{42}	P_{43}	P_{45}	P_{49}	P_{57}	P_{73}	P_{5}	P_{23}	P_{32}
L_{43}	P_{43}	P_{44}	P_{46}	P_{50}	P_{58}	P_{1}	P_{6}	P_{24}	P_{33}
L_{44}	P_{44}	P_{45}	P_{47}	P_{51}	P_{59}	P_{2}	P_{7}	P_{25}	P_{34}
L_{45}	P_{45}	P_{46}	P_{48}	P_{52}	P_{60}	P_{3}	P_{8}	P_{26}	P_{35}
L_{46}	P_{46}	P_{47}	P_{49}	P_{53}	P_{61}	P_{4}	P_{9}	P_{27}	P_{36}
L_{47}	P_{47}	P_{48}	P_{50}	P_{54}	P_{62}	P_{5}	P_{10}	P_{28}	P_{37}
L_{48}	P_{48}	P_{49}	P_{51}	P_{55}	P_{63}	P_{6}	P_{11}	P_{29}	P_{38}
L_{49}	P_{49}	P_{50}	P_{52}	P_{56}	P_{64}	P_{7}	P_{12}	P_{30}	P_{39}
L_{50}	P_{50}	P_{51}	P_{53}	P_{57}	P_{65}	P_{8}	P_{13}	P_{31}	P_{40}
L_{51}	P_{51}	P_{52}	P_{54}	P_{58}	P_{66}	P_{9}	P_{14}	P_{32}	P_{41}
L_{52}	P_{52}	P_{53}	P_{55}	P_{59}	P_{67}	P_{10}	P_{15}	P_{33}	P_{42}
L_{53}	P_{53}	P_{54}	P_{56}	P_{60}	P_{68}	P_{11}	P_{16}	P_{34}	P_{43}
L_{54}	P_{54}	P_{55}	P_{57}	P_{61}	P_{69}	P_{12}	P_{17}	P_{35}	P_{44}
L_{55}	P_{55}	P_{56}	P_{58}	P_{62}	P_{70}	P_{13}	P_{18}	P_{36}	P_{45}
L_{56}	P_{56}	P_{57}	P_{59}	P_{63}	P_{71}	P_{14}	P_{19}	P_{37}	P_{46}
L_{57}	P_{57}	P_{58}	P_{60}	P_{64}	P_{72}	P_{15}	P_{20}	P_{38}	P_{47}
L_{58}	P_{58}	P_{59}	P_{61}	P_{65}	P_{73}	P_{16}	P_{21}	P_{39}	P_{48}
L_{59}	P_{59}	P_{60}	P_{62}	P_{66}	P_{1}	P_{17}	P_{22}	P_{40}	P_{49}
L_{60}	P_{60}	P_{61}	P_{63}	P_{67}	P_{2}	P_{18}	P_{23}	P_{41}	P_{50}
L_{61}	P_{61}	P_{62}	P_{64}	P_{68}	P_{3}	P_{19}	P_{24}	P_{42}	P_{51}
L_{62}	P_{62}	P_{63}	P_{65}	P_{69}	P_{4}	P_{20}	P_{25}	P_{43}	P_{52}
L_{63}	P_{63}	P_{64}	P_{66}	P_{70}	P_{5}	P_{21}	P_{26}	P_{44}	P_{53}
L_{64}	P_{64}	P_{65}	P_{67}	P_{71}	P_{6}	P_{22}	P_{27}	P_{45}	P_{54}
L_{65}	P_{65}	P_{66}	P_{68}	P_{72}	P_{7}	P_{23}	P_{28}	P_{46}	P_{55}
L_{66}	P_{66}	P_{67}	P_{69}	P_{73}	P_{8}	P_{24}	P_{29}	P_{47}	P_{56}
L_{67}	P_{67}	P_{68}	P_{70}	P_{1}	P_{9}	P_{25}	P_{30}	P_{48}	P_{57}
L_{68}	P_{68}	P_{69}	P_{71}	P_{2}	P_{10}	P_{26}	P_{31}	P_{49}	P_{58}
L_{69}	P_{69}	P_{70}	P_{72}	P_{3}	P_{11}	P_{27}	P_{32}	P_{50}	P_{59}
L_{70}	P_{70}	P_{71}	P_{73}	P_{4}	P_{12}	P_{28}	P_{33}	P_{51}	P_{60}
L_{71}	P_{71}	P_{72}	P_{1}	P_{5}	P_{13}	P_{29}	P_{34}	P_{52}	P_{61}
L_{72}	P_{72}	P_{73}	P_{2}	P_{6}	P_{14}	P_{30}	P_{35}	P_{53}	P_{62}
L_{73}	P_{73}	P_{1}	P_{3}	P_{7}	P_{15}	P_{31}	P_{36}	P_{54}	P_{63}

2.3 Algorithm [10]:

For any $(\mathrm{k}, 3)$-arc $\mathrm{K}, \mathrm{k} \geq 6$, there are at least four points in K no three of which are collinear. Let $\mathrm{C}_{1}=\left\{\mathrm{P}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{k}\right\}$ and $\mathrm{C}_{2}=\left\{\mathrm{W}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{k}\right\}$ be two ($\mathrm{k}, 3$)-arcs in $\mathrm{PG}(2, \mathrm{q})$, where the coordinates of the points P_{i} and W_{i} are :

$$
\mathrm{P}_{\mathrm{i}}=\mathrm{p}\left(x_{i}(1), x_{i}(2), x_{i}(3)\right) \text { and } \mathrm{W}_{\mathrm{i}}=\mathrm{w}\left(x_{i}(1), x_{i}(2), x_{i}(3)\right) .
$$

By the fundamental theorem, there exists a unique projectivity which takes any set of four points of the $(k, 4)$-arc C_{1} no three are collinear to any set of four points of C_{2} no three are collinear. Let the (3×3) matrix $\mathrm{Z}=\left(\square_{\mathrm{i}, \mathrm{j}}\right), \mathrm{i}, \mathrm{j}=1,2,3$ take a fixed set of four points of C_{1} no three are collinear, say $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}\right\}$, to any set of four points of C_{2} no three are collinear, say $\left\{W_{1}, W_{2}, W_{3}, W_{4}\right\}$, to determine Z we fixed a set of four points C_{1} no three are collinear.

Then we work out the projectivity matrix Z that takes the fixed set of four points of C_{1} to one of the J sets of four points of C_{2} no three collinear, where J is the number of the sets of
four points in C_{2} no three of which are collinear. Therefore, there are J matrices Z to be checked. Now Z is the projectivity matrix takes the points of C_{1} to the points of C_{2} if Z takes the remaining points of C_{1} to the remaining points of C_{2}.

The following is the matrix arithmetic to determine the matrix Z .
Let
$X=\left[\begin{array}{lll}x_{1}(0) & x_{2}(0) & x_{2}(0) \\ x_{1}(1) & x_{2}(1) & x_{3}(1) \\ x_{1}(2) & x_{2}(2) & x_{2}(2)\end{array}\right] \quad$ and $\quad Y=\left[\begin{array}{lll}y_{1}(0) & y_{2}(0) & y_{2}(0) \\ y_{1}(1) & y_{2}(1) & y_{3}(1) \\ y_{1}(2) & y_{2}(2) & y_{1}(2)\end{array}\right]$
Let $\mathrm{Z}=\left(\square_{\mathrm{i}, \mathrm{j}}\right), \mathrm{i}, \mathrm{j}=1,2,3$ be a (3×3) matrix that takes three points P_{i} of C_{1} to three points W_{i} of C_{2}, when $\mathrm{i}=1,2,3$. So Let
$B=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right]$
Thus $\mathrm{Z}=\mathrm{Y} \mathrm{B} \mathrm{X}^{-1}$
The matrix Z also has to take the fourth point P_{4} of C_{1} to the point W_{4} of C_{2}. So $Z X_{4}=Y_{4}$ where X_{4} and Y_{4} are the column vectors represent the points P_{4} and W_{4} respectively. Therefore, (1) gives
Y B X ${ }^{-1} \mathrm{X}_{4}=\mathrm{Y}_{4}$
Let
$X^{-1} X_{4}=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{2}\end{array}\right]$, and let $D=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]$
Thus (2) can be written as
$Y D\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{1}\end{array}\right]=Y_{4}$, So $\left[\begin{array}{c}\lambda_{1} \\ \lambda_{2} \\ \lambda_{1}\end{array}\right]=Y^{-1} Y_{4}$
Substituting the values of λ_{1}, λ_{2} and λ_{3} in matrix B , we have the projectivity matrix given in (1)

The set of projectivities fixing a $(\mathrm{k}, 4)$-arc K in the group $\mathrm{G}(\mathrm{K})$. To determine this group, we used a computer program. In this case the program is set to compare K with itself, that is the projectivity matrix Z is an element of the group $\mathrm{G}(\mathrm{K})$ if $\mathrm{ZX}_{\mathrm{i}}=\mathrm{b} \mathrm{X}_{\mathrm{j}} \mathrm{i}, \mathrm{j}=5, \ldots, \mathrm{k}$, where X_{i} is the column vector represents the point P_{i}. When we choose the points of triangle of reference and the unit points are $(1,0,0),(0,1,0),(0,0,1)$ and $(1,1,1)$ to be fixed four points , then (1) becomes : $\mathrm{Z}=\mathrm{YB}$.

3. classification of $(k, 3)$-arcs in $\operatorname{PG}(\mathbf{2}, 8) ;(k=3,4, \ldots, 15)$

3.1 The construction of the projectively distinct $(3,3)$-arcs

Let $\mathrm{A}=\{1,2,37\}$ be a $(3,3)$-arc in $\mathrm{PG}(2,8)$. Then all $(3,3)$-arcs are projectively equivalent with respect to the type of their lines to A, therefore there is only (up to projectively equivalent) one (3,3)-arc in $\mathrm{PG}(2,8)$ with the type can be calculated as follows:

By using equations 1,2 and 3 of lemma (1.1), we have the following equations:

$$
\begin{aligned}
& r_{0}+r_{1}+r_{2}+r_{3}=73 \\
& r_{1}+2 r_{2}+3 r_{3}=27 \\
& 2 r_{2}+6 r_{3}=6
\end{aligned}
$$

The only type of $(3,3)$-arc which satisfies the above equations is:

$$
\begin{array}{llll}
\mathrm{r}_{3}=1 & \mathrm{r}_{2}=0 & \mathrm{r}_{1}=24 & \mathrm{r}_{0}=48
\end{array}
$$

So a $(3,3)$-arc is of type $(1,0,24,48)$

3.2 The construction of the projectively distinct (4,3)-arcs

From (2.1) there is only one (3,3)-arc A. There are 64 points of index zero for A. So by adding one point of them to $(3,3)$-arc A , we have all these points lie in the same set.

Therefore there is only one $(4,3)$-arc can be constructed by adding one point from this set to A. So there is only one type of $(4,3)$-arc denoted it by B, can be calculated as follows :

By using equations 1,2 and 3 of lemma (1.1), we have the following equations:

$$
\begin{aligned}
& r_{0}+r_{1}+r_{2}+r_{3}=73 \\
& r_{1}+2 r_{2}+3 r_{3}=36 \\
& 2 r_{2}+6 r_{3}=12
\end{aligned}
$$

The only type of $(4,3)$-arc which satisfies the above equations is:

$$
\mathrm{r}_{3}=1, \quad \mathrm{r}_{2}=3, \quad \mathrm{r}_{1}=27, \text { and } \quad \mathrm{r}_{0}=42
$$

So a $(4,3)$-arc is of type $(1,3,27,42)$

3.3 The construction of the projectively distinct (5,3)-arcs

From (2.2) there is only one (4,3)-arc B.There are 63 points of index zero for B. So by adding one point of index zero from $\operatorname{PG}(2,8) \backslash \mathrm{B}$, we get only two projectively distinct $(5,3)$ arcs, we denoted it by $\mathrm{C}_{1}, \mathrm{C}_{2}$. which are shown in following :
$C_{1}=\{1,2,3,53,37\}$ and $C_{2}=\{1,2,3,53,4\}$
So a $(5,3)$-arc is of types $(2,4,31,36)$ and $(1,7,28,37)$ respectively

3.4 The construction of the projectively distinct (6,3)-arcs

From (2.3), we have get two sets C_{1} and C_{2}, Now we have 62 points of index zero for C_{1} and C_{2}. So by adding one point of index zero from $\mathrm{PG}(2,8) \backslash \mathrm{C}_{1}$ or by adding one point of index zero from $\operatorname{PG}(2,8) \backslash \mathrm{C}_{2}$, we get:
$\mathrm{D}_{1}=\mathrm{C}_{1} \cup\{5\}$
, $\mathrm{D}_{2}=\mathrm{C}_{1} \cup\{10\}$
, $\mathrm{D}_{3}=\mathrm{C}_{1} \cup\{38\}$
, $\mathrm{D}_{4}=\mathrm{C}_{2} \cup\{11\}$

By using a computer program the group $G\left(D_{1}\right)$ consists of three elements which are :

$$
T_{2}=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], T_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
4 & 4 & 0
\end{array}\right], T_{3}=\left[\begin{array}{lll}
4 & 4 & 0 \\
4 & 4 & 1 \\
4 & 0 & 0
\end{array}\right] .
$$

The order of the projectivity T_{2} and T_{3} are 2 , $\operatorname{So} G\left(D_{1}\right)$ is isomorphic to Z_{3}. The groups $\mathrm{G}\left(\mathrm{D}_{2}\right)$ is consist of I.Thus the group $\mathrm{G}\left(\mathrm{D}_{2}\right)$ is isomorphic to the trivial group . The group $G\left(D_{3}\right)$ consists of twenty four elements, So $G\left(D_{3}\right)$ is isomorphic to S_{4}. The groups $G\left(D_{4}\right)$ is consist of I. Thus the group $G\left(D_{4}\right)$ is isomorphic to the trivial group.
All the above results are written in the following table :

| Sy. | Distinct (6,3)-arc | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_{1} | 1 | 2 | 3 | 53 | 37 | 5 | Z_{3} | 3 | 3 | 6 | 33 | 31 |
| D_{2} | 1 | 2 | 3 | 53 | 37 | 10 | I | 1 | 2 | 9 | 30 | 32 |
| D_{3} | 1 | 2 | 3 | 53 | 37 | 38 | S_{4} | 24 | 4 | 3 | 36 | 30 |
| D_{4} | 1 | 2 | 3 | 53 | 4 | 11 | I | 1 | 1 | 12 | 27 | 33 |

3.5 The construction of the projectively distinct (7,3)-arcs

From (2.4) all the projectively distinct (6,3)-arcs $\mathrm{D}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ are incomplete . So by adding one point of index zero to each of the $\mathrm{D}_{\mathrm{i}}, \mathrm{i}=1,2,3,4$, we have five projectively distinct $(7,3)$-arcs $\mathrm{E}_{1}=\mathrm{D}_{1} \cup\{6\} \quad \mathrm{E}_{3}=\mathrm{D}_{1} \cup\{28\} \quad \mathrm{E}_{4}=\mathrm{D}_{4} \cup\{10\} \quad \mathrm{E}_{5} \quad=\mathrm{D}_{4} \cup$ \{13\}

Sy.	Distinct (7,3)-arc															G	$\|\mathrm{G}\|$	r_{3}	r_{2}	r_{1}	r_{0}
E_{1}	1	2	3	53	37	5	6	I	1	4	9	33	27								
E_{2}	1	2	3	53	37	5	11	I	1	3	12	30	28								
E_{3}	1	2	3	53	37	5	28	Z_{2}	2	5	6	36	26								
E_{4}	1	2	3	53	4	11	10	Z_{2}	2	2	15	27	29								
E_{5}	1	2	3	53	4	11	13	I	1	1	18	24	30								

3.6 The construction of the projectively distinct (8,3)-arcs

By the same way we get the following results :

Table (3.3)

| Sy. | Distinct (8,3)-arc | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F_{1} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | I | 1 | 6 | 10 | 34 | 23 |
| F_{2} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 11 | I | 1 | 4 | 16 | 28 | 25 |
| F_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 15 | I | 1 | 5 | 13 | 31 | 24 |
| F_{4} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | I | 1 | 3 | 19 | 25 | 26 |
| F_{5} | 1 | 2 | 3 | 53 | 4 | 11 | 10 | 44 | Z_{2} | 2 | 2 | 22 | 22 | 27 |

all the projectively distinct $(8,3)$-arcs $\mathrm{F}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 5)$ are incomplete

3.7 The construction of the projectively distinct (9,3)-arcs

Table (3.4)

Sy.	Distinct (9,3)-arc																G	$\|\mathrm{G}\|$	r_{3}	r_{2}	r_{1}	r_{0}
G_{1}	1	2	3	53	37	5	6	7	10	I	1	8	12	33	20							
G_{2}	1	2	3	53	37	5	6	7	11	I	1	7	15	30	21							
G_{3}	1	2	3	53	37	5	6	7	27	I	1	6	18	27	22							
G_{4}	1	2	3	53	37	5	6	7	34	I	1	9	9	36	19							
G_{5}	1	2	3	53	37	5	6	11	15	I	1	5	21	24	23							
G_{6}	1	2	3	53	37	5	11	39	49	I	1	4	24	21	24							
G_{7}	1	2	3	53	4	11	10	44	40	I	1	3	27	18	25							

all the projectively distinct $(9,3)$-arcs $\mathrm{G}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 7)$ are incomplete
The construction of the projectively distinct $(10,3)$-arcs

Table (3.5)

| Sy. | Distinct (10,3)-arc | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H_{1} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | I | 1 | 9 | 18 | 27 | 19 |
| H_{2} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 19 | I | 1 | 10 | 15 | 30 | 18 |
| H_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 20 | I | 1 | 11 | 12 | 33 | 17 |
| H_{4} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 11 | 27 | I | 1 | 8 | 21 | 24 | 20 |
| H_{5} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 27 | 49 | I | 1 | 7 | 24 | 21 | 21 |
| H_{6} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 34 | 24 | Z_{2} | 2 | 12 | 9 | 36 | 16 |
| H_{7} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | I | 1 | 6 | 27 | 18 | 22 |
| H_{8} | 1 | 2 | 3 | 53 | 4 | 11 | 20 | 44 | 40 | 48 | I | 1 | 4 | 33 | 12 | 24 |

all the projectively distinct $(10,3)$-arcs $\mathrm{H}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 8)$ are incomplete

3.8 The construction of the projectively distinct (11,3)-arcs

Table (3.6)

Sy.	Distinct (11,3)-arc											G	\| ${ }^{\text {\| }}$	r_{3}	r_{2}	r_{1}	r_{0}
I	1	2	3	53	37	5	6	7	10	11	20	I	1	13	16	28	16

| Sy. | Distinct (11,3)-arc | | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I 2 | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 24 | I | 1 | 12 | 19 | 25 | 17 |
| I_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 27 | I | 1 | 11 | 22 | 22 | 18 |
| I_{4} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 19 | 44 | I | 1 | 14 | 13 | 31 | 15 |
| I_{5} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 20 | 44 | I | 1 | 15 | 10 | 34 | 14 |
| I_{6} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 11 | 27 | 46 | I | 1 | 10 | 25 | 19 | 19 |
| I_{7} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | I | 1 | 8 | 31 | 13 | 21 |
| I_{8} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 21 | I | 1 | 9 | 28 | 16 | 20 |
| I_{9} | 1 | 2 | 3 | 53 | 4 | 11 | 10 | 44 | 40 | 48 | 61 | | 8 | 5 | 40 | 4 | 24 |

all the projectively distinct (11,3)-arcs $\mathrm{I}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 9)$ are incomplete

3.9 The construction of the projectively distinct (12,3)-arcs

Table (3.7)

Sy.	Distinct (12,3)-arc													G	$\mid \mathrm{G}$	r_{3}	r_{2}	r_{1}	r_{0}
$\mathrm{~J}_{1}$	1	2	3	53	37	5	6	7	10	11	20	26	I	1	16	18	24	15	
$\mathrm{~J}_{2}$	1	2	3	53	37	5	6	7	10	11	20	44	I	1	17	15	27	14	
$\mathrm{~J}_{3}$	1	2	3	53	37	5	6	7	10	11	24	26	I	1	15	21	12	16	
$\mathrm{~J}_{4}$	1	2	3	53	37	5	6	7	10	11	27	46	I	1	14	24	18	17	
$\mathrm{~J}_{5}$	1	2	3	53	37	5	6	7	10	19	44	20	I	1	18	12	30	13	
$\mathrm{~J}_{6}$	1	2	3	53	37	5	11	39	49	13	18	7	I	1	13	27	15	18	
$\mathrm{~J}_{7}$	1	2	3	53	37	5	11	39	49	13	18	21	I	1	12	30	12	19	
$\mathrm{~J}_{8}$	1	2	3	53	4	11	10	44	40	48	61	13	Z_{2}	2	10	36	6	21	

all the projectively distinct (12,3)-arcs $\mathrm{J}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 8)$ are incomplete

3.10 The construction of the projectively distinct (13,3)-arcs

Table (3.8)

| Sy. | Distinct (13,3)-arc | | | | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: |
| K_{1} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 20 | 26 | 43 | I | 1 | 20 | 18 | 21 | 14 |
| K_{2} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 20 | 44 | 52 | I | 1 | 21 | 15 | 24 | 13 |
| K_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 24 | 26 | 27 | I | 1 | 19 | 21 | 18 | 15 |
| K_{4} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 19 | 44 | 20 | 52 | I | 1 | 22 | 12 | 27 | 12 |
| K5 | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 27 | I | 1 | 18 | 24 | 15 | 16 |
| K_{6} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 43 | I | 1 | 17 | 27 | 12 | 17 |
| K_{7} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 59 | I | 1 | 16 | 30 | 9 | 18 |
| K_{8} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 21 | 59 | I | 1 | 15 | 33 | 6 | 14 |

all the projectively distinct $(13,3)$-arcs $\mathrm{K}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 8)$ are incomplete except $\mathrm{i}=2,4$ which are a complete (13,4)-arcs.

3.12 The construction of the projectively distinct $(14,3)$-arcs

Table (3.9)

| Sy. | Distinct (14,3)-arc | | | | | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: |
| L_{1} | 1 | 2 | 3 | 53 | 37 | 5 | 6 | 7 | 10 | 11 | 20 | 26 | 43 | 52 | I | 1 | 25 | 16 | 19 | 13 |
| L_{2} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 27 | 51 | I | 1 | 24 | 19 | 16 | 14 |
| L_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 43 | 46 | I | 1 | 22 | 25 | 10 | 16 |
| L_{4} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 43 | 59 | I | 1 | 21 | 28 | 7 | 17 |
| L_{5} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 43 | 70 | I | 1 | 23 | 22 | 13 | 15 |

| Sy. | Distinct (14,3)-arc | | | | | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: |
| L_{6} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 21 | 59 | 46 | I | 1 | 20 | 31 | 4 | 18 |

all the projectively distinct $(14,3)$-arcs $\mathrm{L}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, 6)$ are incomplete except $\mathrm{i}=1,5$ which are a complete (14,4)-arcs.
3.13 The construction of the projectively distinct (15,3)-arcs

Table (3.10)

| Sy. | Distinct (15,3)-arc | | | | | | | | | | | | | | | G | \|G| | r_{3} | r_{2} | r_{1} | r_{0} |
| :---: |
| M ${ }_{1}$ | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 27 | 51 | 62 | I | 1 | 31 | 12 | 18 | 12 |
| M_{2} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 7 | 43 | 46 | 59 | I | 1 | 27 | 24 | 6 | 16 |
| M_{3} | 1 | 2 | 3 | 53 | 37 | 5 | 11 | 39 | 49 | 13 | 18 | 21 | 59 | 46 | 68 | | 12 | 25 | 30 | 0 | 18 |

all the projectively distinct $(15,3)$-arcs $\mathrm{M}_{\mathrm{i}}(\mathrm{i}=1,2,3)$ are a complete (15,4)-arcs.
3.14 Conclusion : The maximum value $m(3)_{8,2}$ for which $(k, 3)-\operatorname{arcs}$ is not exist
4. Theorem: In $\operatorname{PG}(2,8)$, a complete $(k, 3)$-arc does not exist for $3 \leq k \leq 8$.

Proof: For $3 \leq k \leq 8$ the equations (4) and (5) of lemma (1.1) become
$\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=9$
$\mathrm{R}_{2}+2 \mathrm{R}_{3}=\mathrm{k}-1$
Let $m=[(k-1) / 2]$, where $[(k-1) / 2]$ is the integral part of $(k-1) / 2$.
So the maximum value of R_{3} can accure is m. Assume that $r_{i}=[(k-1-2 i)], i=0,1, \ldots, m$. It is clear that m is positive for $k \geq 3$.
Suppose α_{m} denoted the number of points of PG $(2,8)$ of type $\left(\mathrm{R}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}-\mathrm{j}, \mathrm{m}\right), \mathrm{j}=0,1, \ldots, \mathrm{r}_{\mathrm{m}}$
According to equation (1) and (2) of lemma (1.2) we have,
$m \alpha_{m}+(m-1) \alpha_{m-1}+\cdots+\alpha_{1}=3 r_{3} \ldots(*)$,
where r_{3} is the total number of 3 -secants of $(\mathrm{k}, 3)$-arc in $\mathrm{PG}(2,8)$, with $3 \leq k \leq 8$.
Since $m \geq 0$, for $k \geq 3$, we obtain
$\alpha_{m}+\alpha_{m-1}+\cdots+\alpha_{1}=m\left(\sum_{k=0}^{m} \alpha_{k}\right) \ldots(* *) \quad$ is bigger than;
$\mathrm{m} \alpha_{\mathrm{m}}+(\mathrm{m}-1) \alpha_{\mathrm{m}-1}+\cdots+\alpha_{1}=\sum_{k=0}^{m} k \alpha_{k}$.
Therefore, $m\left(\sum_{k=0}^{m} k \alpha_{k}\right)=m k>\left(\sum_{k=0}^{m} k \alpha_{k}\right)=3 r_{3}$.
This implies $\mathrm{mk}>3 \mathrm{r}_{3}$ or, $\mathrm{r}_{3}<\mathrm{mk} / 3$. Furthermore,
Since $m \leq(k-1) / 2$, then we have $r_{3}<k(k-1) / 6$ \qquad
On the other hand if the $(\mathrm{k}, 3)$-arc K is complete for $3 \leq k \leq 8$, then
according to lemma (1.4), we have $6 r_{4} \geq 73-\mathrm{k}$ or $r_{3} \geq(73-\mathrm{k}) / 6$
Now, for $\mathrm{k}=3$ we obtain from the equations (1) and (2)
$r_{4}<1$ and $r_{3}>11$, which is impossible. So a complete (3,3)-arc does not exist in $\operatorname{PG}(2,8)$. for $\mathrm{k}=8$, we obtain from equations (1) and (2)
$r_{3}<9$ and $r_{3}>10$ which is impossible , so a complete (8,3)-arc does not exist in PG(2,8).■

References

[1] Abdul-Hussain, M. A., "Classification of (k,4)-arcs in the projective plane of order five", M. Sc. thesis, University of Basrah, Iraq, (1997).
[2] Abood. H. M., "Classification of (k,4)-arcs in the projective plane of order three", J. Basrah Researches, Vol. B, Part1, (1997).
[3] Ball S. and Hirschfeld, J.W.P., "Bounds on (n, r)-arcs and their application to linear codes", J. Geom, 1-11, (2005).
[4] Barlotti A., "Su \{k; n\}-archi di un piano lineare finito", Boll. Un. Mat. Ital., 11, 553556, (1956).
[5] Bierbrauer J., "(k, n)-arcs of maximal size in the plane of order 8 ", unpublished manuscript (1988).
[6] Bortun David, "Introduction to modern abstract algebraic", Addison Wesley, University of New Hampshire, London, (1967).
[7] Bose R. C., "Mathematical theory of the symmetrical factorial design", Sankyha, 8, 107-166, (1947).
[8] Coolsaet K., Sticker H., "A full classification of the complete k-arcs in PG(2, 27) ", Ghent University, Belgium, (2009).
[9] Daskalov R.N., "On the maximum size of some (k,r) $-\operatorname{arcs}$ in PG(2, q)", University of Gabrovo, Bulgaria, (2007).
[10] Falih S.A. "On complete (k,4)-arcs in projective plane of order eight", M. Sc. thesis, University of Basrah, Iraq, (2009).
[11] Fralergh J.B.,"A first course in abstract algebra", Seventh Edition, Addison Wesley, North-Holland, (2003).
[12] Haimulin J.N. "Some properties of $\{\mathrm{k}, \mathrm{n}\}_{\mathrm{q}}-\operatorname{arcs}$ in Galois planes", Soviet Math. Dokl. 7,1100-1103, (1966).
[13] Hameed F. K." (k,n)-arcs in the projective plane $\operatorname{PG}(2, q)$ ", M. Sc. thesis, University of Sussex, UK,(1984).
[14] Hirschfeld J. W. P., "Cyclic projectivity in $\operatorname{PG}(\mathrm{n}, \mathrm{q})$ ", Teovie combinatoric, volume I, Accad.Naz. dei Linei, 201-211, (1979).
[15] Hirschfeld J. W. P., "Projective Geometries over Finite Fields",Second Edition, Oxford University Press, Oxford, xiv +555 pp., (1998).
[16] Hirschfeld J.W.P., " Maximum sets in a finite projective space", $19^{\text {th }}$ June (2008).
[17] Hirschfeld ,J.W.P. and Storme ,L., "The packing problem in statistics, coding theory and finite projective spaces", update 2001 in: Finite Geometries, Developments in Mathematics 3, Kluwer, 201-246, (2001).
[28] Ibrahim M. A. "Classification of (k,4)-arcs and (k,3)-arcs in the projective plane of order seven", M. Sc. thesis, University of Basrah, Iraq, (2003).
[19] Khalid M. Sh. "Classification of complete (k,4)-arcs in the projective plane of order eleven", M. Sc. thesis, University of Basrah, Iraq, (2010).
[20] Sadeh A.R., " The classification of k-arcs and cubic surfaces with twenty seven lines over the field of eleven elements ", M. Sc. thesis,University of Sussex ; UK , (1984).
[21] Segre B., "Sulle ovali nei piani lineari finiti", Atti Accad. Naz. Lincei Rend, 17, 1-2, (1954).
[22] Segre B., "Ovals in a finite projective plane", Canad. J. Math., 7, 414-416, (1955).
[23] Segre B., "Sui k-archi nei piani finiti di caratteristica due", Rev. Math. Pures Appl., 2, 289-300, (1957).
[24] Singer J., "A theorem in finite projective geometry and some applications to number theory" Trans. Amer. Math. Soc. 43, 377-385, (1938).

