See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311709108

On complete (k,3)-arcs in PG(2,8)

Article in Journal of Sciences · January 2011

citations 0 READS

1 author:

All content following this page was uploaded by Salam Abdulqader Alabdullah on 18 December 2016.

On complete (k,3)-arcs in PG(2,8)

Salam A. Falih Department of Petroleum ,College of Engineering University of Basra Email: <u>salamkader2006@yahoo.com</u> ISSN -1817 -2695

Abstract

In this paper, the classification of the (k,3)-arcs in PG(2,8) with respect to type of their lines has been obtained as well as the group of projectivities of the projectively distinct (k,3)-arcs are found. Furthermore all the complete (k,3)-arcs in PG(2,8) are investigated, also it was shown that PG(2,8) has no maximum arc.

Introduction

Let GF(q) be the Galois field of q elements and V(3,q) be the vector space of dimension three where q is prime power. Let PG(2,q) be the corresponding projective plane. The number of points of PG(2,q) is $q^2 + q + 1$, and the number of lines is $q^2 + q + 1$, where each line contains exactly q+1 points and there are q+1 lines throughout every point, and any two distinct points lie exactly on one line, and any two distinct lines have exactly one common point. A (k, n) -arc K in a finite projective plane PG(2,q), is a set of k points, such that there is some n but no (n+1) are collinear where $2 \le n \le q+1$ and a (k, 2) -arc generally called a k -arc. A (k, n) -arc is complete if there is no (k+1, n) -arc containing it. The maximum and smallest size of a complete (k, n) -arcs for which a (k, n) -arc K exist in PG(2,q) will be denoted by $m_n(2,q)$ and $t_n(2,q)$ respectively.

In (1938) Singer [24] put down the method to array the points and lines in projective plane PG(2,q). In (1947) Bose[7] proved that $m_2(2,q) = q + 1$ for q odd, and $m_2(2,q) = q + 2$ for q even. In mid of (1950s), Segre [21,22] proved that for q odd every q + 1 -arc is a conic, for q = 2, q = 4 and q = 8 every q + 2 -arc is a conic plus its nucleus [23], and for q = 16, q = 32, $q = 2^{h}$ ($h \ge 7$), there exists a q + 2 -arc other than the conic plus its nucleus. In (1956) Barlotti [4] proved that the first of many results in the attempt to determine the value of $m_n(2,q)$, and this has proved to be far from simple. Early results by Barlotti bounded $m_n(2,q)$ with $m_n(2,q) \le (n-1)q + n$ and proved for (n,q) = 1 and n > 2, $m_n(2,q) \le (n-1)q + n - 2$. Hirschfeld [15] and Sadeh [20] had shown the classification and construction of k – arcs over the Galois field GF(q) with $q \leq 11$ and gave the example of (21,3) -arc in PG(2,11). Bierbrauer [5] proved that any (15,3) -arc in PG(2,8) is a maximum. The classification and construction of (k, 4) -arcs with respect to the type of lines for q = 3 have been given by Abood [2]. Abdul-Hussain [1] also explained the classification of (k, 4) -arcs with respect to the type of lines in PG(2,5). In (2001) Hirschfeld and Storme [17] showed that for **q** odd this implies immediately that the maximum size of a (k, n) -arc, for n | q is less than nq - q + n/2. Ibrahim [18] explained the classification of (k, 4) -arcs and (k, 3) -arcs with respect to the type of lines in PG(2,7). Ball and Hirschfeld [3] reviewed some of the works of the principal and recently discovered lower and upper bounds on the maximum size of (k, n) -arcs in PG(2,q) for some n, q and put a table for it. The classification of the complete k –arcs in PG(2,27) has been given by Coolsaet and Sticker [8]. The classification and construction of (k, 4) –arcs with respect to

the type of lines for q = 8 have been given by Falih [10].Classification of complete (k,4)-arcs in the projective plane of order eleven have been given by Khalid [19].

The main purpose of this paper is to find the complete (k,3) -arcs in PG(2,8) through the classification and construction of the projectively distinct (k,3) -arcs with respect to the type of lines and we found the group of projectivities of each projectively distinct (k,3) -arcs.

1. Preliminaries :

Definition 1.1 [6]

For p prime, let GF(p) denote a finite field of p elements that consists of the residue classes of integers module p under the natural addition and multiplication. If f(x) is an irreducible polynomial of degree h over GF(p), then :

 $GF(p^h) = GF(p)[x]/(f(x)) = \{a_0 + a_1t + \dots + a_{h-1}t^{h-1} : a_i \in GF(p), f(t) = 0\}$ $GF(p^h)$ is called a Galois field of order $q = p^h$, where h > 1 is an integer number. Notice that, the elements of GF(q) satisfy the equation $x^q = x$ and there exists $y \in GF(q)$ such that: $GF(q) = \{0, 1, y, y^2, \dots, y^{q-2} : y^{q-1} = 1\}$. The element y is called a primitive element or primitive root of GF(q).

Definition 1.2 [15]

Let V = V(n + 1, F) be a (n + 1) -dimensional vector space over a field F with zero vector 0. Define an equivalence relation \sim on the vectors of $V^* = V \setminus \{0\}$ as follows:

If $X = (x_1, x_2, ..., x_{n+1})$, $Y = (y_1, y_2, ..., y_{n+1}) \in V \setminus \{0\}$, we say that X is equivalent to Y if, $Y = \lambda X$, for some $\lambda \in F \setminus \{0\}$. Then the space $V(n+1, F)/\sim$ is said to be the n-dimensional projective space over F and is denoted by PG(n, F) or, when F = GF(q), by PG(n,q). The equivalence classes are called points of PG(n,F).

For any m = 0,1,2,...,n, a subspace of dimension m (or m -space) of PG(n,q) is the set of points all of whose representing vectors form, (together with the zero), a subspace of dimension m + 1 of V. A subspace of the dimensions zero, one, two, and three are respectively called a point, a line, a plane, and a solid. Subspaces of dimension n - 1 and n - 2 are respectively called a prime (hyperplane) and secundum. A subspace of dimension n - r is also referred to as a subspace of codimension r. The set of m -spaces is denoted by $PG^{(m)}(n,q)$.

Theorem 1.1 [15]

The number of points in PG(n,q) is $\theta(n) = \frac{q^{n+1}-1}{q^{-1}}$ In particular, $\theta(0) = 1$, $\theta(1) = q+1$ and $\theta(2) = q^2 + q + 1$.

Definition 1.3 [15]

A projective plane over GF(q) is 2-dimensional projective space denoted by PG(2,q) and it has the following properties:

- 1. The number of points is $q^2 + q + 1$.
- 2. The number of lines is $q^2 + q + 1$.
- 3. Each line contains exactly q + 1 points.
- 4. Each point lies on q + 1 lines.

The fundamental theorem in projective geometry 1.2 [15]

If $\{P_1, P_2, ..., P_{n+2}\}$ and $\{Q_1, Q_2, ..., Q_{n+2}\}$ are two sets of points of PG(n,q) such that no n + 1 points chosen from the same set lie in a prime, then there exists a unique projectivity T, such that $Q_i = P_i T$, for all i = 1, 2, ..., n + 2.

For n=1, there exists a unique projectivity transforming any three distinct points on a line to any other three.

For n=2, there exists a unique projectivity transforming the four points P_1 , P_2 , P_3 , P_4 (no three are collinear) to the four points Q_1 , Q_2 , Q_3 , Q_4 (no three are collinear) respectively **Primitive and subprimitive roots of polynomials 1.4 [15]**

Let N(m, q) be the set of monic irreducible polynomials over GF(q) of degree m then:

- 1- If f∈ N(m,q), then f has exponent e, if e is the smallest positive integer such that f(x) divided x^e 1. The exponent e always divides q^m 1. If e = q^m 1, then f is called a primitive and has a primitive root in GF(q^m). So, if α is a root in GF(q^m) of a primitive f, then α has order q^m 1.
- 2- If $f(x) \in N(m,q)$, then f(x) has a subexponent e, if e is the smallest positive integer number such that f(x) divided $x^e c$ for some $c \in GF(q)$. The subexponent e always divides $\theta(m-1) = \frac{q^m-1}{q-1}$. If $e = \frac{q^m-1}{q-1}$, then f(x) is subprimitive polynomial and has a subprimitive root.

Definition 1.5 [15]

Let $f(x) = x^{r+1} - a_r x^r - \dots - a_0$ be any monic polynomial, then its companion matrix, C(f) is given by the $(r+1) \times (r+1)$ matrix;

 $C(f) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_0 & a_1 & a_2 & \cdots & a_r \end{bmatrix}.$ In particular, when r = 2 therefore; $f(x) = x^3 - a_2 x^2 - a_1 x - a_0, \text{ and } C(f) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{bmatrix}.$

Definition 1.6 [15]

A projectivity T which permutes the $\theta(n)$ points of PG(n,q) in a single cycle is called a cyclic projectivity.

Theorem 1.2 [14]

A projectivity T of PG(n,q) is cyclic if and only if the characteristic polynomial of an associated matrix is subprimitive.

If $f(x) \in N(m, q)$ and f(x) is a subprimitive, then the companion matrix C(f) is the cyclic projectivity of PG(n, q).

Theorem 1.4 [14]

The number of cyclic projectivities in PG(n,q) is given by; $\sigma(n,q) = q^{n(n+1)/2} \prod_{i=1}^{n} (q^i - 1) \Box(\theta(n))/(n+1)$, where \Box is the Euler function.

Definition 1.7 [15]

1. A (k, n) -arc K is a set of k points, such that there is some n but no (n + 1) are collinear where $n \ge 2$. When n=2 a (k, 2) -arc is called a k -arc.

2. A (k, n) -arc is complete if, there is no (k + 1, n) -arc containing it.

3. A line ℓ of PG(2,q) is an i-secant of a (k,n) -arc K if, $|\ell \cap K| = i$. A 0-secant is called an external line of k -arc, a 1-secant is called unisecant and a 2-secant is called a bisecant. 4. A (k,n) -arc K is maximal arc if it satisfies k = (n-1)q + n. 5. The maximum and smallest size of a complete (k, n) -arc for which a (k, n) -arc K exists in PG(2,q) will be denoted by $m_n(2,q)$ and $t_n(2,q)$ respectively.

Notation : Let \mathbf{r}_i denotes the total number of \mathbf{i} -secants of (\mathbf{k}, \mathbf{n}) -arc K in $PG(2, \mathbf{q})$, $\mathbf{R}_i = \mathbf{R}_i(\mathbf{P})$ the number of \mathbf{i} -secants through a point P of K and $\mathbf{S}_i = \mathbf{S}_i(\mathbf{Q})$ the number of \mathbf{i} -secants through a point Q of $PG(2, \mathbf{q}) \setminus \mathbf{K}$.

Lemma 1.1 [15]

For a (k, n) –arc K, the following equations hold:

$\sum_{i=0}^{n} r_i = q^2 + q + 1$	(1)
$\sum_{i=1}^{n} ir_i = k(q+1)$	
$\sum_{i=2}^{n} \frac{i(i-1)r_{i}}{2} = \frac{k(k-1)}{2}$	
$\sum_{i=1}^{n} R_{i} = q + 1$	(4)
$\sum_{i=2}^{n} (i-1)R_i = k-1$	
$\sum_{i=0}^{n} S_{i} = q + 1$	(6)
$\sum_{i=1}^{n} iS_i = k$	
$\sum_{\mathbf{p}} \mathbf{R}_{i} = i\mathbf{r}_{i}$	
$\sum_{\mathbf{Q}} \mathbf{S}_{\mathbf{i}} = (\mathbf{q} + 1 - \mathbf{i})\mathbf{r}_{\mathbf{i}}$	(9)

Where the summation in the equation (8) taken over all $P \in K$, and taken over all $Q \in PG(2,q) \setminus K$ in the equation (9).

Notation : Assume the equations (4) and (5) in the above lemma have v distinct solutions $B_j = (R_{1j}, ..., R_{nj})$; j = 1, ..., v and the equations (6), (7) have g distinct solutions $M_j = (S_{0j}, ..., S_{nj})$; j = 1, ..., g.

Suppose there are b_j points on the (k, n)-arc K with solution B_j , and m_j points on $PG(2,q) \setminus K$ with solution M_j .

Lemma 1.2 [12]

For a (k, n) -arc K in PG(2,q), the following equations hold: $\sum_{j=1}^{v} b_j R_{ij} = ir_i$ (1) $\sum_{j=1}^{v} b_j = k$ (2) $\sum_{j=1}^{g} m_j S_{ij} = (q+1-i)r_i$ (3) $\sum_{j=1}^{g} m_j = q^2 + q + 1 - k$ (4)

Lemma 1.3 [12]

Let t(P) be the number of unisecants through P, where P is a point of the k-arc K. Let r_i be the total number of i -secants of K in the plane, then :

1. t(p) = q + 2 - k = t

2. $r_2 = k(k-1)/2$, $r_1 = kt$ and $r_0 = q(q-1)/2 + t(t-1)/2$

Definition 1.8 [1]

If P is a point of PG(2,q) not on the (k,n) -arc K and not on any n - secants of the (k,n) -arc K, then P is called a point of index zero.

Theorem 1.5 [7]

 $m_2(2,q) = \begin{cases} q+2 & , \text{for } q \text{ even} \\ q+1 & , \text{for } q \text{ odd} \end{cases}$

Theorem 1.6 [13]

For $2 \leq n \leq q + 1$,

- 1- The maximum size $m_n(2,q) \le (n-1)q+n$.
- 2- If $n \leq q$ and equality occur in (1), then n is a divisor of q.

Corollary 1.1 [16]

 $m_n(2,q) \begin{cases} = (n-1)q + n & \text{, for } q \text{ even and } n|q \\ < (n-1)q + n & \text{, for } q \text{ odd} \end{cases}$

Theorem 1.7 [15]

If K is a maximal (k, n) –arc in PG(2, q), then:

(i) K = PG(2,q) if n = q + 1 and;

(ii) $K = PG(2,q) \setminus \ell$, if n = q, where ℓ is a line.

Corollary 1.2 [15]

A (k, n) -arc K is maximal if and only if every line in PG(2,q) is either an n-secant or an external line.

Lemma 1.4 [15]

If K is a complete (k,n) -arc, then: $(q+1-n)r_n \ge q^2 + q + 1 - k$, with equality if and only if $S_n = 1$ for all Q in PG(2,q)\K.

Definition 1.9 [1]

Let \mathbf{r}_i be the total number of \mathbf{i} -secants of the (\mathbf{k}, \mathbf{n}) -arc K in $PG(2, \mathbf{q})$. Then the type of K with respect to its lines is denoted by $(\mathbf{r}_n, \dots, \mathbf{r}_0)$. Let \mathbf{K}_1 be of type $(\mathbf{r}_n, \dots, \mathbf{r}_0)$ and \mathbf{K}_2 be of type $(\mathbf{t}_n, \dots, \mathbf{t}_0)$, then \mathbf{K}_1 and \mathbf{K}_2 have the same type of lines iff $\mathbf{r}_i = \mathbf{t}_i$ for all $\mathbf{i} = 0, 1, \dots, n$.

Definition 1.10 [1]

Two arcs K_1 and K_2 in PG(2,q) are called projectively equivalents with respect to the types of lines if and only if they have the same type.

Definition 1.11 [1]

Let Q_1 and Q_2 be two points of index zero not on the (k, n) -arc K, and let $K_1 = K \cup \{Q_1\}, K_2 = K \cup \{Q_2\}$ be two arcs, then Q_1 and Q_2 have the same type if and only if K_1 and K_2 are projectively equivalents with respect to the types of lines.

Lemma 1.5 [1]

Let Q_1 and Q_2 be two points of index zero not on the (k, n) -arc, then:

(1) Q_1 and Q_2 are in the same set if they have the same type.

(2) Q_1 and Q_2 are in different sets if they have different types.

2. The cyclic projectivity of PG(2,8)

The plane PG(2,8) contains 73 points and 73 lines, every line contains 9 points and every point passes through it 9 lines. It is convenience to use the numbers 0,1,2,3,4,5,6,7 will be the elements of GF(8). Let $f(x) = x^3 + x + \lambda^4$ be an irreducible polynomial over GF(8), then

the matrix $T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & 0 \end{bmatrix}$ is cyclic projectivity which is given by right multiplication on the points of PG(2,8).

2.1. The points of PG(2,8)

Let the point P_1 be represented by the vector (1,0,0). Then $P_1T^i = P_i$, i=1,...,73 are the 73 points of PG(2,8) .Writing i for P_i , the vectors of the 73 points of PG(2,8) are given in the table (2,1).

		Table (2.1	1)	
P ₁ =(100)	$P_{16}=(130)$	$P_{31}=(105)$	P ₄₆ =(174)	P ₆₁ =(162)
P ₂ =(010)	$P_{17}=(013)$	$P_{32}=(1\ 5\ 0)$	P ₄₇ =(127)	P ₆₂ =(161)
$P_{3}=(001)$	$P_{18}=(142)$	$P_{33}=(0\ 1\ 5)$	$P_{48} = (176)$	$P_{63} = (102)$
P ₄ =(140)	$P_{19}=(166)$	$P_{34}=(147)$	$P_{49}=(135)$	P ₆₄ =(160)
P ₅ =(014)	$P_{20}=(134)$	$P_{35}=(171)$	P ₅₀ =(152)	$P_{65} = (0\ 1\ 6)$
P ₆ =(141)	$P_{21}=(123)$	$P_{36} = (103)$	$P_{51}=(167)$	P ₆₆ =(146)
P ₇ =(107)	$P_{22}=(113)$	P ₃₇ =(110)	$P_{52}=(173)$	$P_{67} = (132)$
P ₈ =(170)	$P_{23}=(112)$	$P_{38}=(0\ 1\ 1)$	$P_{53}=(1\ 1\ 1\ 1)$	P ₆₈ =(165)
P ₉ =(017)	$P_{24}=(163)$	$P_{39}=(144)$	$P_{54} = (104)$	$P_{69} = (155)$
$P_{10}=(145)$	$P_{25}=(117)$	$P_{40}=(124)$	$P_{55}=(1\ 2\ 0)$	P ₇₀ =(154)
$P_{11}=(153)$	$P_{26}=(175)$	$P_{41}=(1\ 2\ 2)$	$P_{56} = (0 1 2)$	$P_{71}=(125)$
$P_{12}=(1\ 1\ 6)$	$P_{27}=(156)$	$P_{42}=(164)$	$P_{57}=(143)$	$P_{72}=(151)$
$P_{13}=(136)$	$P_{28}=(133)$	$P_{43}=(1\ 2\ 6)$	$P_{58} = (115)$	$P_{73}=(101)$
$P_{14}=(131)$	$P_{29}=(114)$	P ₄₄ =(137)	$P_{59}=(157)$	
$P_{15}=(106)$	$P_{30} = (121)$	P ₄₅ =(177)	$P_{60} = (172)$	

2.1.The lines of PG(2,8)

Let L_1 be the line which contains the points { $P_1, P_2, P_4, P_8, P_{16}, P_{32}, P_{37}, P_{55}, P_{64}$ } Let $L_1T^i = L_i$, i=1,2,...,73 are the lines of PG(2,8). The 73 lines, L_i are given by the rows in the table (2,2).

					Tabl	e (2.2)			
L ₁	P ₁	P ₂	P_4	P ₈	P ₁₆	P ₃₂	P ₃₇	P ₅₅	P ₆₄
L ₂	P ₂	P ₃	P ₅	P ₉	P ₁₇	P ₃₃	P ₃₈	P ₅₆	P ₆₅
L ₃	P ₃	P ₄	P ₆	P ₁₀	P ₁₈	P ₃₄	P ₃₉	P ₅₇	P ₆₆
L_4	P_4	P ₅	P ₇	P ₁₁	P ₁₉	P ₃₅	P ₄₀	P ₅₈	P ₆₇
L ₅	P ₅	P ₆	P ₈	P ₁₂	P ₂₀	P ₃₆	P ₄₁	P ₅₉	P ₆₈
L ₆	P ₆	P ₇	P ₉	P ₁₃	P ₂₁	P ₃₇	P ₄₂	P ₆₀	P ₆₉
L ₇	P ₇	P ₈	P ₁₀	P ₁₄	P ₂₂	P ₃₈	P ₄₃	P ₆₁	P ₇₀
L ₈	P ₈	P9	P ₁₁	P ₁₅	P ₂₃	P ₃₉	P ₄₄	P ₆₂	P ₇₁
L ₉	P ₉	P ₁₀	P ₁₂	P ₁₆	P ₂₄	P ₄₀	P ₄₅	P ₆₃	P ₇₂
L ₁₀	P ₁₀	P ₁₁	P ₁₃	P ₁₇	P ₂₅	P ₄₁	P ₄₆	P ₆₄	P ₇₃
L ₁₁	P ₁₁	P ₁₂	P ₁₄	P ₁₈	P ₂₆	P ₄₂	P ₄₇	P ₆₅	P ₁
L ₁₂	P ₁₂	P ₁₃	P ₁₅	P ₁₉	P ₂₇	P ₄₃	P ₄₈	P ₆₆	P ₂
L ₁₃	P ₁₃	P ₁₄	P ₁₆	P ₂₀	P ₂₈	P ₄₄	P ₄₉	P ₆₇	P ₃
L ₁₄	P ₁₄	P ₁₅	P ₁₇	P ₂₁	P ₂₉	P ₄₅	P ₅₀	P ₆₈	P_4
L ₁₅	P ₁₅	P ₁₆	P ₁₈	P ₂₂	P ₃₀	P ₄₆	P ₅₁	P ₆₉	P ₅
L ₁₆	P ₁₆	P ₁₇	P ₁₉	P ₂₃	P ₃₁	P ₄₇	P ₅₂	P ₇₀	P ₆
L ₁₇	P ₁₇	P ₁₈	P ₂₀	P ₂₄	P ₃₂	P ₄₈	P ₅₃	P ₇₁	P ₇
L ₁₈	P ₁₈	P ₁₉	P ₂₁	P ₂₅	P ₃₃	P ₄₉	P ₅₄	P ₇₂	P ₈
L ₁₉	P ₁₉	P ₂₀	P ₂₂	P ₂₆	P ₃₄	P ₅₀	P ₅₅	P ₇₃	P9
L ₂₀	P ₂₀	P ₂₁	P ₂₃	P ₂₇	P ₃₅	P ₅₁	P ₅₆	P ₁	P ₁₀
L ₂₁	P ₂₁	P ₂₂	P ₂₄	P ₂₈	P ₃₆	P ₅₂	P ₅₇	P ₂	P ₁₁
L ₂₂	P ₂₂	P ₂₃	P ₂₅	P ₂₉	P ₃₇	P ₅₃	P ₅₈	P ₃	P ₁₂
L ₂₃	P ₂₃	P ₂₄	P ₂₆	P ₃₀	P ₃₈	P ₅₄	P ₅₉	P_4	P ₁₃
L ₂₄	P ₂₄	P ₂₅	P ₂₇	P ₃₁	P ₃₉	P ₅₅	P ₆₀	P ₅	P ₁₄
L ₂₅	P ₂₅	P ₂₆	P ₂₈	P ₃₂	P ₄₀	P ₅₆	P ₆₁	P ₆	P ₁₅
L ₂₆	P ₂₆	P ₂₇	P ₂₉	P ₃₃	P ₄₁	P ₅₇	P ₆₂	P ₇	P ₁₆
L ₂₇	P ₂₇	P ₂₈	P ₃₀	P ₃₄	P ₄₂	P ₅₈	P ₆₃	P ₈	P ₁₇
L28	P ₂₈	P20	P ₃₁	P ₃₅	P ₄₃	P59	P ₆₄	Po	P ₁₈

L ₂₉	P ₂₉	P ₃₀	P ₃₂	P ₃₆	P ₄₄	P ₆₀	P ₆₅	P ₁₀	P ₁₉
L ₃₀	P ₃₀	P ₃₁	P ₃₃	P ₃₇	P ₄₅	P ₆₁	P ₆₆	P ₁₁	P ₂₀
L ₃₁	P ₃₁	P ₃₂	P ₃₄	P ₃₈	P ₄₆	P ₆₂	P ₆₇	P ₁₂	P ₂₁
L ₃₂	P ₃₂	P ₃₃	P ₃₅	P ₃₉	P ₄₇	P ₆₃	P ₆₈	P ₁₃	P ₂₂
L ₃₃	P ₃₃	P ₃₄	P ₃₆	P ₄₀	P ₄₈	P ₆₄	P ₆₉	P ₁₄	P ₂₃
L ₃₄	P ₃₄	P ₃₅	P ₃₇	P ₄₁	P ₄₉	P ₆₅	P ₇₀	P ₁₅	P ₂₄
L ₃₅	P ₃₅	P ₃₆	P ₃₈	P ₄₂	P ₅₀	P ₆₆	P ₇₁	P ₁₆	P ₂₅
L ₃₆	P ₃₆	P ₃₇	P ₃₉	P ₄₃	P ₅₁	P ₆₇	P ₇₂	P ₁₇	P ₂₆
L ₃₇	P ₃₇	P ₃₈	P ₄₀	P ₄₄	P ₅₂	P ₆₈	P ₇₃	P ₁₈	P ₂₇
L ₃₈	P ₃₈	P ₃₉	P ₄₁	P ₄₅	P ₅₃	P ₆₉	P ₁	P ₁₉	P ₂₈
L ₃₉	P ₃₉	P ₄₀	P ₄₂	P ₄₆	P ₅₄	P ₇₀	P ₂	P ₂₀	P ₂₉
L ₄₀	P ₄₀	P ₄₁	P ₄₃	P ₄₇	P ₅₅	P ₇₁	P ₃	P ₂₁	P ₃₀
L ₄₁	P ₄₁	P ₄₂	P ₄₄	P ₄₈	P ₅₆	P ₇₂	P ₄	P ₂₂	P ₃₁
L ₄₂	P ₄₂	P ₄₃	P ₄₅	P ₄₉	P ₅₇	P ₇₃	P ₅	P ₂₃	P ₃₂
L ₄₃	P ₄₃	P ₄₄	P ₄₆	P ₅₀	P ₅₈	P ₁	P ₆	P ₂₄	P ₃₃
L ₄₄	P ₄₄	P ₄₅	P ₄₇	P ₅₁	P ₅₉	P ₂	P ₇	P ₂₅	P ₃₄
L ₄₅	P ₄₅	P ₄₆	P ₄₈	P ₅₂	P ₆₀	P ₃	P ₈	P ₂₆	P ₃₅
L ₄₆	P ₄₆	P ₄₇	P ₄₉	P ₅₃	P ₆₁	P_4	P ₉	P ₂₇	P ₃₆
L ₄₇	P ₄₇	P ₄₈	P ₅₀	P ₅₄	P ₆₂	P ₅	P ₁₀	P ₂₈	P ₃₇
L ₄₈	P ₄₈	P ₄₉	P ₅₁	P ₅₅	P ₆₃	P ₆	P ₁₁	P ₂₉	P ₃₈
L ₄₉	P ₄₉	P ₅₀	P ₅₂	P ₅₆	P ₆₄	P ₇	P ₁₂	P ₃₀	P ₃₉
L ₅₀	P ₅₀	P ₅₁	P ₅₃	P ₅₇	P ₆₅	P ₈	P ₁₃	P ₃₁	P ₄₀
L ₅₁	P ₅₁	P ₅₂	P ₅₄	P ₅₈	P ₆₆	P ₉	P ₁₄	P ₃₂	P ₄₁
L ₅₂	P ₅₂	P ₅₃	P ₅₅	P ₅₉	P ₆₇	P ₁₀	P ₁₅	P ₃₃	P ₄₂
L ₅₃	P ₅₃	P ₅₄	P ₅₆	P ₆₀	P ₆₈	P ₁₁	P ₁₆	P ₃₄	P ₄₃
L ₅₄	P ₅₄	P ₅₅	P ₅₇	P ₆₁	P ₆₉	P ₁₂	P ₁₇	P ₃₅	P ₄₄
L ₅₅	P ₅₅	P ₅₆	P ₅₈	P ₆₂	P ₇₀	P ₁₃	P ₁₈	P ₃₆	P ₄₅
L ₅₆	P ₅₆	P ₅₇	P ₅₉	P ₆₃	P ₇₁	P ₁₄	P ₁₉	P ₃₇	P ₄₆
L ₅₇	P ₅₇	P ₅₈	P ₆₀	P ₆₄	P ₇₂	P ₁₅	P ₂₀	P ₃₈	P ₄₇
L ₅₈	P ₅₈	P ₅₉	P ₆₁	P ₆₅	P ₇₃	P ₁₆	P ₂₁	P ₃₉	P ₄₈
L ₅₉	P ₅₉	P ₆₀	P ₆₂	P ₆₆	P ₁	P ₁₇	P ₂₂	P ₄₀	P ₄₉
L ₆₀	P ₆₀	P ₆₁	P ₆₃	P ₆₇	P ₂	P ₁₈	P ₂₃	P ₄₁	P ₅₀
L ₆₁	P ₆₁	P ₆₂	P ₆₄	P ₆₈	P3	P ₁₉	P ₂₄	P ₄₂	P ₅₁
L ₆₂	P ₆₂	P ₆₃	P ₆₅	P ₆₉	P ₄	P ₂₀	P ₂₅	P ₄₃	P ₅₂
L ₆₃	P ₆₃	P ₆₄	P ₆₆	P ₇₀	P ₅	P ₂₁	P ₂₆	P ₄₄	P ₅₃
L ₆₄	P ₆₄	P ₆₅	P ₆₇	P ₇₁	P ₆	P ₂₂	P ₂₇	P ₄₅	P ₅₄
L ₆₅	P ₆₅	P ₆₆	P ₆₈	P ₇₂	P	P ₂₃	P ₂₈	P ₄₆	P ₅₅
L ₆₆	P ₆₆	P ₆₇	P ₆₉	P ₇₃	P8	P ₂₄	P ₂₉	P ₄₇	P ₅₆
L ₆₇	P ₆₇	P ₆₈	P ₇₀	<u> Г</u>	P9	P ₂₅	P ₃₀	P ₄₈	P ₅₇
L ₆₈	P ₆₈	P ₆₉	P ₇₁	P P	P ₁₀	P ₂₆	P ₃₁	P ₄₉	P ₅₈
L ₆₉	P ₆₉	P ₇₀	P ₇₂	P3	P ₁₁	P ₂₇	P ₃₂	P ₅₀	P ₅₉
L ₇₀	P ₇₀	P ₇₁	P ₇₃	P P	P ₁₂	P ₂₈	P ₃₃	P ₅₁	P ₆₀
L ₇₁	P ₇₁	P ₇₂	Р ₁	P5	P ₁₃	P ₂₉	P ₃₄	P ₅₂	P ₆₁
L ₇₂	P ₇₂	P ₇₃	P ₂	P ₆	P ₁₄	P ₃₀	P35	P ₅₃	P ₆₂
L ₇₃	P ₇₃	P_1	P ₃	P ₇	P ₁₅	P ₃₁	P ₃₆	P ₅₄	P ₆₃

2.3 Algorithm [10]:

For any (k,3)-arc K , $k\geq 6$, there are at least four points in K no three of which are collinear . Let $C_1=\{P_i:i=1,\ldots,k\}$ and $C_2=\{W_i:i=1,\ldots,k\}$ be two (k,3)-arcs in PG(2,q) , where the coordinates of the points P_i and W_i are :

 $P_i = p(x_i(1), x_i(2), x_i(3))$ and $W_i = w(x_i(1), x_i(2), x_i(3))$.

By the fundamental theorem, there exists a unique projectivity which takes any set of four points of the (k,4)-arc C₁ no three are collinear to any set of four points of C₂ no three are collinear . Let the (3x3) matrix Z=($\Box_{i,j}$), i,j = 1,2,3 take a fixed set of four points of C₁ no three are collinear , say { P₁ , P₂ , P₃, P₄ } , to any set of four points of C₂ no three are collinear , say { W₁, W₂, W₃, W₄ }, to determine Z we fixed a set of four points C₁ no three are collinear .

Then we work out the projectivity matrix Z that takes the fixed set of four points of C_1 to one of the J sets of four points of C_2 no three collinear , where J is the number of the sets of

four points in C_2 no three of which are collinear. Therefore, there are J matrices Z to be checked. Now Z is the projectivity matrix takes the points of C_1 to the points of C_2 if Z takes the remaining points of C_1 to the remaining points of C_2 .

The following is the matrix arithmetic to determine the matrix Z.

Y B $X^{-1} X_4 = Y_4$ (2) Let

$$X^{-1}X_4 = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
, and let $D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$

Thus (2) can be written as

 $YD\begin{bmatrix}\lambda_1\\\lambda_2\\\lambda_2\\\lambda_3\end{bmatrix} = Y_4, \text{ So}\begin{bmatrix}\lambda_1\\\lambda_2\\\lambda_3\end{bmatrix} = Y^{-1}Y_4$

Substituting the values of λ_1 , λ_2 and λ_3 in matrix B, we have the projectivity matrix given in (1)

The set of projectivities fixing a (k,4)-arc K in the group G(K). To determine this group, we used a computer program. In this case the program is set to compare K with itself, that is the projectivity matrix Z is an element of the group G(K) if $ZX_i=bX_j$ i,j=5,...,k, where X_i is the column vector represents the point P_i . When we choose the points of triangle of reference and the unit points are (1,0,0), (0,1,0), (0,0,1) and (1,1,1) to be fixed four points , then (1) becomes : Z=YB.

3. classification of (k,3)-arcs in PG(2,8) ; (k=3,4,...,15)

3.1 The construction of the projectively distinct (3,3)-arcs

Let A = $\{1, 2, 37\}$ be a (3,3)-arc in PG(2,8). Then all (3,3)-arcs are projectively equivalent with respect to the type of their lines to A, therefore there is only (up to projectively equivalent) one (3,3)-arc in PG(2,8) with the type can be calculated as follows:

By using equations 1,2 and 3 of lemma (1.1), we have the following equations:

 $r_0 + r_1 + r_2 + r_3 = 73$ $r_1 + 2r_2 + 3r_3 = 27$ $2r_2 + 6r_3 = 6$

The only type of (3,3)-arc which satisfies the above equations is:

 $r_3 = 1$ $r_2 = 0$ $r_1 = 24$

3.2 The construction of the projectively distinct (4,3)-arcs

From (2.1) there is only one (3,3)-arc A. There are 64 points of index zero for A. So by adding one point of them to (3,3)-arc A, we have all these points lie in the same set.

 $r_0 = 48$

Therefore there is only one (4,3)-arc can be constructed by adding one point from this set to A. So there is only one type of (4,3)-arc denoted it by B, can be calculated as follows :

By using equations 1,2 and 3 of lemma (1.1), we have the following equations:

$$r_0 + r_1 + r_2 + r_3 = 73$$

 $r_1 + 2r_2 + 3r_3 = 36$
 $2r_2 + 6r_3 = 12$

The only type of (4,3)-arc which satisfies the above equations is: $r_3 = 1$, $r_2 = 3$, $r_1 = 27$, and $r_0 = 42$

3.3 The construction of the projectively distinct (5,3)-arcs

From (2.2) there is only one (4,3)-arc B.There are 63 points of index zero for B. So by adding one point of index zero from $PG(2,8)\setminus B$, we get only two projectively distinct (5,3)-arcs, we denoted it by C_1 , C_2 . which are shown in following :

 $C_1 = \{1, 2, 3, 53, 37\}$ and $C_2 = \{1, 2, 3, 53, 4\}$

So a (4,3)-arc is of type (1, 3, 27,42)

So a (5,3)-arc is of types (2,4,31,36) and (1,7,28,37) respectively

3.4 The construction of the projectively distinct (6,3)-arcs

From (2.3), we have get two sets C_1 and C_2 , Now we have 62 points of index zero for C_1 and C_2 . So by adding one point of index zero from $PG(2,8)\setminus C_1$ or by adding one point of index zero from $PG(2,8)\setminus C_2$, we get :

 $\mathbf{T}_1 = \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{T}_2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 4 & 4 & 0 \end{bmatrix}, \ \mathbf{T}_2 = \begin{bmatrix} 4 & 4 & 0 \\ 4 & 4 & 1 \\ 4 & 0 & 0 \end{bmatrix}.$

The order of the projectivity T_2 and T_3 are 2, So G (D₁) is isomorphic to Z₃. The groups $G(D_2)$ is consist of I. Thus the group $G(D_2)$ is isomorphic to the trivial group . The group $G(D_3)$ consists of twenty four elements, So G (D₃) is isomorphic to S₄. The groups $G(D_4)$ is consist of I. Thus the group $G(D_4)$ is isomorphic to the trivial group. All the above results are written in the following table :

	Table (3.1)														
Sy.		Γ	Distinct	(6,3)-8	arc		G	G	r ₃	r ₂	r ₁	r ₀			
D_1	1	2	3	53	37	5	Z ₃	3	3	6	33	31			
D_2	1	2	3	53	37	10	Ι	1	2	9	30	32			
D ₃	1	2	3	53	37	38	S_4	24	4	3	36	30			
D_4	1	2	3	53	4	11	Ι	1	1	12	27	33			

3.5 The construction of the projectively distinct (7,3)-arcs

From (2.4) all the projectively distinct (6,3)-arcs D_i (i=1,2,3,4) are incomplete . So by adding one point of index zero to each of the D_i , i=1,2,3,4, we have five projectively distinct (7,3)-arcs $E_1 = D_1 \cup \{6\}$ $E_3 = D_1 \cup \{28\}$ $E_4 = D_4 \cup \{10\}$ $E_5 = D_4 \cup \{13\}$

Table (3.2)

Sy.			Disti	nct (7,3	3)-arc			G	G	r ₃	r ₂	\mathbf{r}_1	r ₀
E ₁	1	2	3	53	37	5	6	Ι	1	4	9	33	27
E ₂	1	2	3	53	37	5	11	Ι	1	3	12	30	28
E ₃	1	2	3	53	37	5	28	Z_2	2	5	6	36	26
E_4	1	2	3	53	4	11	10	Z_2	2	2	15	27	29
E ₅	1	2	3	53	4	11	13	Ι	1	1	18	24	30

3.6 The construction of the projectively distinct (8,3)-arcs

By the same way we get the following results :

Table	(3.3)
-------	-------

Sy.			D	istinct	(8,3)-a	rc			G	G	r ₃	r ₂	r ₁	r ₀
F ₁	1	2	3	53	37	5	6	7	Ι	1	6	10	34	23
F ₂	1	2	3	53	37	5	6	11	Ι	1	4	16	28	25
F ₃	1	2	3	53	37	5	6	15	Ι	1	5	13	31	24
F_4	1	2	3	53	37	5	11	39	Ι	1	3	19	25	26
F ₅	1	2	3	53	4	11	10	44	Z_2	2	2	22	22	27

all the projectively distinct (8,3)-arcs F_i (i=1,2,...,5) are incomplete

3.7 The construction of the projectively distinct (9,3)-arcs

	Table (3.4)														
Sy.				Dist	inct (9	,3)-arc				G	G	r ₃	r ₂	r ₁	r ₀
G ₁	1	2	3	53	37	5	6	7	10	Ι	1	8	12	33	20
G ₂	1	2	3	53	37	5	6	7	11	Ι	1	7	15	30	21
G ₃	1	2	3	53	37	5	6	7	27	Ι	1	6	18	27	22
G ₄	1	2	3	53	37	5	6	7	34	Ι	1	9	9	36	19
G ₅	1	2	3	53	37	5	6	11	15	Ι	1	5	21	24	23
G ₆	1	2	3	53	37	5	11	39	49	Ι	1	4	24	21	24
G ₇	1	2	3	53	4	11	10	44	40	Ι	1	3	27	18	25

all the projectively distinct (9,3)-arcs G_i (i=1,2,...,7) are incomplete The construction of the projectively distinct (10,3)-arcs

	Table (3.5)															
Sy.				Ι	Distin	et (10,3	3)-arc				G	G	r ₃	\mathbf{r}_2	r ₁	r ₀
H_1	1	2	3	53	37	5	6	7	10	11	Ι	1	9	18	27	19
H ₂	1	2	3	53	37	5	6	7	10	19	Ι	1	10	15	30	18
H ₃	1	2	3	53	37	5	6	7	10	20	Ι	1	11	12	33	17
H ₄	1	2	3	53	37	5	6	7	11	27	Ι	1	8	21	24	20
H ₅	1	2	3	53	37	5	6	7	27	49	Ι	1	7	24	21	21
H ₆	1	2	3	53	37	5	6	7	34	24	Z ₂	2	12	9	36	16
H ₇	1	2	3	53	37	5	11	39	49	13	Ι	1	6	27	18	22
H ₈	1	2	3	53	4	11	20	44	40	48	Ι	1	4	33	12	24
H ₇ H ₈	1 1 1	2 2 2	3 3	53 53 53	37 37 4	5 5 11	11 20	7 39 44	49 40	13 48	I I	1 1	6 4	27 33	18 12	22 24

all the projectively distinct (10,3)-arcs H_i (i=1,2,...,8) are incomplete

3.8 The construction of the projectively distinct (11,3)-arcs

										Ta	ble (3	6.6)					
Sy.	Distinct (11,3)-arc											G	G	r ₃	r ₂	r ₁	r ₀
I ₁	1 2 3 53 37 5 6 7 10 11 20									Ι	1	13	16	28	16		

Sy.					Dis	tinct (11,3)-	arc				G	G	r ₃	r ₂	r ₁	r ₀
I ₂	1	2	3	53	37	5	6	7	10	11	24	Ι	1	12	19	25	17
I ₃	1	2	3	53	37	5	6	7	10	11	27	Ι	1	11	22	22	18
I_4	1	2	3	53	37	5	6	7	10	19	44	Ι	1	14	13	31	15
I ₅	1	2	3	53	37	5	6	7	10	20	44	Ι	1	15	10	34	14
I ₆	1	2	3	53	37	5	6	7	11	27	46	Ι	1	10	25	19	19
I ₇	1	2	3	53	37	5	11	39	49	13	18	Ι	1	8	31	13	21
I ₈	1	2	3	53	37	5	11	39	49	13	21	Ι	1	9	28	16	20
I ₉	1	2	3	53	4	11	10	44	40	48	61		8	5	40	4	24

all the projectively distinct (11,3)-arcs I_i (i=1,2,...,9) are incomplete

3.9 The construction of the projectively distinct (12,3)-arcs

Table (3.7)

Sy.					Di	stinct	(12,3))-arc					G	G	r ₃	r ₂	r ₁	r ₀
J_1	1	2	3	53	37	5	6	7	10	11	20	26	Ι	1	16	18	24	15
J ₂	1	2	3	53	37	5	6	7	10	11	20	44	Ι	1	17	15	27	14
J ₃	1	2	3	53	37	5	6	7	10	11	24	26	Ι	1	15	21	12	16
J_4	1	2	3	53	37	5	6	7	10	11	27	46	Ι	1	14	24	18	17
J ₅	1	2	3	53	37	5	6	7	10	19	44	20	Ι	1	18	12	30	13
J ₆	1	2	3	53	37	5	11	39	49	13	18	7	Ι	1	13	27	15	18
J_7	1	2	3	53	37	5	11	39	49	13	18	21	Ι	1	12	30	12	19
J ₈	1	2	3	53	4	11	10	44	40	48	61	13	Z_2	2	10	36	6	21

all the projectively distinct (12,3)-arcs J_i (i=1,2,...,8) are incomplete

3.10 The construction of the projectively distinct (13,3)-arcs

									Fable ((3.8)									
Sy.						Distin	ict (13,	3)-arc						G	G	r ₃	\mathbf{r}_2	r ₁	r ₀
K ₁	1	2	3	53	37	5	6	7	10	11	20	26	43	Ι	1	20	18	21	14
K ₂	1	2	3	53	37	5	6	7	10	11	20	44	52	Ι	1	21	15	24	13
K ₃	1	2	3	53	37	5	6	7	10	11	24	26	27	Ι	1	19	21	18	15
K ₄	1	2	3	53	37	5	6	7	10	19	44	20	52	Ι	1	22	12	27	12
K ₅	1	2	3	53	37	5	11	39	49	13	18	7	27	Ι	1	18	24	15	16
K ₆	1	2	3	53	37	5	11	39	49	13	18	7	43	Ι	1	17	27	12	17
K ₇	1	2	3	53	37	5	11	39	49	13	18	7	59	Ι	1	16	30	9	18
K ₈	1	2	3	53	37	5	11	39	49	13	18	21	59	Ι	1	15	33	6	14

all the projectively distinct (13,3)-arcs K_i (i=1,2,...,8) are incomplete except i= 2,4 which are a complete (13,4)-arcs.

3.12 The construction of the projectively distinct (14,3)-arcs

									Т	able (3.9)									
Sy.							Disti	nct (14	4,3)-arc						G	G	r ₃	\mathbf{r}_2	\mathbf{r}_1	r ₀
L ₁	1	2	3	53	37	5	6	7	10	11	20	26	43	52	Ι	1	25	16	19	13
L ₂	1	2	3	53	37	5	11	39	49	13	18	7	27	51	Ι	1	24	19	16	14
L ₃	1	2	3	53	37	5	11	39	49	13	18	7	43	46	Ι	1	22	25	10	16
L_4	1	2	3	53	37	5	11	39	49	13	18	7	43	59	Ι	1	21	28	7	17
L ₅	1	2	3	53	37	5	11	39	49	13	18	7	43	70	Ι	1	23	22	13	15

Sy.	Distinct (14,3)-arc												G	G	r ₃	\mathbf{r}_2	r_1	r ₀		
L ₆	1	2	3	53	37	5	11	39	49	13	18	21	59	46	Ι	1	20	31	4	18

all the projectively distinct (14,3)-arcs L_i (i=1,2,...,6) are incomplete except i= 1,5 which are a complete (14,4)-arcs.

3.13 The construction of the projectively distinct (15,3)-arcs

										Ta	ble (3	5.10)									
Sy.							D	istinct	(15,3)	-arc						G	$ \mathbf{G} $	r ₃	r ₂	r_1	r ₀
M ₁	1	2	3	53	37	5	11	39	49	13	18	7	27	51	62	Ι	1	31	12	18	12
M ₂	1	2	3	53	37	5	11	39	49	13	18	7	43	46	59	Ι	1	27	24	6	16
M ₃	1	2	3	53	37	5	11	39	49	13	18	21	59	46	68		12	25	30	0	18

all the projectively distinct (15,3)-arcs M_i (i=1,2,3) are a complete (15,4)-arcs.

3.14 Conclusion : The maximum value $m(3)_{8,2}$ for which (k,3)-arcs is not exist

4. <u>Theorem</u>: In PG(2,8), a complete (k,3)-arc does not exist for $3 \le k \le 8$.

Proof: For $3 \le k \le 8$ the equations (4) and (5) of lemma (1.1) become $R_1 + R_2 + R_3 = 9$ $R_2 + 2 R_3 = k-1$ Let m = [(k-1)/2], where [(k-1)/2] is the integral part of (k-1)/2. So the maximum value of R_3 can accure is m. Assume that $r_i = [(k-1-2i)]$, i=0,1,...,m. It is clear that m is positive for $k \ge 3$. Suppose α_m denoted the number of points of PG (2,8) of type $(R_1,...,r_m-j, m)$, $j=0,1,...,r_m$ According to equation (1) and (2) of lemma (1.2) we have, $m\alpha_m + (m-1)\alpha_{m-1} + \dots + \alpha_1 = 3r_3 \dots(*)$,

where r_3 is the total number of 3-secants of (k,3)-arc in PG(2,8), with $3 \le k \le 8$. Since $m \ge 0$, for $k \ge 3$, we obtain

 $\alpha_{m} + \alpha_{m-1} + \dots + \alpha_{1} = m(\sum_{k=0}^{m} \alpha_{k}) \dots (**)$ is bigger than;

$$\mathbf{m}\alpha_{\mathbf{m}} + (\mathbf{m} - 1)\alpha_{\mathbf{m}-1} + \dots + \alpha_1 = \sum_{k=0}^{m} k\alpha_k$$

Therefore, $m(\sum_{k=0}^{m} k\alpha_k) = mk > (\sum_{k=0}^{m} k\alpha_k) = 3r_3$.

This implies $mk > 3r_3$ or, $r_3 < mk/3$. Furthermore,

Since $m \le (k-1)/2$, then we have $r_3 < k(k-1)/6$ (1)

On the other hand if the (k,3)-arc K is complete for $3 \le k \le 8$, then

according to lemma (1.4), we have $6r_4 \ge 73 - k$ or $r_3 \ge (73 - k) / 6$ (2)

Now, for k=3 we obtain from the equations (1) and (2)

 $r_4 < 1$ and $r_3 > 11$, which is impossible. So a complete (3,3)-arc does not exist in PG(2,8). for k=8, we obtain from equations (1) and (2)

 $r_3 < 9$ and $r_3 > 10$ which is impossible , so a complete (8,3)-arc does not exist in $PG(2,8).\square$

References

- [1] Abdul-Hussain, M. A., "Classification of (k,4)-arcs in the projective plane of order five", M. Sc. thesis, University of Basrah, Iraq, (1997).
- [2] Abood. H. M., "Classification of (k,4)-arcs in the projective plane of order three", J. Basrah Researches, Vol. B, Part1, (1997).
- [3] Ball S. and Hirschfeld, J.W.P., "Bounds on (n, r)-arcs and their application to linear codes", J. Geom, 1-11, (2005).
- [4] Barlotti A., "Su {k; n}-archi di un piano lineare finito", Boll. Un. Mat. Ital., 11, 553-556, (1956).
- [5] Bierbrauer J., "(k, n)-arcs of maximal size in the plane of order 8", unpublished manuscript (1988).
- [6] Bortun David, "Introduction to modern abstract algebraic", Addison Wesley, University of New Hampshire, London, (1967).
- [7] Bose R. C., "Mathematical theory of the symmetrical factorial design", Sankyha, 8, 107-166, (1947).
- [8] Coolsaet K., Sticker H., "A full classification of the complete k-arcs in PG(2, 27) ", Ghent University, Belgium, (2009).
- [9] Daskalov R.N., "On the maximum size of some (k,r) –arcs in PG(2, q)", University of Gabrovo, Bulgaria, (2007).
- [10] Falih S.A. "On complete (k,4)-arcs in projective plane of order eight", M. Sc. thesis, University of Basrah, Iraq, (2009).
- [11] Fralergh J.B., "A first course in abstract algebra", Seventh Edition, Addison Wesley, North-Holland, (2003).
- [12] Haimulin J.N. "Some properties of {k, n}_q arcs in Galois planes", Soviet Math. Dokl. 7,1100-1103, (1966).
- [13] Hameed F. K." (k,n)-arcs in the projective plane PG(2,q) ", M. Sc. thesis, University of Sussex, UK,(1984).
- [14] Hirschfeld J. W. P., "Cyclic projectivity in PG(n,q)", Teovie combinatoric, volume I, Accad.Naz. dei Linei, 201-211, (1979).
- [15] Hirschfeld J. W. P., "Projective Geometries over Finite Fields", Second Edition, Oxford University Press, Oxford, xiv + 555 pp., (1998).
- [16] Hirschfeld J.W.P., "Maximum sets in a finite projective space", 19th June (2008).
- [17] Hirschfeld ,J.W.P. and Storme ,L., "The packing problem in statistics, coding theory and finite projective spaces", update 2001 in: Finite Geometries, Developments in Mathematics 3, Kluwer, 201–246, (2001).
- [28] Ibrahim M. A. "Classification of (k,4)-arcs and (k,3)-arcs in the projective plane of order seven", M. Sc. thesis, University of Basrah, Iraq, (2003).
- [19] Khalid M. Sh. "Classification of complete (k,4)-arcs in the projective plane of order eleven", M. Sc. thesis, University of Basrah, Iraq, (2010).
- [20] Sadeh A.R., "The classification of k-arcs and cubic surfaces with twenty seven lines over the field of eleven elements", M. Sc. thesis, University of Sussex ; UK, (1984).
- [21] Segre B., "Sulle ovali nei piani lineari finiti", Atti Accad. Naz. Lincei Rend, 17, 1-2, (1954).
- [22] Segre B., "Ovals in a finite projective plane", Canad. J. Math., 7, 414-416, (1955).
- [23] Segre B., "Sui k-archi nei piani finiti di caratteristica due", Rev. Math. Pures Appl., 2, 289-300, (1957).
- [24] Singer J., "A theorem in finite projective geometry and some applications to number theory" Trans. Amer. Math. Soc. 43, 377-385, (1938).