Synthesis, characterization, anticancer activity, and molecular docking of novel maleimide-succinimide derivatives

Dakhil Z. Mutlaq, Ali A.A. Al-Shawi, Rafid H. Al-Asadi

Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

Correspondence to Ali A.A. Al-Shawi, PhD, Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah (Zip Code 61), Iraq. Tel: 009647702687295; e-mail: ali.abdulhussein@uobasrah.edu.ig

Received: 30 May 2021 Revised: 30 August 2021 Accepted: 5 November 2021 Published: 24 December 2021

Egyptian Pharmaceutical Journal 2021, 20:303-312

Background and objective

A wide range of maleimide heterobifunctional reagents are used for the preparation of targeted therapeutics. Succinimide derivatives are important compounds found in a variety of natural products that exhibit remarkable biological and pharmaceutical activity. The creation of new maleimide-succinimide derivatives will increase the importance and medicinal applications of these groups.

Materials and methods

The reaction of bismaleimide (1-2) with phenylhydrazide and 4methylbenzohydrazide resulted in the formation of N'-[1-(4-[2,5-dioxo-2,5dihydro-1H-pyrrol-1-yl] phenyl)-2,5-dioxopyrrolidin-3-yl] benzohydrazide (3), N'-[1-(4-[2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl] phenyl)-2,5-dioxopyrrolidin-3-yl]-4methylbenzohydrazide (4), N'-[1-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-[1,1'biphenyl]-4-yl)-2,5-dioxopyrrolidin-3-yl] benzohydrazide (5), and N'-[1-(4-(2,5dioxo-2,5-dihydro-1H-pyrrol-1-yl)-[1,1'- biphenyl]-4-yl)-2,5-dioxopyrrolidin-3-yl]-4methylbenzohydrazide (6). The interaction of potential compounds with AKT1 and CDK2 proteins was performed using molecular docking to target the hydrogen bond and amino acid residues.

Results

The new compounds were characterized using Fourier-transform infrared spectroscopy,¹H-NMR,¹³C-NMR spectroscopy, and mass spectrometry. The MTT assay was used to test cell viability against breast cancer cells (MCF-7). The cytotoxicity results revealed that compounds 3 and 5 were more toxic than compounds 4 and 6. Molecular docking of compounds that interacted with AKT1 and CDK2 showed affinity energy of -16.112 and -21.342 kcal/mol for compound 3, while -22.398 and -19.940 kcal/mol for compound 5. The root-mean-square deviation values for CDK2 and AKT1 were 2.27 and 1.61 for compound 3, respectively, and 1.93 and 1.90 for compound 5.

Conclusion

Toxicity and molecular docking studies revealed that compounds 3 and 5 could be developed as anticancer agents against breast cancer, indicating that further research is warranted.

Keywords:

bismaleimide, breast cancer, cell viability, docking studies, maleimide-succinimide derivatives

Egypt Pharmaceut J 20:303-312 © 2021 Egyptian Pharmaceutical Journal 1687-4315

Introduction

Maleimides are a kind of heterocyclic molecule that may be found in natural goods [1] and are employed in chemical and pharmaceutical chemistry. These uses are mostly based on two common maleimide reactions: (a) Michael addition with amines [2,3], alcohols [4], or thiols [5,6]; (b) addition of the cyclopentadiene [7] or furan [8,9] moiety to the Diels-Alder reaction. Michael donors (aliphatic or aromatic amines, amides, carbamates, or azides) interact with electron-deficient alkene molecules (Michael acceptors) such as α , β -unsaturated esters, vinyl ketones, vinyl sulfones, acrylamides, acrylonitrile, and vinylphosphonates [10,11]. Hence, bismaleimides are a class of compounds connected to two groups of maleimides by nitrogen atoms via a bonder [12,13].

Maleimides have been extensively studied in such reactions because, due to the presence of an activated double bond, they can be easily converted to substituted succinimides [14]. In addition, the compounds from the corresponding saturated model bis-succinimides were synthesized. Many medically significant medicines, such as phensuximide, ethosuximide, methsuximide, and andrimias, utilize the succinimide molecule as a precursor [15,16]. Some derivatives had interesting biological activities, such as analgesic [17], anticancer [18], antisplasmodic

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.