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ABSTRACT
Consumers demand for functional foods and nutraceutical is increasing 
owing to their health endorsing properties. Natural bioactive compounds 
are getting attention due to their health promoting potential. In addition, the 
extraction of these bioactive compounds is a significant industrial and tech-
nological perspectives. These bioactive moieties can be extracted via various 
conventional and modern methods. For instance; solid-phase extraction, 
solid-phase micro-extraction, and liquid-liquid extraction are considered as 
traditional/conventional methods. In contrast, modern eco-innovative meth-
ods for extraction such as ultrasound-assisted extraction (UAE), microwave- 
assisted extraction (MAE), pulsed electric field (PEF), supercritical fluid extrac-
tion (SFE), instant controlled pressure drop (DIC), etc. are more economical 
and environment friendly. Additionally, these are ever-increasing demands 
of energy-efficient methods for the recovery of valuable compounds. 
Moreover, these methods produced less wastewater and hazardous sub-
stances. Conclusively, this review highlighted the conventional and modern 
extraction technologies and the role of these eco-innovative technologies in 
achieving the goal of a sustainable food system.
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Introduction

Bioactive compounds especially polyphenols and non-starch polysaccharides are abundantly present 
in fruits, nuts, roots, vegetables, herbs, and spices.[1] Owing to the importance of bioactive compounds, 
manufacturing sector is looking for eco-innovative technologies to minimize the loss of bioactive 
compounds.[2] These compounds have anti-oxidants, anti-cancer, anti-inflammatory, anti-diabetic, 
anti-lipidemic and anti-depressive properties.[1,3] Many researchers have been extracted bioactive 
compounds using different modern methods. Various extraction methods are used to extract/recover 
these valuable bioactive compounds from different sources. Choice of extraction method depends on 
the type, preparation procedure and energy consumption.[4] It must be chosen to minimize loss and 
energy consumption and maximum extraction yield of desired compounds. Many researchers, 
including Koçak and Pazir[5] reported that almost 60% of the total time is consumed in the sample 
preparation step. The final analysis, i.e., the spectroscopic or chromatographic technique, needs 
approximately 7% of the total time.[6] Failure to choose a proper extraction method could result in 
loss of the desired compound in addition to this misinterpretation of the conclusion or results. 
Current review highlighted various types of extraction techniques which can be differentiated as 
traditional and eco-friendly. Many traditional techniques such as solid-liquid extraction (SLE), liquid- 
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liquid extraction (LLE), and solid-phase microextraction (SPME) are used for extraction purposes. 
These traditional methods are old and have many drawbacks like loss of nutrients, low extraction yield 
& long extraction time, higher energy consumption and not economical. In previous literature, 
Sasidharan et al.[6] described many extraction techniques and also discussed their advantages such 
as less solvent utilization, less time requirement, energy-efficient, and higher extraction yield. In 
modern era, eco-friendly and innovative techniques are mostly used to extract bioactive compounds 
from different natural sources. These extraction techniques are ultrasound-assisted extraction (UAE), 
supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), pressurized liquid extrac-
tion (PLE), membrane ultra-filtration extraction, instant controlled pressure drop (DIC) extraction, 
surfactant-mediated extraction and enzymatic extraction having high yield and efficiency. 
Furthermore, ultrasound, microwave and high-pressure technologies have been used in different 
food industries for the shelf-life extension.[7]

Major food bioactive compounds

The major bioactive components and their sources are listed below:
Non-starch Polysaccharides i.e. cellulose, hemicellulose naturally present in cereal and cereal by- 

products.[8] Inulin is abundantly present in chicory roots, Jerusalem artichokes, nectarine, seaweed, 
sugar cane bagasse, cassava waste, rice bran, rice straw, apple pomace etc.[9] Polyphenols are naturally 
present in fruits, vegetables, teas, and spices. Tocopherols and carotenoids (vitamin A or β-carotene) 
are abundant in leafy green vegetables, Glucosinolates sulforaphane from broccoli, Capsaicinoids 
capsaicin present in peppers, alkaloids such as caffeine is present in coffee beans. Terpenoids limonene 
are mostly present in citrus fruits.[10] Organosulfur compounds are present in allium vegetables such 
as garlic and onions.[11] Triterpenes including squalene obtained from olive oil. Phytosterols are 
present in plant cell membranes. Soya bean, nuts, seeds, vegetable oil, and margarine are rich sources 
of phytosterols. Polyunsaturated fatty acids (PUFAs) are present in many seafoods. Bioactive peptides, 
including carnosine present in red meat.[12]

Role of food bioactive compounds in human health

Major sources of bioactive compounds are plants, fruits & vegetables, cereals, meat and seafood. The 
bioactive compounds such as polysaccharides, polyphenols, carotenoids, alkaloids, etc. are abundantly 
present in above mentioned natural sources. Others including triterpenes and triterpenoids (a func-
tional form of triterpenes) include about 18 different subclasses, and among these, saponins and 
squalene derivatives are mainly recognized. Ursane, lupine and oleanane are considered as most 
effective anti-cancer compounds.[13] Additionally, Saeed et al.[1] described that non-starch polysac-
charides especially arabinoxylans act as anti-inflammatory, anti-oxidant and anti-diabetic agents.

Phytosterols are major bioactive component of plant cells.[2] In various researches, the 
presence of phytosterols including stigmasterol, campesterol, and sitosterol in the diet help in 
lowering the effect of low-density lipoprotein cholesterol in the body.[14] Isoprenoid is another 
name for terpenoids, comprises a large variety of compounds and thus belongs to the biggest 
group of secondary metabolites. Terpenoids are specifically present in rich amounts in various 
fruits and plants, and their volatility at room temperature is responsible for their specific aroma 
i.e. citrus fruits contain limonene. Tocopherols (such as α and γ tocopherols) and carotenoids (i. 
e. β- carotene) are providers of essential nutrients such as vitamin A and E. These are thus 
referred to as bioactive food compounds.[15]

Caffeine, mainly obtained from tea and coffee, is also among the most commonly consumed alkaloid 
in the human diet. Glucosinolates are mainly present in cruciferous plants, typically a part of the 
Mediterranean diet that possesses specific odor and taste such as cauliflower, broccoli, brussels sprouts, 
and cabbage.[16] These compounds are also proved to be responsible for many healthy activities in the 
body, such as anti-inflammatory and chemo-preventive effects. Sulforaphane is the compound present 
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in broccoli and acts as a preferable anti-cancerous compound. Cellulose gives the structural framework 
to plant cells and glycogen and starch that provide energy reserves to animal and plant cells are the most 
common polysaccharides related to human health and thus termed bioactive food compounds.[17] 

Dietary fiber inulin and its derivate fructooligosaccharides are depicted to contribute toward home-
ostasis of the microbiota symbiosis of the human gut and thus positively effect on human health, infant 
nutrition, lipid metabolism, and blood sugar level as well as reduces the risk of colon cancer and 
obesity.[9,17] Polyunsaturated fatty acids such as docosahexaenoic acid, linoleic acid, and eicosapentae-
noic acid are significant food bioactive compounds and contribute to beneficial health effects.[18] 

Overconsumption of these bioactive compounds may stimulate deterioration caused by oxidative stress 
mainly to the walls of blood vessels and can lead to a lethal cardiovascular disorder.[19] Polyunsaturated 
fatty acids must be taken by diet because mammals cannot synthesize them. Common polyunsaturated 
fatty acids are oils and seeds of soybean, flax, sunflower, corn, walnuts, and fish, including herring, 
salmon, and mackerel. Peptides are major bioactive compounds and are naturally present in meat 
including chicken, pork, beef, fish and various seafood. These valuable compounds are also responsible 
for preventing or reducing the risk of many diseases such as metabolic syndrome, functional gut 
environment, blood pressure homeostasis, and muscle wasting disorder (i.e., sarcopenia).[20] 

Polyphenols are bioactive compounds present in a variety of medicinal plants. The health benefits of 
polyphenols are determined by the amount consumed as well as their bioavailability. Therefore, 
polyphenols have been identified in the treatment of cardiovascular disease, osteoporosis, neurodegen-
erative illness, cancer, and diabetes mellitus, according to recent investigations.[21]

Bioaccessibility and bioavailability of bioactive compounds

In a regular diet, polyphenol exists in various components forms. For maintenance of a healthy intake 
of these polyphenols is fundamental. Several complex processes are involved in the metabolism, 
distribution, and transport of these compounds to the target. So these processes can affect the structure 
and bioactivities of these compounds.[22] The following two factors affect the absorption of polyphenol 
in gastrointestinal.

Bioaccessibility

Bioavailability is the number of compounds bioactive polyphenols that can undergo and are available 
for metabolization processes. The interaction of polyphenol with food components like carbohydrates, 
lipids, proteins, etc., may influence the metabolization of these bio-active polyphenols.[23]

Bioavailability

Bioavailability refers to the ability of this bioactive polyphenol to be metabolized and distributed 
throughout the whole body. Generally, polyphenol has poor bioavailability. Many factors limit the 
polyphenols’ metabolism, including the complexity of structure, solubility, the interaction between 
molecules, and the degree of polymerization (DOP). Mc-Clements et al.[24] illustrated bioavailability 
(BA) of phytochemicals depend upon four basic factors:

BA ¼ S� B� T� A

BA: Bioavailability
S: Stability of bioactive compounds at the time of ingestion,
B: Bioaccessibility of bioactive compounds
T: Fractions of bioactive compounds that remain biologically active form after passage through the 

gastro intestinal tract to the absorption site
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A: Fraction of bioaccessible bioactive compounds that are actually absorbed across the 
epithelium cells

It is estimated that between 5 to 10% of bioactive compounds from the food matrix are absorbed and 
transported to the liver.[16] Change in pH (gastric 2 pH) to (intestinal 6–7.5 pH) may influence flavonoid 
bio-accessibility. Therefore it is very obvious that polyphenols ingestion and they are in vivo bioactivities 
is a complex phenomenon.[25] To overcome the hindrance of polyphenols metabolism and enhance their 
absorption, several strategies have been developed, such as the application of food processing conditions, 
utilization of food matrices to protect polyphenols against degradation, and modified delivery system for 
the transportation of phenolic compounds to targeted cells.[26] Moreover, the beneficial health effects of 
bioactive compounds are dependent on their bioaccessibility and bioavailability.

Factors affect the extraction of bioactive compounds

Some of the factors which control mass transfer as well as solubility of polyphenol include pressure, 
the particle size of the sample, temperature, pH of the solution, ultrasonic power and frequency in 
case of (UAE), microwave power in case of (MAE), and electric field strength as well as pulse 
duration in case of (PEF), etc. Many experiments have been done to evaluate the impacts of these 
important factors. To evaluate the best conditions for maximum recovery, one of the best applica-
tions is the response surface method. It was reported by Azmir et al.[4] that remarkable efforts made 
on modern processes could be utilized by considering research dedicated to these aspects. The 
selection of solvent for the extraction of polyphenols from different sources, especially plants, before 
choosing an extraction process is one of the most important considerations in the selection of 
a suitable solvent. Bart and Pilz[27] reported that the selection of solvent depends upon the nature of 
specific bioactive compounds. Altemimi et al.[28] reported that the chosen solvent must have the 
same polarity as the desired solute to be fully dissolved in extraction methods. Due to this fact, 
different types of extraction methods are required for different solutes, and their chemical nature can 
be polar, nonpolar, and even thermally labile.[29] To extract hydrophilic bioactive compounds, polar 
solvents (ethanol, methanol, or ethyl acetate).

On the other hand, for the isolation of phenolic compounds, polar solvents having lower boiling 
points, for example, ethanol, acetone, methanol, and a mixture of acetone and water, would be the best 
choice. Bleakley et al.[29] reported that mainly products that require water extraction include hydro-
phobic compounds, metals, water-soluble amino acids, peptides, sugars, ions, nucleotides, etc. 
Furthermore, it was reported by Tomsone et al.[30] and Bouchard et al.[31] that products that require 
ethanol extraction consist of very polar, basic, acidic and neutral compounds. Many researchers 
reported that ethyl acetate extraction is needed for moderately hydrophobic products, low as well 
moderately polar, neutral etc.[32]

Different traditional and novel extraction methods used to extract bioactive compounds from 
natural sources are shown in Figure 1.

Traditional extraction methods

Liquid-liquid extraction

It is also well known as solvent extraction, which comprises two immiscible liquid phases. One of the two 
phases is aqueous, while the second one is the organic phase. Successful extraction depends upon the 
dissolution of the analytic in the organic phase. Along with a plant or other material from which desired 
compound wants to be extracted, the organic and aqueous phases are mixed in a separator funnel. Two 
distinct layers of liquid as a result of shaking are generated. According to Wells,[33] liquid-liquid 
extraction of the targeted analytic compound, the analyte distributes itself between the two immiscible 
liquids according to the relative solubility in each solvent.[34] The liquid-liquid extraction technique is 
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ideal for temperature-sensitive substances and an azeotropic mixture; no need to distillation process.[35] 

Bidari et al.[36] reported that this technique has many drawbacks, such as the large volume of organic 
solvents required, emulsion formation, difficulties related to automation, labor-intensive nature, etc.

Solid-phase extraction (SPE)

In this extraction process from a moving liquid, thorough removal of the chemical composition is 
ensured. The chemical constituent is retained on the solid sorbent, and finally, the desired constituent 
is recovered from the sorbent by the elution.[37] The important requirement for successful solid-phase 
extraction is that a reproducible and maximum quantity of analytical solute must be taken by solid 
extraction. Solutes must be eluted completely from solid particles. According to Poole,[38] the short-
coming of solid-phase extraction is a limitation in the capability of sorbent sorption in addition to this 
disruption of the analyte. To get rid of small particle solid phase extraction need a filtration process. 
Solid-phase extraction is a more beneficial technique than liquid-liquid extraction because it make 
effective use of solvent and economical.[39]

Figure 1. Traditional/Conventional and novel extraction methods used to extract bioactive compounds from different natural 
sources.
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Solid-phase microextraction (SPME)

A simple extraction method that involves the dispersion of solid phase in a little amount of extracting 
phase and for a precise period exposure to sample is done. It is reported by Merkle et al.[40] two 
fundamental steps for SPME for a precise duration, outwardly coated fibers or sorbent are exposed to 
the target substance or sample, and the sorbent is moved for gas chromatography or HPLC. According 
to Merkle et al.[40] the SPME methods have many benefits due to their simplicity and the possibility of 
automation. Further, SPME is an effective method for analyzing bioactive compounds occurring in 
very low concentrations in various foods. It can reduce troubles related to solvent clearance. Wells,[33] 

enumerated that SPME facilitates distinctive research, such as extraction from very small samples (i.e., 
single cells).

Extraction of Phenolic compounds by utilizing conventional methods, such as maceration, 
infusion, digestion, and Soxhlet, has been done for many years.[41] Most important among these 
methods are maceration as well as Soxhlet. Caldas et al.[42] used conventional and non-conventional 
methods for the recovery of different phenolic compounds from the grape skin. Alara et al.[43] 

utilized the leaves of vernonia cinerea and peel of feijoa, and also determined the total phenolic 
compound ranges between 48.6 − 71 mg of GAE (gallic acid equivalent) per gram. In soxhlet 
extraction and maceration, a high solvent to feed ratio approximately higher than 20 is usually used. 
In the case of maceration in a specific solvent for a specific period, raw material is extracted. For 
maceration, little or no agitation is required. Maceration can be done at a lower temperature as 
compared to soxhlet extraction. It was reported by Ji et al.[44] that utilizing maceration, phenolic 
compounds were extracted from oil mixture at ambient temperature and optimal conditions. So 
maceration is beneficial because of low-temperature requirements and low-cost methods. In addi-
tion to this required equipment is easy to use. But maceration needs a longer time for extraction and 
gives lesser yields.

Novel techniques

Ultrasound-assisted extraction (UAE)

Ultrasound is one of the advanced technologies, based on the mechanism of sound frequency ranging 
between 18 to 100 kHz, which is higher than the hearing frequency of the human ear. It is reported by 
Jambrak et al.[45] Chemat et al.[46] that by enhancing the mass transfer and bursting the cellular matrix, 
Ultrasound releases large amounts of targeted compounds and enhances the yield for extraction. In 
ultrasound extraction method, acoustic cavitation activity occurs, in which microbubbles form in the 
liquid phase grow when the mixture is exposed to the ultrasound. Before collapsing, it oscillates 
rapidly owing to the changes in pressure. According to Alarcon-Rojo et al.[47] high-power ultrasound 
is the type of ultrasonication in which intensities are excessive over 1 W.cm-2 (range from 10 to 
1000 W.cm-2). Power ultrasound consists of low frequency (20 kHz) and high frequency (100 kHz), 
can produce cavitation and is excessively used in food industries.

In contact with the subject plant material, ultrasound waves modify both (the cavitation effect and 
physicochemical properties) to stimulate extractable compounds’ liberation and modify the mass 
transport by disrupting the cell walls.[48] Ultrasounds are used successively in the area of plant 
extraction. Many food compounds such as plant and animal tissues (antioxidants, pigments, organic 
compounds, and aromas) are withdrawn and examined from various metrics. Ultrasound is 
a promising choice, particularly when combined with other alternatives among the various available 
combinations. Together with other technologies, ultrasound can be used for rapid heat and mass 
transfer in the extraction field.

Sumere et al.[49] reported that the combination of ultrasound and PLE for the phenolic compound 
extraction from pomegranate peels is possible. In these technologies, the extraction of bioactive 
compounds was improved. Ultrasound improved extraction yields primarily when large particles 
were used, varying in temperature (70 to 80°C) and ultrasound power (480 and 640 W), respectively. 
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In combination with PLE, the UAE permitted water usage as solvent extraction by reducing the 
extraction time. Both SFE and ultrasound-assisted methods have been widely studied. The treatment 
of agave bagasse antioxidants under the effect of ultrasound on SFE was evaluated by Santos-Zea 
et al.,[50] who observed an increase in the antioxidants yield recovery when several ultrasound 
transducers were used. Ultrasound and SFE together cause a rise in the extraction of 1.7-folds 
(antioxidant) and three-folds (saponin) and also showed that the geometry of the transducer would 
greatly boost the intensification impact of ultrasound in SFE processes. A desirable approach to the 
processing of various good quality products consisting of the same matrices (phenolic compounds and 
essential oils), is the combination of different extraction methods. In addition to getting phenolic 
compounds, these integrated methods provide interesting alternatives for deriving compounds 
(bioactive compounds) from natural sources. Bioactive compounds extraction from the peppers was 
the method reported by de-Aguiar et al. .[51] Firstly, to remove the nonpolar fraction, SFE was used, 
and in the next step, SFE extracted phenolic compounds (biquinho pepper source) were recovered 
by PLE.

Instant controlled pressure drop technology

According to the Regulated Pressure-Drop procedure (Détente instantannée contrôlée in French, 
DIC) in combination with the hydro-thermo-mechanical, the auto-vaporization thermodynamics 
and instantaneity are core-based concepts that cause the evolution of organic products (foods, 
cosmetic and pharmaceutical biopolymers). There are four key components of DIC equipment, 
which include (a) a Regulated pressure-drop valve in the vacuum pump extraction vessel to 
ensure the steam pressure release is fast and controlled; (b) A vacuum machine (vacuum pump 
and a tank) more significant than that of the vessel to be treated with a capacity 50 times; (c) an 
extraction vessel, a part of it called heating jacket autoclave is the portion where the treated 
sample is placed; (d) An extract collection trap for condensate recovery; the tank pressure is 
maintained at about 5 kPa by a water ring pump. According to Mounir et al.[52] instant 
controlled pressure drop (DIC) treatment tends to be an excellent alternative to extending heat- 
sensitive food granule powder such as apples and onions. The study of Mkaouar et al.[53] 

demonstrated the polyphenols extraction from olive leaves extracts to be rich in bioactive 
compounds. Retained bioactive molecules and permitting nutritional value are possible by DIC 
coupled to hot air drying, at optimum DIC conditions with 0.35 MPa pressure for 10 seconds. 
Another study by Alonzo-Macías et al.,[54] reported that different methods were used for the 
drying of strawberries. However, pretreatment of DIC is considered to be way much better than 
other classical drying methods in the extraction and texturization of vegetable materials. Some of 
the fragile fruits need to be dry, for this purpose, drying is required for commonly used methods 
(classical hot air drying and freeze-drying) seem to be less effective than DIC. Furthermore, 
Alonzo-Macías et al.[54] also reported that swell-drying treated strawberries have higher phenolic 
compounds, total anthocyanins and flavonoids as compared with the other dying methods.

Pulsed electric field (PEF)

PEF (electroporation or electro-permeabilization) is a non-thermal mechanism in which an external 
electrical field for a brief period (nanoseconds/ milliseconds) is applied to a bio cell.[55] Even though 
the membrane permeabilization mechanism is not that well known it is recognized that electropora-
tion consists of four distinct phases, which include; (i) Post-treatment stage of PEF with intracellular 
compound leakage, the input of extracellular compounds (as irreversible electroporation or pore 
resealing, and membrane integrity recovery, reversible electroporation). (ii) Modification of the size or 
the number of the formed pores (During the treatment of PEF), (iii) Enhance the trans-membrane 
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probability of the cytoplasmic membrane by applying the external electric field that causes the 
charging of the cell membrane, (iv) If a threshold of trans-membrane possibility extends to 0.2– 
1.0 V, the formation of the small metastable hydrophilic pores.

According to the study of Toepfl et al.[56] PEF unlocks a broad range of applications in food 
processing due to the mentioned cell membrane of enlarged permeability phenomenon or 
electroporation interference. The application can be classified depending on the magnitude 
(external electric field) and (specific energy field). In this area, PEF has become very common 
because it enables the solid-liquid extraction critical speed. According to Barba et al.,[57] when 
PEF is applied, extraction technologies in different agro-industries become more selective and less 
energy-consuming. The application of PEF has excellent potential to substitute or regulate 
conventional thermal technology (e.g., extraction of sugar from sugar beets). Compounds found 
in plant cells, for example, colorants which include carotenoids and chlorophylls, sucrose- 
containing polyphenols, and other secondary metabolites through PEF combine methods, can 
be accelerated.[58] Results from PEF Pretreatment-assisted extraction indicate a hike in sucrose 
concentration, better juice filterability, and a drop in colloidal impurity concentration and 
coloration.[59] Before the maceration fermentation stage, PEF pretreatment can be used to 
produce wine-making, polyphenol extraction is optimized, and the resulting wine has distinct 
organoleptic characteristics.[60] Traditional wine-making residues are subject to the same pre-
treatment increase in anthocyanin (colorant extraction) selectivity is also spotted. Furthermore, 
yields are significantly increased when mechanical expressions are applied after moderate PEF 
treatments, fruit juices, and vegetable oils. The electrical treatment in the oil does not cause bad 
tastes or flavor and yield slightly cloudy, substantially odorous, and more polyphenol components 
in apple juice.[61,62]

Enzyme-assisted extraction (EAE)

Enzyme-assisted Extraction (EAE) is another latest technique in which to improve the recovery 
technique, enzymes are added to the extraction medium.[63] The major enzyme function is to 
weaken or squishy the cell walls when extracted from plant materials. This provide access to the 
solvent for the active ingredients. Bound phytochemicals (inside cells or on cell walls) are hard to 
extract with normal solvent extraction. Enzymes digested the surrounding materials that can help let 
out these components distinctively. However, EAE is considered favorable for the polyphenols 
bound to protein or carbohydrate extraction (inside or on cell walls). Lipase, α-amylase, pectinase, 
amyloglucosidase, laccase and protease are commonly used enzymes for enzymatic extraction.[64] 

The size of the particle and the enzyme proportion to the sample are core control factors for 
maximizing the polyphenol yield. In the enzymatic hydrolysis extraction method, a sample (enzyme 
and solvent) mixture is incubated at low temperatures (35–50°C), together with adjusted pH. 
Hydrolysis is stopped when deactivating enzymes at a temperature of 80–90°C, and less energy is 
required to prevent degradation in low-temperature extraction. The EAE is famous for the property 
that it’s an environmentally friendly process. The enzyme works best in an acidic medium, and 
water is used being organic solvents or as a chemical alternative. Prolonged extraction time (3 hours 
to 48 hours) is the main drawback of EAE.[65]

Pressurized liquid extraction (PLE)

To deal with high-temperature resistance polyphenols, high-pressure extraction methods are effective. 
Additionally, these methods boost the polyphenol’s recovery. Pressurized liquid extraction (PLE) 
depends upon the principle of the ratio of boiling point temperature proportional to the pressure. 
When the pressure of the extraction system is increased before raising the temperature, the solution 
remains in a liquid state. The temperature of the PLE varies between 50°C and 200°C.[66,67] However, 
the maximum extraction temperature depends both on the solvent and on the polyphenols. The 
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chemical solubility (polyphenols in liquids) in PLE is increased by several researchers.[68,69] At an 
elevated temperature, higher concentrations of polyphenols are recovered. Since a liquid’s sensible 
heat is less than the vaporization heat, the process is energy saving.us, to increase temperature, less 
heat is needed than to produce vapor.[67] In PLE, solvents are primarily water and aqueous alcohols. 
Hence a large part of solvents are water, solvents are low cost, nontoxic, and environmentally friendly. 
The extraction equipment is essential, primarily the extractor and the associated setup.

Principle supercritical fluids (SCF)

It is one of the most advanced techniques that can be used to substitute organic solvents used in several 
processes. SCF’s specificity depends on their physical features, which can be modulated, beyond their 
critical values, by increasing the temperature or/and pressure parameters. Compared to traditional 
methods, SCF has a liquid-like density that induces a liquid-like solvating power. Many main 
advantages arise from the use of SCF. By treating (i.e., applying heat and pressure) beyond its critical 
pressure (Pc) and critical temperature (Tc) values, a fluid is considered to be in its critical state.[70] 

Development of solvent-free extract is obtained in case of minimal or no use of solvents (when using 
co-solvents). In this process, the depressurization step allows the number of unit operations to be 
reduced, requiring no purification or separation procedures. SCFs are adapted for the processing of 
heat-sensitive biomolecules by operating the entire mechanism at reduced temperatures. To enhance 
the extraction efficiency, supercritical fluids with combined mechanisms have been examined.[71]

A method that combines pressing and using supercritical gases (Gas Assisted Mechanical 
Expression) has been recently estimated to enhance extraction yield. This technique has been widely 
applied to different seeds (cocoa, linseeds, sesame).[72] Bandarra et al.[73] have observed that dense 
gases or supercritical fluid greatly favored pressing, reduced mechanical pressure of approximately 10 
MPa is needed to enhance the yield of oil extracted from 10 to 20. Modern filtration technologies in 
coupling with extraction technique i.e.SC-CO2 have been evaluated to purify compounds having less 
molecular weight, such as 1500 g mol−1. This technique has been applied to purify beta carotene 
extracted from carrot oil and triglycerides from fish oil. Temelli[74] illustrated that development is still 
going on in the combination of membrane and SCF technologies for refining edible oils.

Microwave extraction

Microwave heating causes the electromagnetic waves to dissipate in an irradiated medium, and this 
dissipation is based on the dielectric properties and electric field intensity averaged by local time. The 
essential distinction between heating mechanisms i.e. conventional and microwave is the transfer of 
heat to the medium from that of the heating system occurs in the case of the conventional type of 
heating, while the dissipation of heat in irradiated medium occurs in the case of microwave heating.[75] 

Transfer of heat in microwave heating mechanism, unlike conventional heating, is restricted to the 
thermal convection or conduction currents. Thus it is suggested from above that a quick temperature 
rise can be attained. In addition, only the rate at which power is applied and heat is lost is based on the 
maximum temperature values achieved by heating the substance through microwaves. Ganzler et al.[76] 

illustrated how microwave energy can be used for extracting several food ingredients for the first time 
in 1986. There has been a growing appetite for new products in the last decade. Automation-ready 
processes, along with various other distinctive features such as less time required for extraction and 
minimal use of organic solvents in avoiding contamination and reducing costs required for the 
preparation of samples are highly fascinating. Depending on these priorities, developments in green 
microwave extraction mechanisms have developed two methods i.e. microwave hydrodiffusion and 
gravity (MHG) and microwave-assisted distillation (MAD). Fully reproducible food processes can be 
completed with high reproducibility in just a few seconds or may take minutes also, consuming just 
little energy and the short time usually required for those traditional processes that are to be heated by 
radiation or conduction methods. Reduced production costs, simplified handling, and work-up 
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provided greater final product purity and removed wastewater post-treatment. The resulting benefit 
for food production could include efficient control of heating processes, rapid packaged food heating, 
reduced size of equipment, more yield, and reduced process steps. Compared to conventional 
methods, microwave-assisted extraction has been regarded as a valuable substitute for extracting 
various biologically active substances from raw plants and animals. MAE’s key benefits include: (1) 
increased extraction yield; (2) reduced extraction time. Instead of conventional organic solvents, most 
cases use water as a solvent and simplify the process. Therefore, the MAE method is used to extract 
bioactive compounds from several animals and plant sources.[77]

Various modern extraction methods are also shown in Figure 2.

Combination of modern techniques for effective extraction

MAE and PEF
According to Azmir et al.[4] the idea of pulsed electric field-assisted extraction is to enhance mass 
transfer rates through cell membranes by denaturing its structure. Pulsed electric field and microwave- 
assisted extraction are efficient techniques used to extract biologically active substances from plant 
sources. Because of their short processing time, both techniques consume a low level of energy, as 
mentioned earlier. The pulsed electric fields can run in batch or continuous phases based on various 
treatment chamber configuration modes. While microwave-assisted extraction is currently 
intermittent.[78] Individual unique specifications typically determine the instruments used in PEF- 
assisted extraction. MAE usually uses environmentally friendly and inexpensive sources of solvent 
(water) for extraction. However, PEF extraction methods usually use organic solvents, such as 
ethanol.[79] Consequently, MAE equipment is cheaper and simpler to operate than PEF.

MAE and SFE
Supercritical fluid extraction technique uses solvent i.e. supercritical fluid, to extract biologically active 
substances from plant sources. Supercritical fluid extraction and microwave-assisted extraction are 
preferable techniques for being efficient and environmentally friendly for extraction purposes.[80] 

MAE has a comparatively lower operating temperature than SFE. Equipment coupled with the high- 
pressure technique that is expensive and a safety hazard to operating personnel is needed by the SFE 
technique. It is possible to recycle and reuse supercritical fluids, which would reduce waste generation. 
The choice of extraction solvent for MAE is more detailed compared to SFE. Extraction solvent can be 
chosen based on the polarity of several targeted compounds.

Figure 2. Modern extraction techniques.
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EAE and MAE
Enzyme-assisted extraction is mainly concerned with applications of various enzymes capable of 
catalyzing reactions of exquisite specificity, and region selectivity.[81] MAE, UAE, and supercritical 
fluid extraction are those extraction techniques that have been applied to enzyme pretreatment.[82] 

The new powerful extraction technologies are both EAE and MAE. The solvent consumption and 
reduction in extraction reduce the cost of extraction. Enzyme preparations currently available do not 
fully hydrolyze the cell wall of plants, restricting the production of targeted substances. The price of 
microwave-assisted extraction is less since the enzymes are comparatively costly for processing vast 
quantities of raw material than solid reagents. However, the other extraction techniques, like the MAE 
technique, are typically non-specific techniques and can introduce variation. Moreover, microwave- 
assisted extraction is estimated to bear comparatively greater investment costs, including the high 
price of the ball mill installation.[83]

NPC and MAE
Negative pressure cavitation (NPC) is a modern extraction technology that is an environmentally 
friendly and reliable technique. The naturally occurring fluid mechanics phenomenon is called 
Cavitation, divided according to the cause of formation into the hydrodynamic and acoustic 
cavitation.[84] NPC is an economical and energy-effective system that can sustain suitable intensity 
and low-temperature ranges constantly. Negative pressure cavitation and microwave-assisted extrac-
tion technologies made it possible to efficiently save time and energy requirements and ensure effective 
performance to extract several biologically active substances from plant sources. Both these techniques 
can be effectively used to remove temperature-sensitive compounds that bear less operating tempera-
tures. In general, water is mainly used in the MAE technique instead of a conventional organic solvent. 
Solvents that are organic such as ethanol are still required in negative pressure cavitation extraction 
techniques are highly costly and less environment friendly. In general, the NPC extraction technology 
device is not mature enough. Some researchers utilized their laboratory-designed NPC equipment. 
A negative pressure cavitation instrument is expensive, and thus it is more difficult to manipulate the 
NPC process.[85]

It is not sufficient for all parameters to be expanded at the same time. We should therefore assess the 
necessary factors for the scale-up. EAE, MAE, SFE, negative pressure cavitation (NPC) extraction and 
pulsed electric field (PEF) extraction are efficient techniques for extracting compounds from plant 
materials are enzyme-assisted extraction (EAE), supercritical fluid extraction (SFE).[86] So, the combi-
nation of innovative methods is highly effective for the extraction of bioactive compounds. The effects of 
different extraction techniques on the extraction yield of bioactive compounds are discussed in Table 1.

Potential applications of bioactive compounds

Bioactive compounds are widely used therapeutic agents and have many health endorsing properties. 
These compounds are capable to improve the technical aspects of innovative products. The main 
reason behind its application in the development of natural and health-friendly products which are 
also less aggressive to the environment.[99] Poly-phenols being a bioactive compound are proven to 
behave as a preservative in food products. Like a common synthetic antioxidant (hydroxytoluene 
BHT, 100 ppm), in sheep meat nuggets, 1.5% lychee pericarp extract exhibits clear prevention instead 
of lipid oxidation.[100]

The antibacterial property of polyphenol additives inhibits the growth of certain bacteria (meso-
phyll, Staphylococcus aureus and coliforms) and also prevents the expansion of molds and yeast.[101] 

Furthermore, anthocyanin polyphenols are widely used as coloring additives (additive number-E163) 
in food manufacturing industries. Albuquerque et al.[102] described that natural colorants and stable 
red-purple colors can be used in many food matrices obtained from anthocyanin pigments which are 
extracted from berries.[103] Apart from that, anthocyanin studies in fresh sausages exhibit that it can 
also reduce microbiological degradation and raise antioxidant activity. It can be easily observed from 

INTERNATIONAL JOURNAL OF FOOD PROPERTIES 1225



Ta
bl

e 
1.

 E
ffe

ct
 o

f d
iff

er
en

t 
ex

tr
ac

tio
n 

te
ch

ni
qu

es
 o

n 
ex

tr
ac

tio
n 

yi
el

d 
of

 b
io

ac
tiv

e 
co

m
po

un
ds

.

Fo
od

 P
ro

du
ct

s
Ex

tr
ac

tio
n 

Te
ch

ni
qu

es
Pr

oc
es

s 
Co

nd
iti

on
s

Ex
tr

ac
tio

n 
Yi

el
d 

of
 B

io
ac

tiv
e 

Co
m

po
un

ds
Re

fe
re

nc
es

G
re

en
 t

ea
 le

av
es

H
H

P,
 U

AE
H

H
P:

 a
t 

50
00

 b
ar

, s
ol

ve
nt

 e
th

an
ol

 5
0%

 v
/v

 
U

AE
: 2

50
 W

, 
20

–4
0°

C,
 5

0 
H

z 
fo

r 
90

 m
in

ut
es

H
H

P 
po

ly
ph

en
ol

 e
xt

ra
ct

io
n 

yi
el

d 
30

%
, 

U
AE

 p
ol

yp
he

no
l e

xt
ra

ct
io

n 
yi

el
d 

29
%

[8
7]

Se
sa

m
e 

ca
ke

Pu
ls

e 
el

ec
tr

ic
 fi

el
d

13
.3

 k
V/

cm
, 6

0°
C

Pr
ot

ei
n 

co
nt

en
t 

30
.0

–4
0.

0%
[8

8]

Po
ta

to
 p

ee
l

SF
E

65
oC

, e
th

an
ol

 5
%

 v
/v

 a
s 

co
-s

ol
ve

nt
M

ax
im

um
 a

nt
ho

cy
an

in
 y

ie
ld

 o
bt

ai
ne

d 
at

 6
5O

c
[8

9]

Ri
ce

 b
ra

n
M

ic
ro

w
av

e
10

00
 W

, 9
0s

Pr
ot

ei
n 

co
nt

en
t 

29
.4

[9
0]

Re
d 

ca
bb

ag
e

Pu
ls

e 
el

ec
tr

ic
 fi

el
d

1K
v/

cm
 a

nd
 2

0 
pu

ls
es

 fo
r 

30
 m

s
2.

5 
tim

es
 m

or
e 

ph
en

ol
ic

s 
yi

el
de

d 
th

an
 S

FE
 

1.
85

 t
im

es
 m

or
e 

an
th

oc
ya

ni
n 

yi
el

d 
th

an
 S

FE

[9
1]

Ca
rr

ot
SF

E
27

.6
–5

5.
1M

Pa
, 

31
3–

34
3 

K 
5%

 c
an

ol
a 

oi
l c

o-
so

lv
en

t

Be
ta

-c
ar

ot
en

e 
ex

tr
ac

te
d 

17
1.

7–
89

9.
97

 µ
g/

g 
fe

ed

[9
2]

Ra
pe

se
ed

 c
ak

e
H

ig
h 

vo
lta

ge
  

el
ec

tr
ic

al
 d

is
ch

ar
ge

24
0 

kJ
/k

g,
 1

:2
0 

(w
/v

)
Pr

ot
ei

n 
Co

nt
en

t 
ob

ta
in

ed
 1

5.
8 

g/
 1

00
 g

[5
7]

To
m

at
o 

pa
st

e 
w

as
te

H
H

P
Et

ha
no

l 4
5%

-9
5%

vo
l/v

ol
), 

fo
r 

1–
10

 m
in

ut
es

 
10

0–
60

0 
M

Pa
At

 5
00

M
Pa

, 7
5%

 e
th

an
ol

 c
oc

n.
 9

2%
 r

ec
ov

er
y(

hi
gh

es
t)

, 
Ly

co
pe

ne
 o

bt
ai

ne
d

[9
3,

94
] **

*

Pe
ac

h,
 A

pp
le

 p
om

ac
e,

  
so

ur
 C

he
rr

y
SF

E 
an

d 
H

PP
Fo

r 
10

–2
5-

40
 m

in
ut

es
 S

FE
: 2

0–
40

-6
0 

M
Pa

 
H

H
P:

 F
or

 1
0–

25
-4

0 
m

in
ut

es
, 5

0–
12

5-
20

0 
M

Pa

Fo
r 

ch
er

ry
 p

om
ac

e 
op

tim
um

 c
on

di
tio

ns
, H

PP
: p

he
no

lic
s:

 
3.

8 
m

g 
G

AE
/g

 a
t 

60
O

C 
&

17
6-

19
3 

M
Pa

 
SF

E:
 T

ot
al

 p
he

no
lic

s 
0.

6 
m

g/
G

AE
/g

 a
t 

50
–5

9 
M

Pa
 5

0–
 

54
.4

°C

[9
5]

So
yb

ea
n

U
AE

 a
nd

 A
SE

U
AE

: a
t 

op
tim

um
 t

em
p 

fo
r 

15
 m

in
ut

es
 

so
ni

ca
to

r 
ba

th
 

AS
E:

 a
t 

10
0C

 1
00

0p
si

Be
st

 Is
ofl

av
on

es
 y

ie
ld

 o
bt

ai
ne

d 
w

ith
 A

SE
 u

si
ng

 d
im

et
hy

l 
su

lfi
de

; e
th

an
ol

; w
at

er
 (5

;7
5;

25
 v

/v
/v

)

Co
rn

hu
sk

En
zy

m
e-

as
si

st
ed

 e
xt

ra
ct

io
n

Et
ha

no
l c

on
ce

nt
ra

tio
n 

(6
0,

 7
0 

an
d 

80
%

)
M

ax
im

um
 F

la
va

no
id

s 
ob

ta
in

ed
 7

0%
 E

th
an

ol
 

co
nc

en
tr

at
io

n

[9
6]

Sw
ee

t 
po

ta
to

EA
E

Vi
sc

oz
ym

e 
L;

 U
ltr

afl
o 

L;
 F

or
 1

–2
 h

ou
rs

 a
t 

37
°C

, 
al

ph
a-

am
yl

as
e 

co
nc

en
tr

at
io

n 
of

 0
–1

%
,

M
ax

im
um

 F
er

ul
ic

 a
ci

d 
ob

ta
in

ed
 w

ith
 1

%
 U

ltr
afl

o-
L 

an
d 

m
ax

im
um

 v
an

ill
in

, a
n 

ac
id

 o
bt

ai
ne

d 
w

ith
 V

is
co

zy
m

e-
L

[9
7]

M
ai

ze
 b

ra
n

Al
ka

lin
e 

ex
tr

ac
tio

n 
m

et
ho

d
U

se
d 

di
ffe

re
nt

 c
on

ce
nt

ra
tio

ns
 o

f N
aO

H
 a

nd
 

hy
dr

ol
yz

ed
 t

em
pe

ra
tu

re
M

ax
im

um
 F

er
ul

ic
 a

ci
d 

ex
tr

ac
te

d 
at

 0
.5

 M
 N

aO
H

 
co

nc
en

tr
at

io
n 

an
d 

60
°C

 h
yd

ro
ly

ze
d 

te
m

pe
ra

tu
re

.

[9
8]

1226 I. USMAN ET AL.



these examples, that the inevitable use of polyphenols in several food products is value-added to health 
protection by developing functional products and enriching the bioactive compounds.[104] Different 
usage in food industries as bioactive packaging agents, for example, anthocyanin (fish freshness 
indicators) anti-lipidic peroxidation agents (olive oil packing),[105] and tannin edible films (protein- 
based) have an antioxidative and antimicrobial effect on Listeria innocua and Escherichia coli.[106]

Tannin water treatment is an active example of phenolic therapy, which functioned as an absorbent 
that can complex with protein and metal ions to eliminate the water pollutants (surfactants, heavy 
metals, pharmaceutical compounds, and dyes). Considering the sudden changes in consumers’ 
demand for natural and healthy products over synthetic additives, polyphenol compounds have 
become more recognized in food industries. Artificial dyes used in textile industries result in the 
production of wastewater full of harmful chemicals; however, Albuquerque et al.[102] proved that in 
silk and wool fabric dyeing, polyphenols possessed colors (vary from yellow to purple) are used, which 
make it less toxic as compared to other artificial chemicals. Polyphenol dyes (obtained from oak barks) 
when applied to the silk (tussah silk) also provide antimicrobial and UV protection. It was also 
observed that when cotton is dyed with extract of phenolic tea, it exhibits UV protection quality.

Polyphenol compounds (phytochemicals) also prove their worth in the field of cosmetic industry. The 
potentialities of polyphenols play a vital role in anti-aging and skin protection (Vivo ad invitro skin).[101] 

Due to its anti-inflammatory property, it’s highly used in a cream base, and as it blocks solar radiations, it’s 
also used in sunblock creams. During the chemotherapy treatment, epigallocatechin-3-gallate (obtained 
from green tea) promotes hair growth,[102] and a polyphenol-rich balm reduces nail damage.[103]

Hence, bioactive compounds have now been reported to exhibit important health effects including 
antimicrobial, antioxidant, anti-inflammatory, anticancer, antidiabetic and wound healing actions in 
humans.

Role of eco-innovative techniques in sustainable food system

United Nations’ Sustainable Development Goals (SDGs) are the foundation of a sustainable food 
system. To achieve the target of zero hunger, food security, and improving nutrition by 2030, in 2015, 
the SDGs identified the essential modification in the food and agriculture system. A sustainable food 
system involves economic, environmental, and social sustainability. Modern extraction techniques 
play an essential role in maintaining a sustainable food system by recovering valuable bioactive and 
other valuable substances from food by-products. It was reported by Herrero et al.[107] that super-
critical fluids-CO2 could be utilized for the extraction of substances such as flavor, oil, pigments, and 
flavors from plants and other sources. Carotenoids are complicated compounds that are easily 
susceptible to oxidation and be affected by light and heat. Saini and Keum,[77] described that SFE- 
CO2 has more potential to recover carotenoids from plants rather than organic solvents.

Similarly, it was stated that for the extraction of carotenoids using SFC-CO2and ethanol as solvent 
from carrot peels, for the mass yield of 53.1%, the best conditions were 14.3% of ethanol, 58.5°C, 
360 bar and for a mass yield of 86.1% recovery of carotenoids 15.5% ethanol, 59°C, 349 bar were 
observed best. According to Wu et al.[108,109]*** mechanochemical assisted extractions are innovative 
methods were found eco-friendly to recover value-added products or compounds. Sarkis et al.[88] 

reported that pulse electric field (PEF) and high voltage electrical discharge (HVED) can lessen the 
requirement of high temperature as well as the organic solvent. Moreover, pre-treatments were helpful 
from the sesame cake for better extraction of polyphenols, proteins, and lignans. According to Rosello- 
Soto et al.,[110] the ultrasound technique maximizes the extraction yield of bioactive compounds and 
minimizes extraction time. It is stated by Roohinejad et al.[99] that negative pressure cavitation (NPC) 
for extraction of the bioactive compound is a novel technique that is proved to be economical and 
highly efficient. The eco-friendly extraction methods are crucial to extract bioactive compounds and 
are used in sustainable food systems.
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Conclusion

Traditional as well as novel extraction technologies and their combinations are also the limelighted of this 
current article. Novel extraction technologies are used for getting maximum yield in less time, and 
enhancing quality as well as considered as eco-environmentally. Various researchers are now focusing on 
the use of these innovative extraction technologies in combination. However, these unique extraction 
procedures still need to be adequately developed whilst optimized conditions are needed to make a scaling 
process. These processes might be an essential step toward the long-term production and use of bioactive 
compounds from medicinal plants. Furthermore, the combination of modern extraction methods should 
be introduced at pilot scales. So, there is a dire need for mechanistic studies to thoroughly understand the 
mechanisms leading to the extraction of bioactive compounds from different extraction methods.
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