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Abstract: There is a growing interest in the development and use of natural emulsifiers, which
provide biodegradability as well as non-toxicity along with giving better performance compared to
existing emulsifying agents used in the food industry. A large variety of sources of starting material,
i.e., the microorganisms, are available to be used, hence giving a diverse range of applications.
The focus of this review paper is on the production of bioemulsifiers, which are said to be “green
surfactants”, from fungi, bacteria and yeasts; furthermore, an overview pertaining to the knowledge
gained over the years in terms of characterization techniques is reported. The methods used for
the characterization and isolation such as TLC, GC-MS, HPLC, NMR have also been studied. The
end-application products such as cookies, muffins, and doughs along with the methods used for the
incorporation of bioemulsifiers, microorganisms from which they are derived, properties imparted to
the product with the use of a particular bioemulsifier and comparison with the existing food grade
emulsifiers has been discussed in detail. The future prospects indicate that newer bioemulsifiers
with anti-microbial, anti-oxidant and stabilization properties will prove to have a larger impact, and
emphasis will be on improving the performance at an economically viable methodology.

Keywords: emulsifiers; food; microbial surfactants; biodegradable; non-toxic; fungi

1. Introduction

Bioemulsifiers have a larger molecular weight than biosurfactants, because they are
complex mixes of lipopolysaccharides, lipoproteins, heteropolysaccharides, and proteins [1].
Due to their functional capabilities and eco-friendly properties, bioemulsifiers (BE) are
regarded as multifunctional biomolecules of the twenty-first century [2]. Numerous mi-
croorganisms produce bioemulsifiers under a variety of diverse and extreme environmen-
tal conditions [3]. Bioemulsifiers are widely used in a variety of industries, including
medicine, petroleum, food, pharmaceuticals, chemicals, textiles, and cosmetics [4]. Cur-
rently, bioemulsifiers are also referred to as “green molecules” due to their widespread
use in soil bioremediation [5]. Their importance in global markets has been growing daily,
as they are natural resources with a high aggregate value [6]. Emulsifiers exhibit dual
lipophilicity and hydrophilicity. Emulsions are either oil-in-water (O/W) or water-in-oil
(W/O) [7]. In O/W emulsions, the dispersed phase consists of discrete small droplets of
oil in water, whereas in W/O emulsions, the dispersed phase consists of discrete small
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droplets of water in oil [8]. Several of these bioemulsifiers have been licensed by the Inter-
national Organization for Animal Health, including the WHO (World Health Organization);
however, the majority of these compounds have been studied nutritionally [9]. Numerous
biomolecules are also utilized in the oil, food, pharmaceutical, and chemical industries [10].
Emulsifiers are substances that improve the consistency of fat-soluble vitamins, fatty acids,
and amino acids. Emulsions’ function is inextricably linked to their chemical structure [11].

Today, due to the emulsifier’s beneficial effect on human health, scarcity of resources,
and high cost, researchers have developed emulsifiers using natural resources, particularly
microorganisms. Natural surfactants are referred to as bioemulsifiers because they are de-
rived from biological entities, particularly microorganisms. Numerous species and strains
of fungi, bacteria, and yeast are known to produce bioemulsifiers possessing different
molecular structures [12]. Microorganisms that produce bioemulsifiers can be classified
into three categories [13]: those that produce bioemulsifiers exclusively from alkanes, such
as Corynebacterium sp.; those that produce biosurfactants exclusively from water-soluble
substrates, such as Bacillus sp.; and those that produce biosurfactants from both alkanes
and water-soluble substrates, such as Pseudomonas. The production of emulsifying agents
from yeast typically requires the presence of water-insoluble substrates, which compli-
cates the isolation of the bioemulsifiers produced. Ribeiro et al. [14] evaluated the use of
bioemulsifiers produced by Saccharomyces cerevisiae URM 6670 as a substitute for egg yolk
in a cookie formulation. After baking, the bioemulsifiers had no effect on the physical
or physicochemical properties of the product. Yeasts produce a variety of emulsifiers,
which are particularly interesting given that several yeasts are food-grade, allowing for
use in food-related industries. Liposan is an emulsifier produced by Candida lipolytica on
an extracellular level [15]. Saccharomyces cerevisiae produces mannanprotein emulsifiers.
Numerous bioemulsifiers have found applications in the food, cosmetics, and petroleum
industries [15].

The economics of bioemulsifiers production can be significantly reduced by utilizing
renewable and low-cost nutrients, e.g., agricultural waste. The optimization of the manu-
facturing process through identification of the optimal growth medium components and
optimal cultivation conditions enables the use of bioemulsifiers with emulsifying capacity
in a variety of industries. The search for literature in the Web of Science database was
conducted using the keywords “Bioemulsifiers” or “Biosurfactants” or “Emulsion”, and
117 research and review articles were identified for this review (Figure 1). The main goal of
the present study is to have a detailed overview of the knowledge gained over the years
regarding bioemulsifiers, including the factors influencing its production from microorgan-
ism, physicochemical properties, advancements in the incorporation of biomolecules into
various industries, and future research needs.
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2. Bioemulsifiers

Emulsifiers can be synthesized chemically or via microbial metabolism (bioemulsifiers).
Bioemulsifiers are versatile chemical compounds that are capable of stabilizing oil-in-
water emulsions and are critical in a variety of industrial applications [16]. They are also
referred to as biopolymers or polysaccharides with a high molecular weight. Even at low
concentrations, these molecules emulsify two immiscible liquids efficiently but are less
effective at reducing surface tension. Combining polysaccharides, fatty acids, and protein
components in bioemulsifiers enhances their emulsifying capacity [17]. Liposan, produced
by Candida lipolytica, is the most studied bioemulsifier [18]. It is roughly 17% protein and
83% carbohydrate (polysaccharide–protein complex). The carbohydrate portion contains
glucose, galactose, galactosamine, and galacturonic acid.

Emulsan is an extracellular heteropolysaccharide composed of two biopolymers: 20%
exopolysaccharide and 80% lipopolysaccharide with a high molecular weight. It was
extracted in the late 1970s from a hydrocarbon-degrading Arthrobacter sp. RAG-1 (later
renamed Acinetobacter venetianus RAG-1) [19]. Emulsan addition improved the stability
of alginate microspheres, allowing for the fine-tuning of biological molecule release by
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using different emulsan concentrations. The authors concluded that emulsan is an excellent
candidate for protein and pharmaceutical delivery. Specific emulsan–alginate formulations
have been granted patents as medication delivery methods and vehicles for the removal of
protein-based toxins from food and/or other items [20,21]. Acinetobacter radioresistens was
successfully used by Navon-Venezia et al. to produce Alasan [22]. Alasan is a compound
of covalently bonded anionic polysaccharides that contain alanine-rich proteins. The
emulsifying and surface activities of Alasan have been related to the compound’s three
main proteins, which have molecular weights of 16, 31, and 45 kDa. According to Toren
et al., the protein with a molecular mass of 45 kDa exhibited the highest emulsifying activity,
exceeding even the intact alasan complex [23].

Mannoproteins are a class of glycoproteins isolated from the cell walls of a variety of
yeasts. According to their chemical composition and specific functions in living systems,
these molecules are classified as structural and enzymatic mannoproteins. The most abun-
dant type of mannoprotein is structural, which consists of a small protein portion linked
to a larger carbohydrate portion (mannopyranosyl), whereas enzymatic mannoproteins
contain more protein moieties. Not only are these molecules effective emulsifiers, but they
have also been linked to the stimulation of host immunity via the activation of immune
cells and proteins as well as the induction of antibody production [24,25]. Figure 2 depicts
the structure and mechanism of action of a number of significant emulsifiers produced by
microorganisms through biotechnology processes.
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3. Bioemulsifiers Derived from Microorganisms

Because of their unique properties relative to chemical surfactants, such as biodegrad-
ability, foaming, non-toxicity, efficiency, biocompatibility, at low concentrations, and high
selectivity across a range of pH, temperatures, and salinities, bioemulsifiers are referred to
as surface-active biomolecule materials [11]. Emulsifiers are abundant in nature and are
produced by bacteria, fungi, and yeasts (Table 1).

On the other hand, marine microorganisms are a wealthy source of bioactive com-
pounds, such as enzymes, biosurfactants, and drugs. Because of their unique interaction
with cell membranes, biosurfactants have recently received interest in their antibacterial,
anticancer, and antiviral properties. Due to the high cost of industrial manufacture, com-
mercially accessible biosurfactants (such as sophorolipids, rhamnolipids and surfactin) are
currently limited. As a result, innovative biosurfactants or alternative biosurfactant-producing
strains are in high demand. The ability of marine Bacillus species to grow in high-salinity
conditions has recently been described [26,27]. According to Liu et al. [28], three Bacillus
species from the sea have been discovered to be able to use oil and perform emulsification.



Life 2022, 12, 924 5 of 16

Table 1. Bioemulsifiers produced by bacteria, yeast and fungi.

Bacteria Sources Yeast Sources Fungi Sources

Bacteria Bioemulsifiers References Yeast Bioemulsifiers References Fungi Bioemulsifiers References

Pseudomonas
fluorescens Viscosin [29] Torulopsis petrophilum Sophorolipids [30] Candida sphaerica

UCP0995 Sophorolipids [31]

Pseudomonas
aeruginosa Rhamnolipids [32] Torulopsis apicola Sophorolipids [33] Candida lipolytica

Y-917 Sophorous lipid [32]

Pseudomonas
fluorescens

Carbohydrate-lipid
complex [32] Pseudozyma rugulosa Mannosylerythritol

lipids [34] Candida utilis NDA [35]

Bacillus
amyloliquefaciens Surfactin/Iturin [36] Pseudozyma aphidis Mannosylerythritol

lipids [37] Candida ingens Fatty acids [38]

Bacillus subtilis Subtilisin [39] Kurtzmanomyces sp. Mannosylerythritol
lipids [40] Candida lipolytica Carbohydrate-protein-

lipid [41]

Bacillus subtilis Lichenysin [42] Kurtzmanomyces sp.
I-11

Mannosylerythritol
lipids [43] Candida tropicalis Liposan [44]

Bacillus
licheniformis K51 Peptide lipids [45] Debaryomyces

polymorphus
Carbohydrate
protein-lipid [46] Candida bombicola Sophorolipids [47]

Bacillus pumilus A1 Rhamnolipids [48] Saccharomyces
cerevisiae Mannoprotein [49] Candida (torulopsis) Sophorolipids [50]

Bacillus spp. Hydrocarbon-lipid-
protein [51] Kluyveromyces

marxianus Mannoprotein [52] Candida lipolytica Carbohydrate-protein [53]
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4. Physicochemical Properties of Bioemulsifiers

The capacity of bioemulsifiers to stabilize emulsions by enhancing their kinetic stabil-
ity has enhanced their application in the pharmaceutical, food and petroleum industries.
Numerous investigations have been performed on bioemulsifiers, whose effective emulsi-
fying action is dependent on their chemical composition [54,55]. According to Willumsen
and Karlson [56], surfactants and emulsifiers are two types of surface-active biomolecules
that are utilized for emulsions stabilization. Some biomolecules, on the other hand, have
both surfactant and emulsifying capabilities, which contributes to their unique functions
and wide range of industrial applications. Table 2 reports the physico-chemical properties
of bioemulsifiers.

Table 2. Physico-chemical properties of bioemulsifiers.

Bioemulsifiers Class Microbial Origin Physicochemical Properties References

Glycoprotein Solibacillus silvestris AM1 Pseudoplastic non-Newtonian rheological property [57]

Alasan Acientobacter
radioresistens KA53 Emulsification and solubilization activity [58]

Uronic acid bioemulsifiers Halomonaseurihalina
Klebsiella sp. Emulsification properties [59]

Proteoglycan Acinetobacter calcoaceticus
MM5 Emulsifies heating oils [60]

Lipo-heteropolysaccharides Acinetobacter bouvetii UAM25 Emulsifying polycyclic aromatic hydrocarbon [61]

Lipoglycan Acinetobacter baumanii Emulsification of edible oils [62]

Glycolipid Acinetobacter sp. Surface active agent [63]

Glycolipid Acinetobacter spp. Stable emulsions only in the presence of edible oils [64]

Amyloid Solibacillus silvestris AM1 Strengthening cell surface interactions such as
aggregation, biofilm formation and adhesion [65]

5. Characterization of Bioemulsifiers by Various Chromatographic and Spectroscopic
Techniques

Various techniques such as chromatographic and spectroscopic methods were applied
to fully characterize the structure of bioemulsifiers. A combination of these procedures is
highly useful for compound characterization.

One of the most often used techniques for detecting bioemulsifiers is thin layer chro-
matography (TLC). Table 3 summarizes the various solvents used for the detection of differ-
ent functional groups from bioemulsifiers produced by microorganisms using TLC method.

Table 3. Characterization of bioemulsifiers produced by microorganisms using TLC techniques using
various solvents systems.

Bioemulsifiers Type Organism Solvent System Functional Groups Reference

Glycolipid Pseudomonas sp. Chloroform; methanol; water 65:25:5 Glycolipid [66]

Lipopeptide Bacillus subtilis Butanol; acetic acid; water 4:1:1 methanol;
6 N HCl; water; pyridine 60:3:19:5:15 Amino acids [67]

Lipopeptides Enterobacter
cloacae C3 Chloroform/methanol/water (65:25:4). lipopeptides [68]

Glycolipids Ustilagic acid Ustilago maydis Chloroform; methanol; water 65:25:4 Sugar [69]

Glycolipid Bacillus sp. Chloroform; methanol; acetic acid; water
25:15:4:2 Carbohydrate Lipid [70]

Lipopeptide Bacillus subtilis Butanol; acetic acid; water 4:1:1 Methanol;
6 N HCl; water; pyridine 60:3:19:5:15 Amino acids [71]
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In gas chromatography-mass spectrometry (GC-MS), the sample must be hydrolyti-
cally cleaved between the carbohydrate or peptide/protein part of the bioemulsifiers and
the lipid portions in order to be analyzed in a GC or GC-MS equipment. As a consequence,
fatty acid chains are derivatized to fatty acid methyl esters (FAME) and then converted to
trimethylsilyl (TMS) derivatives for GC or GC-MS analysis [34]. The diazomethane esterifi-
cation is an important step for the detection of compounds using GC-MS. Bio-emulsion
from oil degrading R. erythropolis 3 C-9 was characterized by Peng et al. [72]. The FA (fatty
acid) was esterified from crude extracts with 2 mol/L HCl in methanol at 100 ◦C (40 min).
The FAME were then recovered with hexane and concentrated to 1 mL for GC-MS analysis
under nitrogen atmosphere. The temperature graduated and was kept between 60 and
260 ◦C at 5 ◦C/min. A one µL of sample was applied to the GC-MS analysis. The purified
carbohydrate sample was prepared by removing the aqueous phase through freeze drying
and then extracting with pyridine to remove all ions. After that, the pyridine was removed
using the evaporation under vacuum at 40 ◦C. The saccharide part of the sample was
dissolved in distilled water and utilized for further analysis.

In high-performance liquid chromatography (HPLC), the sample is analyzed in the
chromatographic column thanks to the mobile phase pumped by plumping system. The
detector responds to the elution of the sample, signaling a peak on the chromatogram [73].
Lipopeptide separation is commonly accomplished using HPLC coupled to refractive index,
UV, fluorescence, electrochemical, near-infrared, MS, NMR, and light scattering [73,74]. The
sample is treated with trifluoroacetic acid (TFA) and centrifuged to remove solid particles
before being analyzed in an HPLC facility. In addition, if the HPLC is equipped with
an MS or evaporative light scattering detectors (ELSD), glycolipids can also be separated
and identified sequentially. The polarity of components is the main factor to identify
the separated products and provide them in individual peaks to study the structure of
each moiety. HPLC with MS detection is important to identify the molecular mass of
each fraction.

Nuclear magnetic resonance (NMR) is based on magnetic moment changes in atoms
when an external magnetic field is applied. A nucleus in a high magnetic field absorbs
radio frequency radiation [75]. NMR can give direct information concerning the functional
groups and the bond positions for the protein, lipid and carbohydrate molecules. NMR
experiments can also possibly identify the location of each functional group and inform
about the constitutional isomers. The most common solvents utilized are acetic acid,
acetone, chloroform, dimethyl sulfoxide, benzene, and methanol pyridine. The samples
are hydrolyzed using HCl; then, the FA is extracted and detected through NMR. The
glycolipids should be dissolved in deuterated chloroform before performing a series of
1D (1H and 13C) and 2D (such as HMQC, ROSY, COSY, and HMBC) NMR investigations.
The NMR approach was used to conduct detailed investigations of glycolipid, which was
recently published in the literature [76,77].

Fourier-transform infrared spectroscopy (FT-IR) can identify unknown mixture com-
ponents based on functional groups. Usually, 1 mg of freeze-dried, purified biosurfactant
is ground with 100 mg of potassium bromide and pressed for 30 s to produce translu-
cent pellets. The analysis uses an FT-IR device with a spectrum ranging from 400 to
4000 cm−1 [78,79]. Several studies used FT-IR for bioemulsifiers’ characterization; Gudiña
et al. [80] studied the ability of a Paenibacillus sp. strain isolated from crude oil to produce
the bioemulsifier. A preliminary chemical characterization by FT-IR, carbon and proton
nuclear magnetic resonance (13C and 1H NMR) and size exclusion chromatography ob-
served that the bioemulsifier is a low molecular weight oligosaccharide–lipid complex. In
addition, there is an effective bio-surfactant-producer and hydrocarbon degrading bacterial
strain, Rhodococcus sp. HL-6 was isolated from the Xinjiang oil field using diesel oil as a sole
source of carbon. The produced biosurfactant (BS) characterization was made by thin-layer
chromatography (TLC) and FT-IR [81,82].

Fast atom bombardment-mass spectrometry (FAB-MS), using a high-energy beam of
xenon atoms and cesium ions, scatters the sample and matrix (m-nitro benzyl alcohol) from
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the probe’s surface. The biosurfactants are typically dissolved in methanol and mixed with
matrix [83].

Electrospray ionization-mass spectrometry (ESI-MS) is a soft ionization technique
utilized to produce gas-phase ions for high-molecular-weight biological molecules. Such
a technique can be used with an HPLC (HPLC/ESI-MS) to gain a comprehensive under-
standing of the molecular structure [84].

The scanning electron microscopy (SEM) analysis was performed with the FEI QUANTA
200 FEG HR-SEM model at 8 mm working distance and 30 kV. On the sample holder, a very
small amount of the specimen was placed, and thin layer of the samples were prepared on
special carbon-coated paper. Using blotting paper, the excess solution was separated, and
the SEM film was dried under a mercury lamp for five minutes [85].

The laser scanning confocal microscope (LSCM) is the most equipment using for
studying the structure and stability of any emulsions [86]. In addition, LSCM is the best
way to differentiate between the lipophilic and hydrophilic phases, the droplet size and
distribution of oil bio-emulsion [87]. Various analytical methods namely, HPLC, IR, GC-MS
and NMR, are used to characterize bioemulsifiers are listed in Table 4.

Table 4. Characterization of bioemulsifiers produced by different Microorganisms using various
analytical methods.

Microorganism Bioemulsifiers Type HPLC FT-IR GC-MS NMR Reference

Pseudomonas aeruginosa Rhamnolipid + − − − Haba et al. [88]

Pseudomonas putida Bioemulsifier + − − + Bonilla et al. [89]

Pseudomonas putida 21 BN Rhamnolipid − + − − Tuleva et al. [90]

Bacillus sp. Exopolysaacharide − − − − Yun and Park [91]

Bacillus licheniformis Lipopeptide + − + + Yakimov et al. [92]

Candid picola Glycolipid − − + − Hommel et al. [93]

Yarrowia lipolytica Yansan − + + − Amaral et al. [13]

+: Test carried out by authors. −: Test not done by authors.

6. Applications of Bioemulsifiers in Food Industry

The marketing of emulsifiers is expected to reach a value of USD 17.53 billion by
2027, while registering this growth at a rate of 6.90% for the forecast period of 2020 to
2027 [94]. Growing global demand for packaged foods worldwide is expected to create a
new business opportunity for the market (Figure 3) [88]. The increasing use of emulsifiers
in food products such as infant, child nutrition products and snacks are expected to enhance
the market growth. Other factors such as increasing population health consciousness, rising
disposable income, expansion in the cosmetics and personal care industry, and increasing
concern about the food safety and quality will further provide the emulsifiers market in the
forecast period of 2020 to 2027. However, these chemical emulsifiers cause negative impacts
on gut health through impaired intestinal barrier function and increasing the incidence of
inflammatory bowel disease (IBD). Researchers have produced emulsifiers using natural
resources and the availability of a minor or non-toxic alternative, especially microorganisms
due to restricted resources and high costs [95,96].
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The unique natural properties of bioemulsifiers are the amphiphilicity (hydrophilic
and hydrophobic) and their ability to reduce interfacial tension and surface area. Other
interesting properties viz., coagulation, emulsification, cleansing, wetting, foaming ability,
phase separation, surface activity and reduction in the oil viscosity permit their exploitation
in many industries. Bioemulsifiers have a wide range of structural, compositional, and
functional features due to the variety of their microbial origins, which include fungi [49,97],
bacteria [98], and actinomycetes [99]. Figure 4 shows the main characteristics most bioemul-
sifiers may have to be considered as “emulsifier”. The bioemulsifiers such as liposan from
Candida lipolytica were able to stabilize the emulsions of vegetable oils and water. It was
also able to stabilize the corn oil, cottonseed oil, peanut oil, and soybean oil emulsions [100].

The formulation of food determines several phases among particles [101]. Figure 3 shows
basically the main types of emulsions that are important in a variety of foods. This precise
structural organization of bioemulsifier molecules allows surface-active agents/emulsifiers
to quintessence at the O/W interphase, leading to boosting the modynamic stability of an
unstable system [102]. Because of their amphiphilic nature, emulsifiers have significant
emulsifying powers and may be molded with starches and protein fractions of food items.
Additionally, the partly digested fatty components are adequately emulsified/homogenized
by bioemulsifiers. The emulsifier binds to protein portions of food items, causing them to
aggregate together [103]. Mannor protein producing Saccharomyces cerevisiae facilitates
the stabilization of W/O emulsions for products such as mayonnaise and ice creams [104].
Water in oil in water (W/O/W) and oil in water in oil (O/W/O) are two more sophisticated
types of duplex emulsions (multiple) (Figure 5).

Lipopolysaccharides, heteropolysaccharides, lipoproteins, glycoproteins, and proteins
are regarded as beneficial for commercial applications as bioemulsifiers. A variety of new
uses of new and well-known bioemulsifiers have been described in the recent three years.
The excellent properties of both microbial produced biosurfactants and bioemulsifiers
have features that make them desirable as natural emulsifiers for foods. Different studies
have described the use of glycolipids to stabilize fat emulsions as well as glycolipids and
lipopeptides as rheology modifiers in cookie and muffin dough [3,105]. Other studies have
found that bioemulsifiers (such as exopolysaccharides and mannoproteins) have a high
potential for aroma emulsification [106].
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Incorporation of Bioemulsifiers in Food Formulations

1. Salad dressing formulation was prepared using sunflower oil, vinegar, water, egg
powder, sugar, salt, starch, etc. with Candida-derived bioemulsifier (C. utilis 0.2–0.8%
(w/v) combined with guar gum/carboxymethyl cellulose. The consistency and texture
was improved using 0.7% of bioemulsifier [107].



Life 2022, 12, 924 11 of 16

2. Muffins were prepared using Galactan Exopolysaccharide (EPS) 1% (w/v) along
with vanillin and cardamom flavors. It showed a better texture, sensorial property,
springiness, color and flavor stability than control [108].

3. Cookie dough formulation incorporated bioemulsifier from S. cerevisiae URM 6770,
partially (2% (w/v)) or completely (4% (w/v)) substituting egg yolk in the existing
formulation, and it showed similar physicochemical properties along with increasing
the energy value of the cookies by providing fatty acids in the end product [3]. Table 5
summarizes some of the most interesting findings.

Table 5. The latest (2015–2022) findings on some bioemulsifiers exhibiting potential activity.

Bioemulsifiers Microorganisms Activity Application Reference

Lipopeptide Bacillus licheniformis MS48 Improving textural and
sensorial properties Yogurt [109]

Glycolipoprotein Acinetobacter indicus M6 Antibacterial Food control [110]

Proteoglycan Meyerozyma caribbica Emulsifiers Food industry [111]

Exopolysaccharides (EPS) Rhodobacter johrii CDR-SL 7 Cii Emulsifier Emulsion
Stabilizer Food industry [112]

Carbohydrate–lipid–protein
complex Candida utilis Emulsifiers Corn oil and

Sunflower oil [108]

Succinoglycan
exopolysaccharide Rhizobium radiobacter CAS emulsion stabilization Soybean oil [113]

EPS Pseudomonas fluorescens Emulsifier Food industry [114]

EPS Chromohalobacter canadensis 28 Emulsifier Emulsion
Stabilizer Foamer Food industry [108]

Glycoprotein Lactobacillus plantarum subsp. Emulsifiers Food industry [115]

Lipopeptide Nesterenkonia sp. MSA31 Antioxidant, Emulsifier,
Emulsion Stabilizer Food industry [106]

emulsan-alginate Pseudomonas stutzeri 273 Removing protein-based
toxins from food products

Food-processing
contamination [116]

Polyketide derivative Penicillium chrysogenum Emulsifiers Oil [117]

7. Conclusions

With the increasing trend toward natural substitutes for synthetic ones, bioemulsifiers
have gained importance over time. This is due to the production from renewable resources,
having better surface tension reducing or interfacial activity, low toxicity, better physico-
chemical properties and the emulsifying and stabilizing effects in the food industry. The
obstacles in complete replacement by these biomolecules are lower yields, higher produc-
tion costs, variations in the final properties which have led to lower commercial viability
and the utilization of bioemulsifiers in the food industry. The cost-effective, large-scale
production of bioemulsifiers and the study of interactions of bioemulsifiers with other
ingredients in the food formulation needs further research and optimization to increase
utilization on a greater scale to make bioemulsifiers a success. In spite of these difficulties,
bioemulsifiers will continue to grow in the near future, hence proving to be a natural and
safer alternative to its chemical counterparts.
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