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Abstract—— In this paper, a new method for people tracking 

in a smart room using a Kinect sensor is proposed. The 

approach is based on the skeleton data with the (X, Y, Z) 

coordinate values of each joint in the human body which is 

provided by the Kinect sensor. For data classification, the 

Support Vector Machine (SVM) technique is used. To achieve 

this goal 14 movement classes are defined. Experiments were 

conducted on 12 subjects each one performs 14 movements in 

each experiment, the training dataset is created manually by 

capturing the subject movements during all experiments. The 

result of these we get after training the SVM model shows that 

the average accuracy is 90.2%.  

Keywords—Kinect Sensor, Motion tracking, Kinect skeleton, 

Support Vector Machine (SVM) 

I. INTRODUCTION  

People tracking is an important feature for smart 
environment analysis. Many research studies have been carried, 

and most rely on having a hardware device or sensors attached 
to the human's body to track them inside the room, or sensors 
attached to the furniture in that room [23][24]. In the project 
reported in this paper, a Kinect sensor is used to track people 
without the need for any additional hardware. The context 
knowledge gained from people's positions can assist us in 
predicting what people expect from a smart environment [1]. 
In nearly 9 years, much effort has been expended in examining 
human motion using the Kinect sensor. The Kinect sensor, 
which was released in 2010 [16], is capable of capturing not 
only color information but also depth and motion depth 
information. Because of its low cost and free SDK (Software 
Development Kit), the Kinect is becoming more popular [9]. 
The Microsoft Kinect for Windows SDK can track and 
capture data from a user's skeleton at 30 frames per second. 
Each tracked skeleton is constructed from the three-
dimensional coordinates of twenty joints [5]. Initially, in this 
work, for data classification,  the Support Vector Machine 
(SVM) technique is used, which provided good results [2], 
and the gait skeleton information is used to recognize a 
person's action [17], and this data is easily extracted from the 
3D skeletal joint coordinates provided by the Kinect sensor, 
the skeletal data for each person consists of 20 joints, as shown 
in Fig. 1. Kinect V1 [3] provides these data. The novelty of 
this work lies in the way the method used to calculate the joint 
distance, the angle between joints, and the distance between 
the subject and the Kinect. This provides us with the features 
that will be used to improve classification accuracy [3].  

The rest of the paper is structured as follows. In Section II, the 
hardware system and the components of the Kinect sensor are 
described; in Section III, we describe how the Kinect sensor 
recognizes human posture; and in Section IV, all experiments 
and scenarios are presented. Section V describes the Support 
Vector Machine (SVM) classifier and displays the final 

results. Finally, in Section VI, concluding remarks are 
provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. KINECT SENSOR 

It is a motion-sensing device that was created for the Xbox 
360 gaming console. Microsoft's Kinect software, which is 
embedded in the device, allows for human gesture recognition 
[4]. The Kinect sensor incorporates a wide range of advanced 
sensing hardware. It is equipped with a depth sensor, a color 
camera, and a four-microphone array, allowing it to capture 
full-body 3D motion, facial recognition, and voice recognition 
[6]. As illustrated in Fig. 2. the Kinect Sensor is made of: 

1) A motorized Tilt: 
The Kinect sensor has a tilt motor that could be used to tilt the 
camera and it increases the possible interaction space of the 
camera by +27 and -27 degrees [4]. 

 

    Fig. 2. The Kinect Sensor. 

Fig. 1. 20 Joints Skeleton [4]. 
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Fig. 3. Kinect Interaction Space[7]. 

1) An RGB color camera: 
Identifies the red, green, and blue color components, as well 
as the body type and facial features. It has a 640x480 pixel 
resolution and a frame rate of 30 frames per second. This aids 
in both facial and body recognition [4]. 

2) A depth sensor: 
A monochrome CMOS sensor and an infrared projector aid in 
the creation of 3D imagery throughout the room. It also 
calculates the distance between each point on the human's 
body by sending out invisible near-infrared light and 
measuring its "time of flight" after it reflects off the objects  
[4]. 

3) A microphone: 
Is a set of four microphones that can separate the player's voice 
from other background noises, allowing them to use their 
voices as an additional control feature [4]. 

III. HUMAN POSTURE RECOGNITION BASED ON 

KINECT SENSOR 

A. Feature extraction and data processing 

With the skeleton tracked by the Kinect; first, extract the 
joint position, each joint has three values of the (X, Y, Z) 
coordinates [9]. From these values, many features can be 
derived such as joint angles, the distance between joints, the 
distance between each joint from the Kinect sensor, and the 
distance from the Kinect to the human skeleton. The total 
number of these features will be 46 features as shown in Fig.4 
and TABLE II. From these features, 14 types of body 
positions are specified that the person will perform while 
present in the room as shown in TABLE I. These features and 
classes will be used to build the dataset that will be used to 
train the classification model (SVM). After training, the 
average accuracy is determined. 

B. Human position dataset building 

For data collection a dataset capture tool created in C# 
using Visual Studio 2017, the output window displays the 
Kinect skeleton and the (X, Y, Z) coordinate values, and the 
values of the features and body positions. To collect data for 
the dataset, the Kinect sensor sets at 170 cm height and the 
angle of the Kinect is -22 degrees. Neon lights are used in the 
testing room (which do not affect the results of recording 
skeleton data because Kinect uses an infrared camera, which 
works very well in the dark).  

TABLE I. THE SELECTED CLASSES AND THEIR DESCRIPTION 

 

 

 

Class Number Detailed description 

1. Standing in the room 

2. Prayer position (sitting on the floor) 

3. Sitting on the floor with stretched legs 

4. Sitting on the floor with crossed legs 

5. Lying the floor 

6. Lying the floor with one leg raised 

7. Sitting on the bed 

8. Standing on the bed 

9. Standing on the bed with stretched legs 

10. Lying the bed with one leg raised 

11. Lying the bed 

12. Sitting on the chair 

13. 
Sitting on the chair  with crossed legs (The right leg 

on the left leg) 

14. 
Sitting on the chair  with crossed legs (The  left leg 

on the  right leg) 

Fig. 4. Kinect sensor with the human skeleton and the measured features, the red arcs represent the joint angles, the blue arcs represent the 

distance between joints, and the purple dashed lines represent the distance between each joint and the Kinect sensor. 
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TABLE II. THE 46 FEATURE AND THEIR NAMES 

C.    Features mathematical calculations 

1) Measure the distance from the Kinect to the human 

skeleton:  
Every single joint has 3 values: X, Y, and Z. It is projected in 
a Cartesian coordinate system. The (0, 0, 0) point is the 
position of the sensor. The distance between the player and the 
device is represented by a mathematical vector. 

 
Fig. 5. The distance between the human skeleton and the sensor is 
represented by a mathematical vector (drawn in blue). The Position is a set 
of X, Y, and Z coordinates in the 3D space. The “Z” value is the distance 
between the player and the plane. 
 

The length of a vector is given by the formula below: 

                            𝐷1 = √𝑋2 + 𝑌2 + 𝑍2                          () 

2) Measure the distance between joints: 
To find the distance the joints should be specified first, let 
the first joint be 𝐽1 and the second joint 𝐽1, the distance 
equation will be as follows: 

      𝐷2 = √(𝐽1.𝑋 − 𝐽2. 𝑋)2 + (𝐽1. 𝑌 − 𝐽2. 𝑌)2 + (𝐽1.𝑍 − 𝐽2. 𝑍)2     (2)  

 
 

 

 

 

3)Measure the distance between each joint and the Kinect : 
The same approach that used to measure the distance between 
the skeleton and Kinect is used here, but the joint type is 
specified, as shown in the equation below: 

       𝐷3 = √(𝐽oint  type. X)
2
+ (𝐽ointtype. 𝑌)

2
+ (𝐽ointtype. 𝑍)

2
         (3) 

4)Measure the Angle between joints : 
The vectors V1 and V2 are used o measure the angle between 
two joints, as shown in Fig. 6. , and the equation will be : 

                            ɵ = 𝑐𝑜𝑠−1 𝑉1.
→   

𝑉2
→ 

‖
𝑉1.
→   

𝑉2
→ ‖
                                  (4) 

Fig. 6. Measure the distance between joints, and joint angle 

 

 

Feature name 

a. Distance from the Kinect to the 
human skeleton 

b. Joint angles c.  Distance between joints d. Distance between each 
joint from the Kinect sensor 

1. Shoulder Left Angle 1. Head and Wrist Right 1. Head Distance 

2.  Elbow Left Angle 2.  Shoulder Center and Wrist Right 2. Shoulder Center Distance 

3.  Wrist Left Angle 3. Head and Knee Right 3. Shoulder Right Distance 

4.  Shoulder Right Angle 4. Head and Wrist Left 4. Shoulder Left Distance 

5.  Elbow Right Angle 5. Head and Ankle Right 5. Elbow Right Distance 

6.  Wrist Right Angle 6. Shoulder Center and Wrist Left 6. Spine Distance 

7.  Hip Left Angle 7. Hip Right and Ankle Right 7. Hip Center Distance 

8.  Knee Left Angle 8. Head and Knee Left 8. Hip Right Distance 

9.  Ankle Left Angle 9. Hip Left and Ankle Left 9. Hip Left Distance 

10.  Ankle Left Angle 10. Head and Ankle Left 10. Knee Right Distance 

11.  Knee Right Angle  11.  Knee Left Distance 

12.  Ankle Right Angle 12. Elbow Left Distance 

13.  Spine Angle 13. Wrist Right Distance 

14.  Shoulder Center Angle 14. Wrist Left Distance 

15.  Hip Center Angle 15. Hand Right Distance 

 16. Hand Left Distance 

17. Ankle Right Distance 

18. Ankle Left Distance 

19. Foot Right Distance 

20. Foot Left Distance 

Person 
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                       IV.  EXPERIMENTS AND SCENARIOS 
 

We recorded the 14 positions of 12 people for our 
experiments (9 men and 3 women). We record 5 times for 
each position for about 10 to 20 seconds. There have been 
1120 experiments in total. The following scenarios are 
assigned to the subject.: 

3) Scenario for standing position:  

The subject stands straight and relaxed with his or her arms 

at his or her sides. His/her eyes are drawn to Kinect (see Fig. 

7  (1)) . The distance between the subject and the Kinect is 

148 cm in the first and second recording times, and 176 cm 

in the other three recording times. 

4) Scenario for prayer position:  

In all experiments, the subject sits on the ground in a prayer 

position with his/her right side in front of the Kinect (see Fig. 

7 (2)), and the distance between the subject and the Kinect is 

150 cm.  

5) Scenario for sitting on the floor with stretched legs 

position:  
In all experiments, the subject sits on the ground in front of 
the Kinect with his/her legs straightened (see Fig. 7 (3)), and 
the distance between the subject and the Kinect is 226 cm. 

6) Scenario for sitting on the floor with crossed legs 

position:   

In all experiments, the subject sits on the ground in front of 

the Kinect with his/her legs crossed (see Fig. 7 (4)), and the 

distance between the subject and the Kinect is 220 cm. 

7) Scenario for lying on the floor position: 
The subject's body lying on the ground in a vertical direction 
from the viewpoint of the Kinect (see Fig. 7 (5)), in all 
experiments, the distance between the subject and the Kinect 
is 126 cm. 

 

8) Scenario for lying on the floor with one leg raised 

position:  
The subject's body lying on the ground with one leg raised in 
a vertical direction from the viewpoint of the Kinect (see Fig. 
7 (6)), In all experiments, the distance between the subject and 
the Kinect is 126 cm. 

9) Scenario for sitting on the bed position:  
The subject sits on the bed, with his/her hands are on the bed, 
and keeps his/her back straight (see Fig. 7 (7)), In all 
experiments, the distance between the subject and the Kinect 
is 186 cm. 

10) Scenario for standing on the bed position:  
The subject stands straight on the bed with his/her arms 
relaxed His/her gaze is drawn to Kinect (see Fig. 7 (8)). In all 
experiments, the distance between the subject and the Kinect 
is 226 cm. 

11) Scenario for sitting on the bed with stretched legs 

position:  
The subject sits on the bed in front of the Kinect with his/her 
legs are straightened (see Fig. 7 (9)), the distance between the 
subject and Kinect is 212 cm in all experiments. 

12) Scenario for lying on the bed with one leg raised 

position:   
The subject's body lying on the bed with one leg raised in a 
vertical direction from the viewpoint of the Kinect (see Fig. 7 
(10)), the distance between the subject and Kinect is 230 cm 
in all experiments. 

13) Scenario for lying on the bed position:   
The subject's body lying on the bed in a vertical direction from 
the viewpoint of the Kinect (see Fig. 7 (11)), In all 
experiments, the distance between the subject and the Kinect 
is 230 cm. 

14) Scenario for sitting on the chair position: 
The subject sits on the chair, with his/her hands are on the 
chair sides, with his/her feet touches the floor, and keeps 
his/her back straight( see Fig. 7 (12)) , In all experiments, the 
distance between the subject and the Kinect is 221 cm. 

 

(1) 

 

 

(2) 

 

(3) 

 

(4) 

 

 
 
 

 
 

(5) 

 

(6) 

 

(7) 

 

(8) 
 

 

(9) 
 

 

 
(10) 
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(12) 
 

 

 
(13) 

 

 

 
(14) 

 

  Fig. 7. Body position types, extracted from the experiments. 
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15) Scenario for sitting on the chair with the right leg on 

the left leg position:  
The subject sits on the chair, with his/her hands are on the 
chair sides, and his/her right leg on the left leg, and keeps 
his/her back straight (see Fig. 7 (13)), In all experiments, the 
distance between the subject and the Kinect is 221 cm. 

16) Scenario for sitting on the chair with the left leg on the 

right leg position: 
 The subject sits on the chair, with his/her hands are on the 
chair sides, and his/her left leg on the right leg, and keeps 
his/her back straight (see Fig. 7 (14)), In all experiments, the 
distance between the subject and the Kinect is 221 cm. 

V. CLASSIFICATION: SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMs) are cutting-edge large-
margin classifiers that have recently gained popularity in 
visual pattern recognition and other applications [13][14]. 
SVM can obtain decision-making rules and achieve low error 
for independent test sets, allowing it to efficiently solve 
learning problems. Also, it can ensure higher performance in 
a variety of practical applications and the accuracy of long-
term predictions. For our work, the SVM model is trained 
using the dataset collected after completing all experiments. 
First, create an SVM model and train it using our dataset. To 
achieve good performance the SVM classifier's radial basis 
function (RBF) kernel [10], [15], is used. The data is divided 
using cross-validation, randomly selecting 50% of the data for 
training and 50% for testing, and repeating this process for 10 
iterations, at each iteration, the accuracy is determined, and 
then determine the average accuracy, the average accuracy 
was 90.2%. From the confusion matrix shown in Fig. 9. The 
average value of the Recall and precision is determined for 
each class; their values are shown in TABLE III. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 8. Main steps of activity classification using the skeleton information 

and SVM classifier 

 

 

TABLE III.  THE 14 CLASSES AND THEIR RECALL AND PRECISION VALUES 

FOR THE SVM MODEL 

VI. CONCLUSION 

In this paper, a method for tracking people and recognizing 
actions in a smart room is proposed, by using the skeleton 
provided by the Kinect sensor. We ended up running 1120 

Class Number Class Name Recall % 
Precision 

% 

1. Standing in the room 0.932891 0.848343 

2. 
Prayer position 

(sitting on the floor) 
0.887235 0.934926 

3. 
Sitting on the floor 
with stretched legs 

0.932529 0.918025 

4. 
Sitting on the floor 
with crossed legs 

0.939682 0.964340 

5. Lying the floor 0.899020 0.920667 

6. 
Lying the floor with 

one leg raised 
0.869527 0.869803 

7. Sitting on the bed 
0.932194 

 
0.950073 

8. Standing on the bed 
0.924460 

 
0.936955 

9. 
Standing on the bed 
with stretched legs 

0.927179 0.940658 

10. 
Lying the bed with 

one leg raised 
0.849523 0.854580 

11. Lying the bed 0.845845 0.837072 

12. Sitting on the chair 0.917644 0.935132 

13. 

Sitting on the chair 
with crossed legs 

(The right leg on the 
left leg) 

0.864786 0.911648 

14. 

Sitting on the chair 
with crossed legs 

(The left leg on the 
right leg) 

0.900427 0.833511 

Fig. 9. Confusion matrix of 14 classes for the SVM model 
“Captured from MATLAB R2019b” 
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experiments using 46 different features extracted from the 
human skeleton and tracked by the Kinect sensor. For 
classification, the SVM classifier is used, an average accuracy 
of 90.2% is get. The result obtained shows that the skeleton 
allows us to classify the 14 body positions well. In the future, 
we plan to experiment with different classification methods 
and compare the resulting classification accuracy of the SVM 
accuracy,  also plan to add more experiments to improve the 
accuracy. 

VII. RELATED WORK 

There have been lots of works proposed for people 
tracking and action recognition, many of them define only the 
basics body positions such as standing and sitting, also they 
used few numbers of features and experiments. While in our 
work the number of body positions is 14 with 46 features for 
each position and the total number of experiments is 1120. In 
this section, we describe some of these related works. S. 
Majumder and N. Kehtarnavaz,  et al. [9] have proposed an 
algorithm for identifying basic human postures from still 
images that were created using C++ and the open pose library, 
an algorithm for identifying basic human postures from still 
images were created. Using this method, two postures, sitting 
and standing, were classified. Only human skeleton 
information is available. Wei, Qiao, and Lee et al. [5] a KSCC 
algorithm for calibrating the Kinect skeleton coordinate for 
remote physical training applications was proposed. Rahman 
and Gavrilova (2017) et al. [3] present a method for 
identifying people by using sensor-based gait data. The goal 
of this project is to identify a person using Kinect 3D skeletal 
joint gait data. The gait cycle of each individual is detected, 
and features are trained using a KNN classifier. Ben Tamou, 
Ballihi, and Aboutajdine et al. [11] proposed a novel approach 
to human action recognition based on depth camera-extracted 
skeleton joints The 3D coordinates of skeleton joints are 

subtracted in their method. Bhattacharya, Czejdo, and Perez et 

al. [12] In the context of aircraft marshaling, they discussed 
machine learning techniques for gesture classification. The 
characteristics distinguish their research. They used the joint 
coordinates data stream from the Kinect sensor as the feature 
describing the moving human body in video data. They chose 
the most accurate one using machine learning techniques 
(SVM, linear kernel). 
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