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Abstract: Long-term patient monitoring is an important issue especially for the 
elderly. This can be done using a wearable wireless sensor network.  
These sensors have limited resources in terms of computation, storage  
memory, size and mainly in power. In this work, a real-time resource-efficient 
algorithm has been implemented and tested practically such that not all the 
Electrocardiography (ECG) data are transmitted to the server for later 
processing. The algorithm reads a sample window and processes it on the 
sensor node using an adaptive filter with a differentiator and then a fast and 
simple algorithm for feature extraction of the ECG signal to find P, Q, R, S and 
T waves. Finally, a classifier algorithm has been designed to distinguish 
between normal and abnormal ECG signals. The work has been implemented 
using Shimmer sensor nodes and uses the open source TinyOS 2.1.2 and 
Python 2.7. 
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1 Introduction 

Arrhythmia is a common medical condition which includes a broad range of heart-related 
pathologies. Although not all of them are permanent or require medical attention, they 
may provide hints to the development of serious heart diseases. ECG has been a 
cornerstone for the detection and diagnosis of such conditions for a long time (Gradl  
et al., 2012). Wearable Body Area Sensor Network (WBASN) can be used for long-term 
remote Electrocardiogram (ECG) monitoring. In general, this system consists of small 
motes, energy-constrained, limited computation capabilities and small size of storage 
memory. These sensors capture raw ECG data and transmit them to a Personal Digital 
Assistant (PDA) such as smartphone (gateway), in which the data are gathered and 
transmitted to the caregiver’s server over the internet. In some cases, data processing and 
decision-making are performed in the gateway; the other is made in the server. Power 
consumption in wireless sensor network lies in three main parts from the least to the 
most: sensing, computation and transmission (Sendra et al., 2011). In e-healthcare 
system, long-term monitoring of ECG is required especially for the elderly. Due to 
limitations in the power of sensor node, where the wireless transmission consumes 
significant power, it is impractical to send all the data during the daily activity of the 
patient; also, a large data would be obtained, which may be normal ECG data. Energy 
consumption within wireless sensor network has the following components (Albu et al., 
2010): 

  ( ) ( ) ( )     Energy Sense Computation Communication    

The sensing consumption depends on the sample rate, sensor hardware and the sampling 
duration. The consumption for computation depends on the microcontroller used, the 
code of the algorithm and power saving technique. The communication consumption 
depends on the used radio technology, the energy required to send 1 bit, the packet 
overhead, payload limit and data rate of the application. In this work, a lightweight 
resource-efficient algorithm has been implemented for ECG monitoring-based WBASN 
such that the processing of the patient data is performed inside the sensor node. If there is 
a significant abnormal data, then the sensor sends an alarm message to the caregiver’s 
server and then starts transmission of ECG data without any processing. If the sample 
window is normal data, it would be ignored and another sample window tested. The 
algorithm consists of three modules as shown in Figure 1. 

Figure 1 Module of the proposed algorithm modules 

Filtering Classifier and  
decision-making Feature extraction

Raw ECG data 
window 

 

2 Literature survey 

Recent study shows some techniques for ECG feature extraction. Zhao and Zhan (2005) 
proposed a wavelet transform and vector machines for feature extraction where a new 
approach for heart rhythm recognition and classification of ECG has been included. Liu 
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et al. (2011) proposed an integrated ECG signal processing scheme using a systematic 
wavelet transform algorithm which can realise multiple functions in real time, including 
baseline drift removal, noise suppression, QRS detection, heart rate prediction and 
classification. Nabar et al. (2011) proposed GeM-REM, a resource-efficient ECG 
monitoring method for body area network which uses a generative ECG model at the 
base station and its lightweight version at the sensor. The sensor transmits data only 
when the sensed ECG deviates from the model-based value. Jayasumana et al. (2010) 
present a new system developed to continuously monitor the ECG of patients and analyse 
them in real time to identify any abnormalities where the system consists of two parts: a 
portable device on the patient and the server side. Cordier et al. (2010) formalise the 
concept of learning symbolic rules from multisource data in a cardiac monitoring context. 
The sources, electrocardiograms and arterial blood pressure measures, describe cardiac 
behaviours from different viewpoints. Many researchers such as Batra and Kapoor 
(2013) and El Mimouni and Karim (2013) have adopted the work of Pan and Tompkins 
(1985), where various filters are involved in the analysis of the ECG signal. The signal 
passes through a band pass filter composed of cascaded high pass and low pass filters. 
Subsequent processes are differentiation and time averaging of the signal. The drawback 
of this approach is that it detects QRS complex only but cannot detect P and T waves. 

Figure 2 Raw ECG data for 1000 samples (approximately 5 seconds) (see online version  
for colours) 

 

3 Methods 

The algorithm states that instead of transmitting all the raw ECG data to the server, 
process these data there; the process of data and disease diagnosis has been made in the 
sensor node. To do this, a problem of limited RAM of the sensor node (10 Kb for 
Shimmer2r) has been solved by taking a sample window of 5 seconds (1000 sample, 
where the sampling rate was 200 Hz). The process involved in this window including the 
filtering takes only 9 Kb of RAM. The proposed system reads these sample windows 
continuously; then it would be filtered due to the noisy nature of the ECG signal and the 
effect of the artefact of the patient during daylight. Figure 2 shows the raw ECG data. A 
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simple and fast search algorithm for feature extraction is performed to find P, Q, R, S and 
T peaks. Figure 3 shows the properties of the ECG signal. The measurement of the 
duration of PQ, QRS and QT wave forms and analysis of their variations in the ECG are 
used in the next module to monitor electrical activity in the heart to detect any damage or 
disease. 

Figure 3 Properties of the ECG signal (see online version for colours) 

 

In this work, ECG capturing, filtering and classification were developed to process the 
signal generated from the wearable sensor network. The processing algorithm can be 
divided in four main modules: (i) sensor node, (ii) filter design, (iii) feature extraction 
and (iv) beat classification. 

3.1 Sensor module 

In this work, the target embedded sensor system is the Shimmer platform (Shimmer, 2014). 
From the hardware viewpoint, this platform includes a low-power 16-bit microcontroller, 
Texas Instrument MSP430F1611, a low-power radio supported with 802.15.4 radio and 
an extension module for Electrocardiography (ECG), Electromyograph (EMG), which 
measures and records the electrical activity associated with skeletal muscle contractions, 
and Galvanic Skin Response (GSR), which monitors skin resistance. Also, the platform 
has a built-in 3D accelerometer acquisition. The MSP430 microcontroller runs at 8 MHz, 
has 10 KB of RAM, 48 KB of flash and includes a fast hardware multiplier. In this work, 
a three-lead two-channel ECG sensor extension module provided by Shimmer has been 
used (Figures 4 and 5) where 

 Lead II is the ECG vector signal derived from the RA to LL vector; this is derived 
from Channel 1 on the Shimmer ECG board. 
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 Lead III is the ECG vector signal derived from the LA to LL vector; this is derived 
from Channel 2 on the Shimmer ECG board. 

 Lead I is the ECG vector signal derived from the RA to LA vector; this is derived by 
subtracting Lead III from Lead II. 

Figure 4 d ECG leads connections on body 

 

Figure 5 ECG signal vectors (see online version for colours) 

 

Source: Batra and Kapoor (2013) 
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An open source TinyOS 2.1.2 has been used for senor board programming; also, the open 
source Python 2.7 under Linux has been used for data collection and presentation. 

3.2 Filtering 

ECG signal contains two types of noise: biological noise and environmental noise. 
Biological noise occurs due to physiological interference, such as low-frequency noise 
(baseline wanders < 0.03 Hz). Respiration and muscle movement of the human body may 
produce a high-frequency EMG noise (1–5000 Hz). Also, another noise may occur due to 
ECG electrodes’ movement from their places or due to motion artefact. Environmental 
noise originated from instruments and circuit components like power line interference 
(50–60 Hz), electrode contact noise, electrosurgical noise, radio frequency noise. The 
frequency range of ECG wave varies from 0.1 to 250 Hz (Gautam et al., 2008). Majority 
of the existing related research use multi-stage filters such as low pass, high pass and 
notch filter (Pan and Tompkins, 1985). By this approach, only QRS complex is detected, 
while the P and T waves are omitted since they behave as low frequency. Another 
approach is to use wavelet (Zhao and Zhan, 2005) such that it is good in denoising and 
can find all the features of the ECG signal. Both approaches are not well suited in 
wearable sensor networks for two reasons. First, it requires a high amount of storage 
memory, which is not available for all sensor types. Secondly, it requires a huge 
computation processing which in turn consumes more power of the sensor. The high-
frequency part in the ECG signal is the QRS complex, a derivate action has been added 
first to amplify the high-frequency characteristics of the QRS complex and to provide 
information about the slop of the complex. A five-point derivative has the transfer 
function (Pan and Tompkins, 1985) 

   1 3 40.1 2H z z z z        

The discrete formula is as follows: 

     
   

_ 0.1 2 _ _

_ 3 _ 4

ecg der nT ecg raw nT ecg raw nT T

ecg raw nT T ecg raw nT T

    

   
 (1) 

where ecg_raw(nT) is the raw ECG recorded data and ecg_der(nT) is the differentiation 
of the raw input ECG signal. Filters such as low pass, high pass and notch filters can reduce 
the interferences on ECG signal, while muscles noise, muscle artefact and baseline wander 
cannot be eliminated because of their irregular occurrences and irregular morphological 
attributes. In this work, an adaptive filter has been used which gives full features of the 
ECG signal, and it is efficient in reducing the motion artefacts and muscle noise, muscle 
artefact, AC noise and baseline wander. The resultant output series named ecg_adp(nT) 
are generated by performing an adaptive filter to the differentiated series named ecg_der(nT). 
The adaptive filter expression is characterised by (Zhou et al., 2009) the following: 

       _ _ 1 _ 1, ,ecg adp nT ecg adp nT T ecg der nT n           (2) 

where α is the balance coefficient that is relative to the signal sampling frequency 
(default is 0.95). This type of filter is good in denoising, but the QRS complex does not 
appear clear. Figure 6 shows the raw input data and a comparison between using adaptive 
filter only and adaptive filter with derivative action where the effect of the derivative on 
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QRS complex appearance as well as the P and T waves is clear. Figure 6 shows the 
filtered ECG signal obtained where P, Q, R, S and T peaks are found using the feature 
search algorithm. 

Figure 6 The filtered data without the derivative action (see online version for colours) 

200 250 300 350 400 450 500 550 600 650

-4

-2

0

2

4

6

8

10

12

14

16

 

 

raw ECG

adaptive filter only

derivative plus adaptive filter

 

3.3 Feature extraction algorithm 

A segment of the ECG of 1000 samples (5 second window where the sampling frequency 
is 200 Hz) of data is sampled to obtain the features. We choose the size of the window 
such that multiple beats are present (five beats at least). Also, this is within the available 
RAM of the sensor node (10 Kbyte). Measuring ECG features such as R-R intervals, 
QRS complex PQ and width requires detecting Q, R, S, P and T peaks. In order to 
perform peak detection at low computational overhead, we develop a lightweight feature 
extraction algorithm. The main part of this algorithm is the detection of the R peaks. 
Other features depend on the detection of these peaks. The search algorithm is 
summarised as Algorithm 1, while Figure 7 shows the results of the search algorithm. 

3.4 Classifier design (Surawicz, 2009; Rautaharju, 2009) 

The normal ECG characteristics of sinus rhythm are as follows: 

 Rate: 60–100 bpm. 

 Rhythm: regular. 

 P-wave: uniform, upright, normal shape, one before each QRS complex. 

 QRS duration: 60–100 msec. 

 PQ interval: 120–200 msec. 

 QTc interval: 390–450 msec. 
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Algorithm 1 

1- Search for a maximum value within the sampled window which represents one of 
the R peaks (MAX). 

2- Search for a minimum value within the sampled window which represents one of 
S peaks (MIN). 

3- Obtain a threshold such that: 

Threshold R = MAX/2 and threshold S = MIN/2 

4- Find Ri peaks overall the sampled window which should be above threshold R 

5- For each Ri, create a sub-window [Ri to Ri+10] (S peaks appear normally after 
the R peaks by a few samples) samples to search for S peaks which should be 
below threshold S. 

6- For each Ri create a sub-window [Ri Ri–10] (Q peaks appear normally before the 
R peaks by a few samples) samples to search for Q peaks. Now the QRS complex 
has been obtained. 

7- To find P peaks, create a window [Ri –100 to Ri – 25] (P peaks appear before the 
Q peaks) and search for the maximum value. 

8- To find T peaks, create a window [Ri +25 to Ri+100] (T peaks appear after the S 
peaks) and search for the maximum value. 

Figure 7 The results of the feature extraction search algorithm (see online version for colours) 

 

3.4.1 The PQ interval 

The PQ interval starts at the beginning of the atrial contraction and ends at the beginning 
of the ventricular contraction. The PQ interval indicates how fast the action potential is 
transmitted through the AV node (atrioventricular) from the atria to the ventricles. 
Measurement should start at the beginning of the P-wave and end at the beginning of the 
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QRS segment. A prolonged PQ interval is a sign of a degradation of the conduction 
system or increased vagal tone. This is called the first, second or third degree AV block. 
A short PQ interval can be seen in the WPW syndrome in which faster-than-normal 
conduction exists between the atria and the ventricles. 

3.4.2 The QRS duration 

The QRS duration indicates how fast the ventricles depolarise. The ventricles depolarise 
normally within 100 msec. When this is longer than 110 msec, this is a conduction delay. 
Possible causes of a QRS duration of more than 110 msec include the following:  

 Blocked left bundle branch. 

 Blocked right bundle branch. 

 Electrolyte disorders. 

 Idioventricular rhythm and paced rhythm. 

3.4.3 The QT interval 

The normal QTc (corrected) interval indicates how fast the ventricles are repolarised, 
becoming ready for a new cycle. If QTc is less than 340 ms, short QT syndrome can be 
considered. One difficultly of QT interpretation is that the QT interval gets shorter as the 
heart rate increases. This problem can be solved by correcting the QT time for heart rate 
using the Bazett formula: 

 sec
c

QT
QT

RR interval
  (3) 

The classifier module is capable of identifying arrhythmic episodes, namely tachycardia, 
bradycardia, first, second or third degree AV block, left bundle branch and right bundle 
branch. The procedure for beat segmentation and classification for heart disease 
diagnosis is described in Algorithm 2. 

Algorithm 2 

Compute P, Q, R, S and T indices for each beat in the window. 

Find the average heart rate HR = 60/(average R-R intervals/sampling rate) beat per 
minute 

if HR < 60 bpm, then send alarm message for bradycardia 

if HR > 100 bpm, then send alarm message for tachycardia 

if no. of P-wave ≠ no. of QRS wave, then send alarm message for AV block 

if QRS duration > 110 msec, then send alarm message for conductance delay 

if QTc <340 msec, then send alarm message for short QT syndrome 
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4 Discussion 

In this work, we propose a new real-time lightweight algorithm that maintains the 
constraints of wearable wireless sensor network in storage memory and power 
consumption, such that not all ECG data are transmitted to the server for later processing. 
The ECG data are sampled, filtered, processed for feature extraction, and diagnosis for 
cardiac care on node. The proposed algorithm is a pure standalone sensor processing and 
is compared with Nabar et al. (2011), where a generative ECG model is used at the base 
station and its lightweight version at the sensor. The sensor transmits data only when the 
sensed ECG deviates from model-based values. In this work, the algorithm is developed 
for continuously monitoring the patient’s ECG data and analyse them on the node in real 
time, and can detect the abnormality. The first step of this work involves a design of filter 
which was initially done using the algorithm proposed by Zhou et al. (2009) where only 
adaptive filter has been used which cannot show a clear QRS complex alone. We were 
able to improve this algorithm by incorporating a differentiator along with an adaptive 
filter which shows a good result as shown in Figure 5. The differentiator has a drawback 
such that it is particularly sensitive to high frequency. To overcome this disadvantage, the 
adaptive filter has been used after the differentiator to eliminate the high-frequency noise 
occurring from the differentiator. The algorithm is also capable of data classification for 
cardiac disease diagnosis, which is important in patient monitoring. Other possible 
extensions of the algorithm can be made for more disease diagnosis. The MSP430 does 
not support a floating point in the sending payload message, so the overall computation 
was implemented inside the sensor node which will send only the diagnostic status as a 
code as shown in Table 1. 

Table 1 Code sample for some diagnostic cases 

Diagnostic Case status code 

Heart rate < 60 bpm Bradycardia 00 

Heart rate > 100 bpm Tachycardia 01 

No. of P wave ≠ no. of QRS AV block 02 

QRS duration > 110 msec Conductance delay 03 

QTc < 340 msec Short QT syndrome 04 

5 Conclusion 

The aim of this work is to design and implement a real-time algorithm which maintains 
the limitation of the resources in the used hardware. The algorithm is designed for online 
automatic ECG diagnosis such that it is used for long-term patient monitoring. The 
available memory in Shimmer unit was (10 KB) of RAM, the algorithm was optimised to 
be implemented in that platform such that the total amount of data used is about (9 KB) 
of RAM. Since the MSP430 does not have a floating point unit, TinyOS 2.1.2 was used 
for implementation of the algorithm which supports floating point computation. Our goal 
was to reduce the amount of streamed wireless data sent to the server for computation 
and decision-making. This goal was achieved through maintenance of the limited 
processing and storage resources of the sensor platform unit. This approach would 
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increase significantly the lifetime of the sensor node and the hence the overall monitoring 
system. Finally, for additional future work, we would like to incorporate other medical 
sensors such as EMG, GSR and body temperature. Also, studying the effect of the patient 
motion activity and body posture may be useful with ECG monitoring. 
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