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Abstract. In latest years, deep neural networks were observed to be the most influential among 
all innovations in the computer vision field, generating remarkable performance on image 
classification. Convolution neural networks (CNNs) are considering as an interesting tool for 
studying vision of biological because this category of artificial vision systems shows the 
capabilities of visual recognition similar to those of human observers. By improving the 
recognition performance of these models, it appears that they become more effective in 
prediction. Recent benchmarks have shown that deep CNNs are excellent approaches for object 
recognition and detection. In this paper, we are focusing on the core building blocks of 
convolution neural networks architecture. Different object detection methods that utilize 
convolution neural networks are discussed and compared. On the other hand, there is a simple 
summary of the common CNNs architectures. 

Keywords. deep learning; computer vision; convolution neural network; object detection; object 
recognition. 

1.  Introduction 
Computer Vision is an important computer science field that allows the computer to understand and 
predict the visual input to give appropriate output in the same way that human brain does with the retinal 
input (Akhtar N. et al, 2018). The Machine learning algorithms generate insight and help us make better 
decisions and predictions by finding natural patterns in data. In recent year, the machine learning finds 
great application in computational finance, object recognition in image, computational biology, and 
energy production, natural language processing, automotive, aerospace, and manufacturing. Three kinds 
of techniques are used in machine learning: (1) supervised learning, which is based on both input and 
output data. This type of machine learning method develops predictive models by using classification 
and regression techniques. (2) unsupervised learning, which groups and interpret data based only on 
input data. A common method in unsupervised learning that is used to divide the data into group of 
similar items is called clustering. (3) reinforcement learning which copies a very simple principle from 
nature. It is less common than supervised learning and unsupervised learning (LeCun Y. et al., 2015 & 
Kao Y. et al., 2018). Deep learning is a Machine Learning branch that is currently a very active research 
field in machine learning and pattern recognition society. The main benefits of deep learning over other 
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algorithms of machine learning are: it can create a new feature without an intervention of human from 
a limited feature set located in the training data set and its ability to process unstructured data while 
machine learning works only with labeled data. For the past two decade, the society is spending more 
time on websites and mobile devices that make the data rapidly accumulated. Deep learning can take 
advantage of this voluminous amount of data to facilitate the analytics, learning, and to make concise 
conclusions (Gheisari M. et al., 2017 & Mohammadi M. et al., 2017). 

The huge successes in a wide area of deep learning applications (i.e. self-driving cars, both voice and 
image recognition, etc.) makes the machine learning closer to artificial intelligence (Koohzadi M. et al, 
2017). Artificial intelligence is about more than just robots and computers. With each development, 
great minds all across the world are using the revolutionary capabilities of the technology to help people 
in ways that, not very long ago, may have seemed like moonshots. Machine learning and artificial 
intelligence are used for the blind and visually impaired people to better analyze fed data from cameras 
and sensors. Many devices utilize deep learning algorithms. These devices can describe visuals in great 
detail, and can give visually-impaired people independence in recognition object and navigation. In 
computer vision, the major breakthrough success of deep learning for image classification problem was 
introduced in 2012 by Alex Krihevsky on the Large Scale Visual Recognition Challenge (LSVRC). A 
deep convolution neural network (CNN) is adopted in this approach (Krizhevsky A. et al., 2012). Ever 
since then, a host of companies (like Google, Facebook, Amazon, Pinterest, Instagram) have been using 
deep learning at the core of their services. This paper is organized as following: Section 2 and 3 
demonstrate the concepts and the structure of convolution Neural Network. Section 4 presents the 
training of the network. Section 5 describes the CNN methods for object detection and the last Section 
6 describes the common CNN architectures.  

2.  CONVOLUTIONAL NEURAL NETWORKS INDIVIDUAL CONCEPTS 
Convolutional Neural Networks (CNN) which is also called ConvNets is one type of feedforward neural 
networks which is well suited for the tasks related to the computer vision field especially in object 
recognition. The main advantage of CNN over neural network is its special structure as shown in Figure 
1 in which sparse local connectivity between layers will reduce number of the parameter leads to faster 
calculation speed and shared weight (like a kernel filter) will help capture the signal local properties 
(Yan Z. et al., 2017 & Pratt H. et al., 2016). 

Convolutional Neural Networks have multiple sequential layers as the standard neural networks in a 
way that the outputs of one layer are the inputs for the next layer. Most concepts of neural networks are 
used on CNNs like using stochastic gradient descent and backpropagation to estimate the weights.  

CNN makes the training faster and deeper with more layers due to it uses the three major ideas: local 
receptive fields, pooling and shared weights and biases which are defined below: (Zhi-Peng F. et al., 
2014 & Krebs S. et al., 2017). 

 

 Figure 1 The CNN structure 
 

2.1.  Local receptive fields 
When comparing CNNs with common neural networks, one of the most distinctive characteristics of the 
ConvNets is the use of local receptive fields where convolutional layers input pixels will be connected 
to a layer of hidden neurons. This, against traditional neural networks, won’t connect every input pixel 
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to every hidden neuron. Instead of that convolutional layers will only connect to a small, localized region 
of the input image. 

The output volume size (number of neurons in the output volume) is controlled by 3 hyperparameters 
after the size of filter (or receptive field) is chosen: the depth, stride and padding (Neena A. et al., 2017 
& Dumoulin V. et al., 2018). 
1) Depth of an output volume is different from depth of a network. Depth of an output volume 

corresponds to the number of filters in a layer while network depth represents the number of 

layers in a network. 

 Stride parameter refers to the stride by which the filter moves along an input. For example, if a 
stride is set to 1 (S=1) the filter will move 1 at a time. Figure 2 illustrates an example of a 77 
input volume with 33 filter. 

 Zero-padding means padding zeros around the input boarder. Zero-padding is used to match the 
input and output height and width (in early layers, the size of output volume will reduce faster) 

by applying the formula 𝑧𝑒𝑟𝑜 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 ሺ𝑃ሻ ൌ
ሺ௄ିଵሻ

ଶ
 where K represents the filter size. Figure 

3 describes zero-padding. The relationship between the input and output volumes is governed 
by the following equation where Wout and Win is the output and input lengths respectively: 

 W୭୳୲ ൌ
ሺ୛౟౤ି୏ାଶ୔ሻ

ୗ
൅ 1                                                                                                  

(1) 

 The stride and zero-padding are also used to ensure that the output volume size will be an integer 
number. 

2.2.  Pooling 
Another characteristic that distinguishes CNNs from the standard neural networks is the existence of 
pooling layers that are used to simplify the information that arrives from the convolutional layers by 
reducing it. 

2.3.  Shared weights and biases  
The last difference between CNNs and standard neural networks is the use of unique shared weights and 
bias (or also called filter) for each hidden neuron on CNNs. This means that in a given convolutional 
layer, all neurons will have the same response to the same feature from the previous layer that can be 
for example a vertical edge. Essentially this is done due to the high probability of the learned feature to 
be useful in other parts of the image. In other words, the main consequence of sharing the bias is that 
the feature can be detected by getting the translation invariance property presented on CNNs. 

3.  CONVOLUTIONAL NEURAL NETWORKS INDIVIDUAL CONCEPTS 
The basic architecture of ConvNet (as shown in Figure 4) must have (1) convolutional layer, 
(2) pooling layer, and (3) fully connected layers, as follows (LeCun Y. et al., 2015 & Yu K. et 
al. 2017 & Srivastava N. et al., 2014): 
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Figure 2. The convolution 33 kernel over a 77 input volume 

 

 
Figure 3 The zero-padding P=2 adds two borders of zero around the input volume, this is given a 1414 
volume. When convolution is applied with 55 kernel filter and S=1, the output volume will be 1010 

3.1.  The convolution layer 
The Convolutional layer consists of a set of filters. The values of these filters are the learnable 
parameters of the layer. The idea of a convolution when talking about CNNs is to extract the features 
from an image preserving the spatial connection from the pixels and the learned features inside the image 
with the use of small equally-sized tiles. For an input image with size MN3 and the first convolutional 
layer K filters of size IJ where I <<M & J<< N and 3 represents the color channels. The learned features 
are a consequence of a mathematical operation between each element from the input image and the filter 
matrix.  
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Figure 4 Basic CNN architecture 

 
This is defined as: 

𝑥௜,௝
௟ ൌ ∑ ∑ 𝑤௔,௕

ሺ௟ିଵ,௙ሻ𝑦௜ା௔,௝ା௕
ሺ௟ିଵሻ

௕ ൅ 𝑏𝑖𝑎𝑠௙௔                                                                                       (2) 

where 𝑦௜,௝
௟  is the output of layer 𝑙, 𝑤௔,௕

ሺ௟ିଵ,௙ሻ is the weight of filter f which is applied at layer l-1. 
In other words, the filter (also known as feature detector), slides through all elements of the image 

and is multiplied by each one producing the sum of multiplication that produces a single matrix named 
Feature Map. The depth together with the stride will control the size of the Feature Map matrix. Figure 
5 shows a convolution of a 55 image with a 33 filter matrix and stride of 1. 

 
Figure 5 Example of a convolution 

Additionally, an operation called ReLU (Rectified Linear Unit) is usually used as an activation 
function that adds non-linearity into the CNNs allowing it to learn nonlinear models. It is an operation 
on top of each pixel that replaces all negative pixels inside the feature map by zeros.This rectifier 
technique is mostly used when compared with Hyperbolic Tangent or Sigmoid Functions since ReLU 
improves significantly the performance of CNNs for object recognition. ReLU function σ is applied to 
𝑥௜,௝
௟  which is the input to the current neuron as seen in equation (3) to produce the output of the layer 

𝑦௜,௝
௟  in equation (4). 

𝜎൫𝑥௜,௝
௟ ൯ ൌ max ሺ0, 𝑥௜,௝

௟ ሻ                                                                                                                (3)                                

𝑦௜,௝
௟ ൌ 𝜎ሺ𝑥௜,௝

௟ ሻ                                                                                                                               (4) 

3.2.  The pooling layer 
As mentioned previously, pooling is one of the ConvNets distinctive concepts. The idea of the pooling 
step is to reduce the dimensionality of each feature map, eliminating noisy and redundant convolutions, 
and computation network yet retaining most of the important information. There are multiple types, like, 
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Max, Sum or Average, however the most common and preferred one is max-pooling. In max-pooling it 
is defined a spatial neighborhood and gets the max unit from the feature map based on that filter 
dimension that can be, for example, a 22 window. Figure 6 shows an example of max-pooling 
operation, with a 22 window and stride of 2 taking the maximum of each region reducing the 
dimensionality of the Feature Map. 

 

 
Figure 6. Example of max-pooling 

 

3.3.  The fully connected layer 
Being one of the latest layers of a ConvNet, coming right before the output layer, the Fully Connected 
layer (FC) works like a regular Neural Network at the end of the convolutional and pooling layers. Every 
neuron from the layer before the FC layer is connected to every neuron on the fully connected one. The 
FC Layer purposes is to use the output features from the previous layer (that can be a convolution or a 
pooling layer) and classify the image based on the training dataset. Basically, the fully connected layers 
of a CNN behave as a classifier with convolutional layers outputs as the classifiers input. 

 

4.  TRAINING 
To achieve low error rates, it is recommended that a CNN is trained on a massive database of images. 
Backpropagation is used to train the CNN by calculating a gradient that is needed in the updating of the 
weights in the network. To train the CNN there are a few different steps depending on which layer that 
is being trained. In this section, the backpropagation for each layer in CNN architecture is discussed 
(Liu T. et al., 2015 & Wei B. et al., 2017 & LeCun Y. et al., 1998): 

4.1.  Backpropagation - fully connected layers 
In the FC layer the backpropagation method is implemented. First, the error or cost function 
denoted Eሺy୐ሻ at the output layer needs to be determined by the squared error loss function as viewed 
in equation (5). 

E୒ ൌ
ଵ

ଶ
∑ ∑ ሺtarget୩

୬ െ y୩
୬ሻଶୡ

୩ୀଵ
୒
୬ୀଵ                                                                                             (5) 

where N is the number of training examples, c is the number of classes supposed to be identified, 
target୩

୬ is the n:th training example target of class k, and y୩
୬ is the actual output from the last layer for 

training example n's belonging to class k. 
The partial derivative from the output layer is the derivative of the error function and this can be seen 

in equation (6). 
ப୉

ப୷౟
ై ൌ

ୢ

ୢ୷౟
ై Eሺy୐ሻ                                                                                                                           

(6) 

     The (
ப୉

ப୶ౠ
ౢ), commonly known as delta, needs to be calculated for each input to the current neuron. 
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ப୉

ப୶ౠ
ౢ ൌ σ′ሺx୨

୪ሻ
ப୉

ப୷౟
ౢ                                                                                                                          (7) where 

σሺx୨
୪ሻ represents ReLU function σ is applied to  x୨

୪ which is the input to the current neuron. When this is 
done for all neurons, the errors at the previous layer needs to be calculated. This is given by equation 
(8) 

ப୉

ப୷౟
ౢషభ ൌ ∑w୧୨

୪ିଵ ப ୉

ப୶ౠ
ౢ                                                                                                                        (8) 

where w୧୨
୪ିଵ is the weight connected to the input x୨

୪ in the next layer. Then equations (7) and (8) are 
repeated through all fully connected layers in the network until the input to the first fully connected 
layer is reached. Hence, the gradients to all of the weights in the fully connected part of the network are 
determined. This gradient is then multiplied with the negative learning rate which is added to each 
corresponding weight and thus the higher reasoning, or dense layers, of the network has trained on one 
training example. Equation (9) shows the change in the weight, which may be added to the old weight: 

∆w୧୨
୪ିଵ ൌ െη

ப୉

ப୷౟
ౢషభ                                                                                                                        

(9) 
where η is the learning rate. 

4.2.  Backpropagation - max pooling layers 
The backpropagation in the convolutional layers as shown in Figure 7 are different from that performed 
in the FC layer. In the FC  layers, the gradients for each weight needs to be updated for the current layer. 
Since the convolutional layer shares weights, every single x୧,୨

୪  expression that includes the weight wୟୠ 

must be included. By applying the chain rule in the following way to compute 
ப୉

ப୵౗ౘ
, the gradient 

component for the individual weights can be obtained. This means measurement the affection of loss 
function E according to the change in a single pixel in weight kernel: 

ப୉

ப୵౗ౘ
ൌ ∑ ∑ ப୉

ப୶౟ౠ
ౢ

ப୶౟ౠ
ౢ

ப୵౗ౘ

୒ି୫
୨ୀ଴

୒ି୫
୧ୀ଴                                                                                                      (10) 

Where,   
ப୶౟ౠ

ౢ

ப୵౗ౘ
ൌ yሺ୧ାୟሻሺ୨ାୠሻ

୪ିଵ                                                                                                    

(11) 
therefore, get equation (12). 
ப୉

ப୵౗ౘ
ൌ ∑ ∑ ப୉

ப୶౟ౠ
ౢ yሺ୧ାୟሻሺ୨ାୠሻ

୪ିଵ୒ି୫
୨ୀ଴

୒ି୫
୧ୀ଴                                                                                            (12) In 

order to calculate the gradient, the value of 
ப୉

ப୶౟ౠ
ౢ  must be known. This can be calculated by using the chain 

rule again as in equation (13) 
ப୉

ப୶౟ౠ
ౢ ൌ

ப୉

ப୷౟ౠ
ౢ

ப୷౟ౠ
ౢ

ப୶౟ౠ
ౢ ൌ

ப୉

ப୷౟ౠ
ౢ

ப

ப୶౟ౠ
ౢ ቀσ൫x୧୨

୪ ൯ቁ ൌ
ப୉

ப୷౟ౠ
ౢ σ′൫x୧୨

୪ ൯                                                                        (13) 

Since the error is already known at the current layer, the deltas can be calculated easily by taking the 
derivative of the activation function. The activation function, which is max ሺ0; x୧୨

୪ ሻ, can only give the 

answer one or zero except for x୧୨
୪ ൌ 0 when its derivative is undefined. After this the error needs to be 

propagated back to the previous layer. 
Once again this is achieved by applying the chain rule as seen in equation (14) 
ப୉

ப୷౟ౠ
ౢషభ ൌ ∑ ∑ ப୉

ப୶ሺ౟ష౗ሻሺౠషౘሻ
ౢ

ப୶ሺ౟ష౗ሻሺౠషౘሻ
ౢ

ப୷౟ౠ
ౢషభ

୫ିଵ
ୠୀ଴

୫ିଵ
ୟୀ଴ ൌ ∑ ∑ ப୉

ப୶ሺ౟ష౗ሻሺౠషౘሻ
ౢ wୟୠ

୫ିଵ
ୠୀ଴

୫ିଵ
ୟୀ଴                                 (14) 

By looking at this equation, this is a convolution where wୟୠ have been flipped along both axes. It is 
also important to note that this will not work for the top- and left-most values. It is therefore necessary 
to pad the top and the left with zeros as illustrated in Figure 8. 
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Figure 7. The basic idea of Backpropogation in convolution layers 

 

 
Figure 8 Backpropagation results with convolution 
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5.  DATASETS 
Many image datasets have been released for training and benchmark object detection methods such as 
PASCAL VOC dataset (Everingham M. et al., 2010), ImageNet dataset (Deng J. et al., 2009) and COCO 
dataset (Lin T. et al., 2015). To evaluate methods in object detection, the performance metric is used 
(Bashir F. et al., 2006 & Yin F. et al., 2007). The common metric used to measure the object detector 
accuracy is called the mean Average Precision (mAP). 

6.  EVOLUTION OF CNN FOR OBJECT DETECTION 
Object detection in images is one of the most direct uses of CNNs. Recognize an object in an image has 
attached many challenges due to the variations that each object or the specific image could have like the 
illumination or viewpoint. The meaning of object detection is recognizing and localizing objects in an 
image (Zhou X. et al. 2017 & Pei T. et al., 2016). 

In 2012, Krishevsky et al. demonstrated significant performance gains on the ImageNet classification 
task using a CNN (Krizhevsky A. et al., 2012), and afterward many successes could be achieved for 
object detection with CNN. Different methods of object detection that uses CNNs are discussed and 
compared in the following subsections. 

6.1.  Region-based CNN (R-CNN) 
Girshick et al. proposed R-CNN method (Girshick R. et al., 2014) achieves a great accuracy of object 
detection by using ConvNet. R-CNN forward pass computation has two stages. In the first one, the 
regions of interest (ROIs) which represent a set of category-independent bounding boxes are generated. 
These bounding boxes have a high likelihood of containing an interesting object. The region generation 
proposal methods like selective search, in which the neighboring pixels with the same color or intensity 
are combined to generate an object proposal, are used for generating these ROIs. There are two popular 
methods: Selective search and EdgeBoxes . 

The features from each region proposal are extracted by using a convolutional network. The sub-
image within   each  proposal  is  warped  to  get  the required size of CNN input and then fed to the 
convolution neural network. After that the extraction features are input to support vector machines 
(SVM) in which the final classification is provided. Figure 9 describes the R-CNN stages. 

R-CNN has several disadvantages: (1) the training is very slow due to multiple stage pipeline training 
(beginning with a ConvNet for feature extraction is trained, after that the SVMs for classification are 
learnt and finally a bounding box regressor is training). (2) slow speed of object detection because during 
test time, feature extraction from each object proposal in all test images is done. (3) feature extraction 
from each object proposal in each image required many space of storage (Girshick R. et al., 2014 & Wu 
T. et al., 2017). Table 1 shows mAP that is achieved by the best R-CNNs models. 

 
Figure 9 R-CNN Stages (Girshick R. et al., 2014) 

 
Table 1 Mean average precision (%) of (R-CNN) models. 
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6.2.  Fast R-CNN 
Fast R-CNN (Girshick R., 2015) was introduced by Girshick in 2015 to reduce the time and 
computational cost spent on the R-CNN detection network, and its use enabled this algorithm to achieve 
near real-time detection rates if the time spent on region proposals is ignored. Fast R-CNN enables an 
end-to-end detector combining all models into a single network. In other words, the Fast R-CNN 
framework trains a CNN, a classifier and a bounding box regressor in a unique model, while previously, 
for example on R-CNN, a different model was used to extract features from the input image by using a 
CNN, to classify with an SVM and other to predict the bounding boxes. The Fast R-CNN architecture 
has some particularities starting in the input requirements taking, as usual on a ConvNet, an image and 
respective object annotations but in addition a set of object proposals representing the regions of interest 
(RoIs) of the images that will be used during the RoI pooling layer. Primarily the entire image is 
processed with multiple convolutional and pooling layers to produce a convolutional feature map. This 
first operation is one of the gains, in terms of velocity, that Fast R-CNN achieves when compared with 
R-CNN because instead of running a CNN for each region of interest, it runs a single CNN for the entire 
image producing at the end the mentioned feature map. After the first stage is completed, the second 
stage of the framework begins, where for each object proposal a RoI pooling layer, using max pooling, 
gets a small fixed size vector from the feature map. Then by a sequence of FC layers, it is mapped to a 
feature vector that finally splits into two output vectors per RoI: one for the classifier (usually softmax) 
to estimate the probability of each object class, while the other one with the bounding box regressor that 
outputs the coordinates for each object class. Figure 10 shows the Fast R-CNN architecture. 

 
Figure 10 Fast R-CNN stages (Girshick R., 2015) 

 
The drawback of Fast R-CNN is similar to that of R-CNN that uses traditional region generation 

proposal techniques such as selective search and EdgesBoxes. These become a performance bottleneck 
because they are computationally expensive (Girshick R., 2015 & Jiang H. et al., 2017). The mAP scores 
of the best Fast R-CNNs are shown in Table 2. 

 
Table 2 Mean average precision (%) of (Fast R-CNN) models. 

 

6.3.  Faster R-CNN 
Faster R-CNN, introduced by Microsoft Research in 2016 (Ren S. et al., 2016), is a ConvNet based 
method and it has shown very good results in object detection tasks. In this framework, the Region 
Proposal Networks (RPN) is introduced.  

A separate region proposal network (RPN) is used for detecting regions from an input image that 
most likely contain objects. These region proposals are fed to detection network, to make the final 
decision about object existence and bounding boxes. The important thing is that the computations will 
be more efficient because RPN shares convolutional layers with the object detection network. It creates 
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multiple region proposals that have different scales and aspect ratios by looking at both objectness scores 
and map positions. RPN combined with Fast R-CNN in Faster R-CNN model is considerably faster than 
the Selective search method combined with R-CNN and Fast R-CNN. Faster R-CNN architecture 
merges both object detection and recognition computations back into one using a concept of Region 
Proposal Network which is a small extension of original recognition network. The RPN is put before 
last pooling layer and consists of convolutional layer of size 33 (where width dimension is equal to 
width of preceding layer) and feeds the output of this layer into 2 layers: box-regression (reg) layer and 
box-classification (cls) layer which are both implemented as a convolutional layer of dimension11 as 
illustrated in Figure 11(a). The reg and cls layers outputs 4k and 2k dimensional vectors respectively, 
where k stands for number of so called anchors at the processed position. Each anchor stands for a 
different setting of scales and aspect ratios at which RPN is analyzing given position. By default three 
different scales and three different aspect ratios are used resulting in k=9. This approach ensures 
translational invariance of anchors. Reg layer estimates regression of possible bounding box of an object 
and cls layer computes 2 probabilities (object or not-object) in each anchor at a given position. Outputs 
of this RPN network are then fed into Fast R-CNN part of networks as shown in Figure 11(b), which 
expects RoI proposals and feature maps of last convolutional layer and applies so called RoI pooling 
effectively replacing last max pooling layer. RoI pooling divides each region of RoI proposal of 
dimension wh into grid of size WH where W and H are parameters of a layer and performing classical 
max pooling on each cell of size w/Wh/H effectively squashing features of any RoI into fixed length 
vector of size WH. This RoI pooled vector is then fed into usual FC layers where the output at the end 
actually consists of two different output layers, one computing probability of a given class and the other 
one estimating positions of bounding box depending on found class (Ren S. et al., 2016 & Eggert C.et 
al., 2017 & Lee C. et al., 2016). The mAP that is obtained by the best Faster R-CNNs are shown in Table 
3. 

Table 3 Mean average precision (%) of (Faster R-CNN) models. 

 
 
 
 
The model designs of R-CNN, Fast R-CNN and Faster R-CNN are illustrated by comparing the 
differences in Figure 12. 

 
Figure 11 (a) Region Proposal Network (b) Faster R-CNN stages 
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Figure 12 Summary of methods in the R-CNN family 

6.4.  You Only Look Once (YOLO): 
Another object detection framework called (YOLO) is proposed by Redmon et al in 2016 (Redmon J. 
et al., 2016) to use features from the entire image to predict object bounding box instead of sliding 
windows on the last convolutional feature maps. Only one neural network is used to process the entire 
image. This network splits image into blocks (regions) to predict bounding boxes and probabilities for 
each block (region). The predicted probabilities are used to weight these bounding boxes.  The YOLO 
architecture in simple terms consists of an SS grid cells of classifiers and regressors. Each grid cell 
consists of bounding box regression and classification heads that share the same convolutional features. 
Each grid has B bounding box regression heads that predicts a bounding box each with 5 values x, y, w, 
h and confidence of an object being there. Where (x, y) is the center of the bounding box relative to the 
grid cell. Each grid cell also contains a classifier which predicts C conditional class probabilities as well. 
So the overall final output from a YOLO network is tensor of size: SS(5*B+C). 

In other word, each grid cell is considered as a standalone system specifically focusing on a smaller 
region within the input image with B regression heads, each predicting a bounding box and a confidence 
which at training time must equal the intersection over union (IOU) between the predicted box and the 
ground truth box if the object is present, otherwise IOU is zero. Thus in YOLO the 
confidence predicted by each regression head is defined as Pr(object)*IOU . Then within each grid there 
is also a classifier head that predicts C conditional probabilities per class Pr(classiobject). So Baye’s 
rule is used to get equation (15): 

Prሺ𝑐𝑙𝑎𝑠𝑠𝑖|𝑜𝑏𝑗𝑒𝑐𝑡ሻ ∗ Prሺ𝑜𝑏𝑗𝑒𝑐𝑡ሻ ∗ 𝐼𝑂𝑈௣௥௘ௗ
௧௥௨௧௛ ൌ 𝑃𝑟ሺ𝑐𝑙𝑎𝑠𝑠௜ሻ ∗ 𝐼𝑂𝑈௣௥௘ௗ

௧௥௨௧௛                                 (15) 
The overall confidence score encodes the class probabilities and how well the predicted 

box fits the object. Low confidence detections can then be thresholded out leaving the strong 
detections. Since neighboring grid cells will also be activated, this will result in 
multiple bounding boxes around a single object. So non-maxima suppression is applied in order 
to keep the strongest detection around a single object. So the speedup comes about because this 
is purely feedforward whereby the system outputs  SSB bounding 
boxes and SSC confidence scores in one glance hence “you only look once”. This is faster 
than running a regional proposal network (RPN) to get p proposals and then running 
classification phase on each of the p proposals as done in other techniques. It is also faster than 
methods that use a sliding window technique to scan an image at multiple locations (Redmon 
J. et al., 2016 & Javad M. et al., 2017 & Ren P. et al., 2017). 

The drawback of YOLO Compared with Faster R-CNN that YOLO is less accurate. The 
mAP scores of YOLO model are shown in Table 4. 
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Table 4 Mean average precision (%) of (YOLO) models. 

 

6.5.  Single-Shot-Multibox-Detector (SSD) 
The extension of the YOLO method is Single Shot Multibox Detector (SSD) network by W. Liu et al. 
(2016) (Liu W. et al., 2016). The SSD network also predicts bounding boxes and classication in one 
single feed forward but extents it with a hypercolumn approach.  The hypercolumn approach is used to 
combine multiple feature maps to detect objects of various sizes. The SSD network is called single shot 
since both object localisation and classication are done within a single feed forward through the network. 

The network is a fully convolutional network; therefore it can be used for images with any resolution. 
Two architectures are proposed in the original paper: SSD512 architecture for an input resolution of 512 
x 512 pixels and SSD300 for an input resolution of 300 x 300 pixels.  

The input image passes through many convolutional layers with filters of different sizes. 
After that, a 3x3 sized convolutional filter is applied on the feature map to produce a bounding 
boxes set that is similar to the anchor boxes of Fast R-CNN. 

Finally, non-maximum suppression method is used to collect overlapping bounding boxes  
together into one box. Non-maximum suppression looks through the boxes that contains the 
same object to produce the final detections by keeping the one with the highest confidence and 
discarding the others. 

The best SSD models have mAP score as shown in Table 5. This method has much worse 
performance for small objects. 

 
Table 5 Mean average precision (%) of (SSD) models. 

 

7.  COMMON CONVENT ARCHTICTURES 
Despite the fact that ConvNet history goes back to 1980s (Rumelhart D. et al., 1985), it has been in 
recent years when ConvNets have gained popularity in computer vision tasks, mainly due to availability 
of computational resources.  

7.1.  LeNet 
ConvNet was in back in 1998 when the first successful ConvNet application was developed. It was 
called LeNet (LeCun Y. et al., 1998) and it could classify handwritten digits. LeNet had two stacked 
convolutional layers, followed by 3 FC layers. After each convolutional layer there was pooling layer. 
LeNet had 340K connection and only 60K parameters because of weight sharing. 

7.2.  AlexNet 
ConvNets became popular much later, in 2012, when AlexNet (Krizhevsky A. et al., 2012) was 
introduced. AlexNet could classify images on different categories and it won ILSVRC 2012 competition 
by a significant margin to the second contestant. AlexNet had deeper and spatially larger network 
architecture than LeNet. It had five stacked convolutional layers, followed by three FC layers. In 
addition, three pooling layers followed each of the first, second and fifth convolutional layer. The 
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architecture of AlexNet is illustrated in Figure 13(a). The stride on the first convolutional layer is 4. All 
other convolutional layers have stride of 1. All pooling use 33 kernel and stride of 2. The last layer 
outputs class probabilities for 1000 categories. AlexNet had 60M parameters. ZF Net in 2013 (Zeiler M. 
et al., 2014) was an improvement to AlexNet. It had similar architecture, only difference is filter size 
and stride that were smaller in the first convolutional layer. Because of this, the first and second 
convolutional layer retained much more information, which in turn improved classification 
performance. 

7.3.  VGG Net 
VGG Net (Simonyan K. et al, 2015), introduced in 2014 by Simonyan and Zisserman, showed that by 
using very small convolution filters (3  3) and pushing the depth of the network to 16-19 layers (see 
Figure 13(b)), a significant improvement on the prior architectures could be achieved on image 
recognition tasks. VGG Net placed second in the ILSVRC 2014 image recognition challenge. Since 
then, VGG Net has been used successfully also in object detection, most importantly in Fast R-CNN 
(Girshick R., 2015) and Faster R-CNN (Ren S. et al., 2016). 

7.4.  GoogleNet 
GoogleNet (Szegedy C. et al, 2015), introduced by Szegedy et al., ranked first in the ILSVRC 2014 
image recognition challenge. GoogleNet presented a new ConvNet architecture, where the network 
consisted of Inception Modules. The key idea of Inception Module is to feed the input data 
simultaneously to several convolutional layers and then concatenate outputs of each layer into a single 
output. Each convolutional layer has a different filter size and they produce spatially equal sized outputs. 
Because of this, a single Inception Module can process information at various scales simultaneously, 
thus leading to better performance. An Inception Module can also have a pooling layer side by side with 
convolutional layers. In order to avoid computational blow up, Inception Modules utilize 11 
convolutional layers for dimension reduction. A typical Inception Module is described in Figure 13(c). 
There are 3 convolutional layers with filter sizes 11, 33 and 55, in addition to one pooling layer with 
filter size 33. Dashed volumes are 11 convolutions implementing dimension reduction. Stride of 1 is 
used in every layer. The main benefit of this architecture is that both the depth and width of the network 
are increased, while keeping computational complexity in control. GoogleNet have 5M parameters 
(AlexNet 60M). Since introducing it, a few follow-up versions with performance improvements have 
been proposed (Szegedy C. et al., 2016 & Ioffe S. et al., 2016).  

 

 
Figure 13 The architecture of (a) AlexNet (b) 16 layer VGG Net  (c) a typical Inception Module 
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7.5.  Residual Network 
In 2015, He et al. introduced the Residual Network (ResNet) architecture (He K. et al., 2016), which 
won the ILSVRC 2015 on image recognition. They replaced traditional stacking convolutional layers 
with Residual Modules. In a single Residual Module, a couple of stacking convolutional layers is 
bypassed with a skip connection. The output of the skip connection is then added to the output of the 
stacking layers. Every convolutional layer in a Residual Module utilizes Batch Normalization (Ioffe S. 
et al., 2015) to cope with internal covariate shift. ReLU (Nair V. et al. 2010 & Glorot X. et al. 2011) is 
used for non-linearity. Two different Residual Modules, basic and bottleneck, were proposed by the 
authors that is described in Figure 14. Residual Module keeps the spatial size unchanged. The purpose 
of 11 convolutions in bottleneck Residual Module, before and after 33 convolution, is to reduce and 
then increase (restore) dimensions, leaving the 33 layer a bottleneck with smaller input/output 
dimensions.  

A typical ResNet architecture consists of a great number of stacked Residual Modules, making the 
network much deeper (from tens to hundreds of layers) compared to traditional networks. The authors 
of ResNet demonstrate that it is easier to optimize a very deep Residual Network than its counterpart, a 
traditional network with stacking layers. With Residual Networks, the training error is much lower when 
the depth increases, which in turns gives accuracy improvements. Since introducing the Residual 
Network architecture, several improvements have been proposed. The authors, He et al., introduced a 
new Residual Module, which further makes training easier and improves generalization (He K. et al., 
2016). Zagoruyko and Komodakis argued that very deep ResNet architectures are not needed for state-
of-the-art performance (Zagoruyko S. & Komodakis N., 2016). They decreased the depth of the network 
and increased the size of a Residual Module by adding more features and convolutional layers. Their 
Wide Residual Network trains faster and it outperformed previous ResNet architectures on CIFAR-10 
and CIFAR-100 datasets by a distinct margin. Currently, ResNets are state-of-the-art ConvNet models 
and they have been shown to perform remarkable well both in image recognition and human pose 
estimation tasks. 

 

 
Figure 14 The architectures of (a) basic and (b) bottleneck Residual Modules 

8.  CONCLUSION 
Convolution Neural Networks (ConvNets or CNNs) significantly enhances the capabilities of the 
feedforward network such as MLP by inserting convolution layers. As seen, the two main advantages 
of Convolution Neural Networks are: (a) parameter sharing which is reduced the computation cost and 
the network complexity. (b) sparsity of connection which helps in training with smaller training sets 
since each output value depends only on a small number of inputs that makes CNN translation 
invariance. CNNs are the basis of all modern computer vision models. Many perceptual tasks have been 
performed with help of CNNs such as handwriting recognition, traffic sign recognition, pedestrian 
detection, human action recognition, object recognition, Scene parsing, Breast cancer cell mitosis 
detection, etc. In this paper, many methods of object detection were discussed based on their advantages 
and disadvantages. Table 6 summarizes the comparison in performance and speed between these 
detection methods on PASCAL VOC 2007. 
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Table 6 Detection frameworks on PASCAL VOC 2007 
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