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Abstract 

In this research, the structural behavior of reinforced concrete brackets cast with concrete containing different types of 

fibers was studied. Seven samples of reinforced concrete corbels were cast and tested. One specimen was cast without fiber 

as a reference, and the other samples were made with six different types of fibers at a constant volume fraction (1% of the 

total concrete volume). The fibers used in the research were made of two different materials: steel and polyolefin. One 

specimen was cast with polyolefin fiber, and in the five remaining samples, steel fiber was used. Straight, crimped, and 

three different dimensions of hooked fiber were used. The results showed that the corbels with straight and hooked end 

steel fiber (6, 5, and 3 cm length), crimped steel fiber sized 3 cm, straight steel fiber sized 12 mm, and straight polyolefin 

fiber sized 6 cm showed 69.2%, 57.7%, 38.5%, 61.5%, 92.3%, and 100% higher cracking loads than the control corbel 

made with normal concrete, respectively, as well as exhibiting (51.7%, 48.3%, 31.0%, 24.1%, 12.1%, and 3.4%) higher 

ultimate loads than the control corbel. From these results, it can be concluded that the shape of the steel fiber clearly affects 

the ultimate load. For the same length, and despite the lack of aspect ratio, steel fibers gave an increase in the maximum 

load of 46.6% when compared with polyolefin fibers. 
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1. Introduction 

According to ACI-318M-19, corbels are “short cantilevers that operate more like simple trusses or deep beams” for 

ratio (a/d) values up to unity, the shear friction method can be used, and for values less than two, the strut and tie model 

can be used [1]. These elements, along with their supports, are cast in one piece. They are designed to sustain large shear 

stresses under bending in a minimal amount of time [2]. Shearing along the column-corbel interface, tension tie yielding, 

compression strut crushing or splitting, and localized bearing or shearing failure under the loading plate are all possible 

failure modes for corbel. A corbel is a shear-critical structure and is dominated by disturbed regions (D-regions), as 

shown in Figure 1. ACI 318-19 [1] provides a typical steel reinforcement distribution (Figure 2) for resisting the 

customary disturbed stress distribution that is compatible with the strut-tie model (Figure 3). 

Reinforced concrete corbels carry horizontal and vertical loads from beams to columns. In these elements, the shear 

span-to-depth ratio (a/d) is generally less than one, and they are subjected to forces in support locations. Several research 

studies have consisted of attempts to determine the influencing factors on the structural response of reinforced concrete 

corbels. An experimental and analytical program was used to determine the strength of such members under transfer 
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and vertical forces and to explain the effects of variables on the response of concrete brackets; these variables included 

the shape and dimensions of the concrete brackets, the shape and proportions of the corbels, the amounts of main and 

shear reinforcement, and the concrete strength [3, 4]. 

 

         Figure 1. Corbel D-regions                     Figure 2. ACI typical reinforcement                   Figure 3. Strut-tie model 

Steel fiber-reinforced concrete (SFRC) is manufactured using cement with aggregates and individual steel fibers. 

The steel fibers for SFRC have short, discrete lengths with an aspect ratio (length-to-diameter ratio) varying between 20 

and 100. The steel fibers are small enough to be spread randomly in the unhardened concrete mix in the concrete mixing 

process [5]. The influence of longitudinal reinforcement and stirrups, as well as steel fibers, on the behavior of RC 

corbels has been investigated [6, 7]. Many researchers have examined the behavior of steel fiber-reinforced concrete 

corbels; a series of experimental programs were carried out on normal strength SFRC corbels by Fattuhi and Hughes [8-

14]. Fattuhi and Hughes studied the effects of adding steel fiber on the shear strength of corbels. The authors used 

various variables were concrete compressive strength, fiber content, shear span, fiber dimensions, depth, and 

longitudinal reinforcement amount and observed the structural behavior of SFRC corbels. Fattuhi (1994) [15] also 

considered the mechanical behavior of trapezoidal normal strength SFRC corbels. Campione et al. (2007) [16] 

experimentally investigated the flexural behavior of corbels cast with fibrous reinforced concrete and recommended 

simple analytical expressions for bearing capacity considering the contribution of steel reinforcements and fibers in 

shear resistance. Campione (2009) [17] carried out two experimental studies on SFRC corbels, the first, the performance 

of SFRC corbels under the combined influence of horizontal and vertical loads was investigated. In another 

investigation, the flexural response of SFRC brackets was determined. However, few studies have been performed on 

the response of corbels made with fiber-reinforced concrete containing many types of fibers, in particular, polyolefin 

fibers. 

Atif et al. [18] studied the shear response of steel fiber-reinforced concrete corbels made with high strength concrete. 

The fiber volume fraction, concrete compressive strength, a/d ratio, main tensile steel reinforcement ratio, and stirrup 

inclusion were the test parameters. The results show that adding horizontal stirrups or steel fibers enhances the ductility 

and shear strength of the tested corbels, resulting in a more ductile mode of failure. The load-carrying capacities 

calculated from the test results was compared to those calculated from the ACI 318-08 equations and those calculated 

using proposed equations by other researchers. Mohammed et al. [19] investigated the strength of RC corbels (self-

consolidating) with different steel fiber volume fractions, compressive strength, and subjected them to concentrated 

vertical loading only. The addition of steel fibers delayed the initiation and propagation of cracking in FRC corbels 

compared with corbels without steel fibers, increasing the first cracking and ultimate loads by 31.5 and 25.3 %, 

respectively, as the fiber content fraction increased from 0 to 0.4 %. Qasim [20] investigated the behavior of high-

strength R.C. corbels made of commercially available rolled steel (W-shape). It was discovered that raising the a/d ratio 

from 0.7 to 1.0 for the control specimens reduced the capacity by 27, 29 and 21% for composite T-shaped and W-shaped 

encased beams. Using finite element analysis, nonlinear constitutive models for SFRC under compression and tension 

were proposed [21]. The ultimate shear capacity of RC corbels with extra steel fibers was predicted using the truss 

analogy method [22]. Zin et al [23] studied experimentally the influence of secondary reinforcement with different types 

of high-performance reinforced concrete containing fibers with a/d equal to 0.75 and 1.00, they found that the corbels 

performed with high-performance steel fiber-reinforced composite exhibited much more ductility and deformation 

capacity versus another specimens. Also, it clearly could be concluded that the influence of existing secondary 

reinforcement for strength of view point was decreased with a/d ratio 1.0. Presence of closed secondary reinforcement 

or steel fibers and their effect on performance of high strength corbels were explored by Faleh et al [24], they observed 

that the closed stirrups may be alternated by steel-fibers for high strength concrete corbels. 

The present study is attempted to explore of using of fibers in concrete corbels fabrication because fiber concrete is 

characterized by a relatively high tensile strength and more toughness, it can be utilized as a tie instead of transverse 

reinforcement (hoop bars) in the proportioned strut-tie model that forms within the strut element (as shown in Figure 3). 
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Several studies have been conducted on each type of fiber in terms of the effects of the dimensions, aspect ratio, and 

fiber content relative to the volume of concrete on the properties of hardened concrete, as well as the structural behavior 

of reinforced concrete members (s reinforced concrete corbels), but only a few studies have examined the presence of 

different types of fiber on the properties of reinforced concrete corbels. Recent research is examined the effects of each 

of different types of fibers on corbel behavior, such as cracking and ultimate load, load deflection response and crack 

pattern. 

The main interest is to demonstrate the effects of variable types of fibers on the structural behavior of reinforced 

concrete corbels without stirrups. On the other hand research has focused on the effect of the fiber percentage on the 

behavior of concrete corbels but has overlooked the impacts of different types of fibers, particularly novel fibers such 

as polyolefin fibers are depicted in this study. 

2. Experimental work 

2.1. Specimen Description 

Seven corbels were cast and tested to failure under vertical loading. One of these corbels was a control corbel made 

with concrete without fibers, and the other six corbels were made with concrete containing fibers (1% of the concrete 

volume). Figure 4 shows the six types of fibers used in this study. The dimensions and the primary reinforcement of the 

corbels were constant, as illustrated in Figure 5. The width b of all corbels was 200 mm, the height h was (300) mm, the 

effective depth was 275 mm, and the depth at the far edge was 150 mm. The 200 × 200 × 400 mm column that supported 

the two corbels on opposite sides was reinforced with four Ф12 mm bars and Ф10 mm @ 87.5 mm ties. The primary 

steel was made up of three 12 mm distorted bars. The yield strength of the primary steel was fy = 570 MPa, while the 

yield strength of the stirrups was fy = 520 MPa. The corbel notations, as well as the fiber type employed in each of them, 

are shown in Table 1. 

 

Figure 4. Types of fiber used: (a) hooked steel fiber 60 mm, (b) hooked steel fiber 50 mm, (c) hooked steel fiber 30 mm, (d) 

crimped steel fiber 30 mm, (e) straight steel fiber 12 mm, and (f) straight polyolefin fiber 60 mm 

 

Figure 5. Reinforcement and details of the corbels 
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Table 1. Corbel notations and the types of fiber used 

Corbel Notation 
Fiber 

Type Amount (Volume Fraction) 

C1 No fiber 0% 

C2 Hooked steel fiber 60 mm 1% 

C3 Hooked steel fiber 50 mm 1% 

C4 Hooked steel fiber 30 mm 1% 

C5 Crimped steel fiber 30 mm 1% 

C6 Straight steel fiber 12 mm 1% 

C7 Straight polyolefin fiber 60 mm 1% 

2.2. Materials 

3.2.1. Cement 

The ordinary Portland cement used in this research conformed to the requirements of ASTM C150-13 [25]. Table 2 

lists the chemical components and mechanical properties of the cement used. 

Table 2. Physical test results and chemical components of the cement used 

Physical properties Specification limits-ASTM C150 

 Compressive strength (MPa) Setting time (min) 

7 days 14.9 12 min 

28 days 21.4 19 min 

Blaine fineness (cm2/g) 3100  

Chemical components (%) 

Magnesia (MgO) 2.45  

Lime (CaO) 60.12  

Iron oxide (Fe2O3) 2.77  

Alumina (Al2O3) 5.20  

Silica (SiO2) 22.5 Less than 6 

Sulfate (SO3) 2.2 Less than 3 

Insoluble residue (I.R.) 0.57 Less than 0.75 

Loss on ignition (LOI) 0.72 Less than 3 

Lime saturation factor (L.S.F.) 0.74  

3.2.2. Sand 

Natural sand from the Al-Zubair (Chwebda) region was used. The fine aggregate fineness modulus was 2.78. The 

sand was tested in accordance with ASTM C33-13 [26], and its grading was within the specification's limitations, as 

shown in Table 3 and Figure 6. 

Table 3. Grading of the sand and gravel 

Gravel Sand 

Sieve (mm) Passing (%) ASTM C33-13-Permissible Limits (%) Sieve (mm) Passing (%) ASTM C33-13Permissible Limits (%) 

25 100 100 9.5 100 100 

19 96 90-100 4.75 95 95-100 

9.5 36 20-55 2.36 85 80-100 

4.75 3 0-10 1.18 64 50-85 

2.36 1 0-5 0.6 43 25-60 

   0.3 12 5-30 

   0.15 2.0 0-10 
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(a) Sand grading 

 

(b) Gravel grading 

Figure 6. Sieve analysis of adopted aggregate 

3.2.3. Gravel 

The crushed gravel used was from the Al-Zubair region and was 19–4.75 mm in size. Table 3 and Figure 6 expressed 

the aggregate grading according to ASTM C33-13 [26]. 

3.2.4. Steel Reinforcement 

Deformed steel rebar 12 mm in diameter was used as the main reinforcement, and for the ties of the column, a 10 

mm diameter bar was used. The properties of the reinforcing bars used in this study are presented in Table 4; these steel 

reinforcements conform to ASTM A615-15[27]. 

Table 4. Reinforcement bars properties 

Diameter (mm) Yield stress (MPa) Ultimate strength (MPa) Elongation% 

10 570 675 18 

12 520 650 20 

ASTM C615 limits More than 420 More than 620 More than 9 

3.2.5. Fibers 

Six types of fibers were used in this study: five of these fibers were steel fibers with different shapes and dimensions, 

and one was polyolefin fiber. The dimensions and details of all types of fibers used are illustrated in Table 5. 
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Table 5. The details of all types of fibers used 

Type Shape 
Length 

(mm) 

Diameter 

(mm) 
Aspect ratio 

Tensile strength 

(MPa) 

Hooked steel fiber 

Hooked 
ends and straight middle 

60 0.75 80 >1000 

Hooked steel fiber 50 0.90 55 >1000 

Hooked steel fiber 30 0.50 60 >1000 

Crimped steel fiber Wavy 30 0.55* 55 >700 

Straight steel fiber Straight 12.5 0.25 50 2850 

Polyolefin fiber Straight, white, embossed 60 0.84* 71 465 

* Equivalent fiber diameter 

3.2.6. Water 

The water used in this study for the preparation of the concrete mixes and specimen curing was tap water. 

3.2.7. Superplasticizer (S.P.) 

To produce concrete with suitable workability with a percent of fibers, a copolymer-based superplasticizer (SIKA 

VISCOCRETE F180G) was used in this study. It fulfilled the requirements of ASTM C494 [28], type F, and type G. It 

reduced the consumption of water and maintained the slump value. 

2.3. Material Quantities 

In recent study, the first mix did not include fiber, but a different type of fiber was contained in each other mix at a 

constant content (1% of the concrete volume). Table 6 presents the details of the fiber type of all mixes. The constant 

mix proportions used for all mixes 445 kg/m3 cement, 178 kg/m3 water, 667 kg/m3 sand and 1112 kg/m3 Gravel with 

superplasticizer dosage 2 % of cement weight. 

Table 6. Details of the fiber used 

Mix 
Fiber 

Type and shape Aspect ratio 

C1 No fiber --- 

C2 Hooked steel fiber 60 mm 80 

C3 Hooked steel fiber 50 mm 55 

C4 Hooked steel fiber 30 mm 60 

C5 Crimped steel fiber 30 mm 55 

C6 Straight steel fiber 12 mm 50 

C7 Polyolefin fiber 60 mm 71 

2.4. Specimen Preparation 

The mixes were prepared using a rotary mixer with a capacity of 0.1 m3. First, the cement, sand, and gravel were 

thoroughly mixed. Then, water and superplasticizer were gradually added to the mixture, and the fiber was gradually 

added to the fresh concrete. The fibers were homogeneously distributed within three to four minutes in the mixer. The 

mixing of steel fibers required special attention. A volume of each mixture sufficient to cast one specimen of corbels 

and three specimens of cylinders, prisms, and cubes was prepared. Immediately after the concrete was completely mixed, 

tests on the properties of the fresh concrete mixtures were performed, and corbels were cast in prepared steel forms. 

Two layers of concrete were poured into the formwork, compacted using a poker vibrator, and then trowel finished for 

smooth top surfaces. To test the compressive strength, splitting strength, and modulus of rupture, 150 mm cubes, 

(150×300) mm cylinders, and (100×100×350) mm prisms were cast and cured under the same conditions as the related 

corbels. Twenty-four hours after casting, the molds were removed, and the specimens were wet cured under polythene 

sheets for seven days and then air cured until the date of testing. At 28 days of age, all corbels, cubes, and cylinders 

were tested. 

2.5. Testing Method of Fresh and Hardened Concrete 

The qualities of the fresh and hardened concrete are shown in Table 7. The classic slump test was performed in 

accordance with ASTM C 143 [29]. ASTM C 496 [30] was used to measure the splitting tensile strength (ft) of (300×150) 

mm cylinders, while ASTM C78 [31] was used to test the flexural strength of a prism (100×100×350) mm. Cubes with 

sides dimension of 150 mm were tested to estimate the compressive strength (fcu) according to EN12390-3 [32]. 
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Table 7. Properties of fiber-reinforced concrete mixtures 

Slump (mm) fs 
*** (MPa) fr (MPa) 

fcu 
* MPa at age (days) 

Fiber type Corbel No. 
28 7 

220 2.87 4.41 44.30 41.76 No fiber C1 

150 6.63 10.42 53.90 48.37 Hooked steel fiber 60 mm C2 

170 5.52 9.42 49.40 47.67 Hooked steel fiber 50 mm C3 

190 5.00 8.57 50.71 48.66 Hooked steel fiber 30 mm C4 

160 4.10 7.85 62.12 60.42 Crimped steel fiber 30 mm C5 

170 5.10 6.84 55.08 52.00 Straight steel fiber 12 mm C6 

140 4.16 7.36 49.62 46.27 Polyolefin fiber 60 mm C7 

* fcu compressive strength; ** fr  modulus of rupture; *** fs splitting tensile strength 

2.6. Test Set-Up, Loading Procedure, and Instrumentation 

Specimens were tested using a measuring machine with a 2000 kN maximum capacity. Figure 7 depicts the loading 

scheme that was carried out. The tested corbels were symmetrically supported by two steel rollers located (a=150 mm) 

from the interior face of the column, as described in Figure 7. The central vertical deflection for the bottom surface of 

the column was measured by a dial gauge with 0.01 mm per division accuracy at each load incensement. The cracking 

load and ultimate load were also recorded for all corbels, while crack propagation patterns were observed. 

 

Figure 7. Test setup of the tested corbels 

3. Results and Discussion 

The experimental work in this study is divided into two parts: the first is an examination of the influence of the fiber 

type on the properties of fresh and hardened concrete, and the second is an examination of the effect of fiber type on the 

structural performance of fiber-reinforced concrete corbels, as well as the establish of composition change. 

3.1. Properties of Fresh and Hardened Fiber-Reinforced Concrete 

Table 7 illustrates the properties of the fresh and hardened concrete mixtures. From the values of the slump in this 

table, it can be observed that the presence of fibers leads to reduced workability of concrete. This means that introducing 

fibers can change the workability and slump of the mixture depending on the dimensions and type of these fibers. 

From the obtained results, it can be noted that the type of fiber is important and that polyolefin fibers can reduce the 

slump more than steel fibers. Since polyolefin fibers are lightweight, mixes can often have lower slump, thus affecting 

the workability. Polyolefin fibers with a length of 6 cm compared to steel fibers with hooked ends with the same length 

(60 mm), the decreasing in slump values are 36 and 32%, respectively. These values are somewhat similar, the reason 

for this may be having same length inspect of decreasing in inspect ratio. 

From Table 7, it can be noted that the dimensions of fibers in a mix significantly affect the slump and consistency. 

The surface area of the fibers can be explained as an influencing factor. The mortar must coat the fibers in addition to 
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the coarse aggregate. The slump and workability are worse if the mortar fraction of the mix is insufficient. Table 7 shows 

that the length of fibers affects the slump. It can be concluded that longer fibers reduce the slump to a greater degree 

than shorter fibers. It is noted that 60 mm-long fibers reduce the slump more than 30 mm-long fibers of the same type 

at the same dose level. 

Table 7 shows that adding fibers of all types to the concrete mixture results in a clear increase in compressive and 

tensile strengths, albeit at varying percentages. The increase in tensile strength is greater than the compressive strength 

increase, which is primarily attributed to the higher continuous bridging effect of steel fibers, providing high fracture 

energy until failure. Crimped steel fiber sized 30 mm most affects the compression strength, which can be attributed to 

the distribution of waves and ripples along its length. The longest fibers of the fibers used (60 mm hooked steel fiber) 

are the most influential fibers in terms of increasing the tensile strength. The influence of polyolefin fibers on the 

compressive strength is similar to that of hooked steel fiber sized 50 mm, while their effect on the tensile strength is 

similar to that of crimped steel fiber sized 30 mm. 

3.2. General Behavior of Corbels under Loading 

During the early stages of stress, all of the examined corbels evident like elastic members; they are free of flexural 

and shear cracks, and the deflection is minimal. Cracks begin to appear as the applied load increases. The cracks begin 

as a few shear cracks on the supports, followed near the column face by a lengthy shear crack at one or both ends of the 

supports. These shear cracks spread along a line traced from the application load's midpoint to the supports. Figures 8 

and 9 illustrate the crack patterns of all corbels evaluated. The control corbel collapses with a single large inclined crack, 

but the fiber corbels fail with multiple narrow cracks around the main crack, as seen in Figure 9. As the applied load 

increases, the inclined cracks propagate, leading to a new sudden inclined cracks formation. The principal diagonal shear 

crack grows increasingly wider as the corbel fails, and in all specimens, this crack separate between the supports and 

the column-corbel intersection at the inclined face, break one of the double corbels from the withstanding column, as 

seen in Figure 10. All the corbels fail with the same pattern, but the corbels with fibers are more ductile than the control 

corbel 

 

Figure 8. The failure mode of the control corbel 

 

Figure 9. The typical failure mode for the tested corbel specimens 



Civil Engineering Journal         Vol. 8, No. 03, March, 2022 

527 

 

 

Figure 10. The typical failure mode for the different tested corbel specimens (side perspective) 

3.3. Cracking and Ultimate Loads 

Table 8 shows incline cracking and ultimate loads. The load at which the first visible crack appears in the corbel 

body is defined as the inclined cracking load. The ratios of inclined cracking to ultimate load are 44.8 and 86.7 % for 

the control corbel C1 and the corbel containing polyolefin fiber C7 and range from 47.4 to 76.9 % for the corbels 

containing steel fibers C2, C3, C4, C5, and C6. The corbels have a reserve in shear strength above which diagonal stress 

cracks occur, and adding fiber to the concrete mix increases this gain in shear strength. Additionally, the gain in shear 

ultimate load above the shear load causing diagonal cracks increases by decreasing the concrete compressive strength. 

This has been attributed to the decrease in the tensile strength of normal strength concrete corbels leading to the 

appearance of diagonal cracks at lower shear forces than those necessary in high-strength concrete corbels. 

Table 8. Results of first crack and ultimate loads 

Corbel Notation 
Load (kN) Deflection (mm) 

(Cracking/Ultimate) Load Ratio % 
Cracking Ultimate Cracking Ultimate 

C1 260 580 2.60 6.0 44.8 

C2 440 880 1.78 8.1 50.0 

C3 410 860 1.91 7.8 47.7 

C4 360 760 1.77 7.5 47.4 

C5 420 720 1.95 6.9 58.3 

C6 500 650 2.50 6.4 76.9 

C7 520 600 3.60 6.3 86.7 

The corbels C2, C3, C4, C5, C6 and C7 with fibers show 69.2%, 57.7%, 38.5%, 61.5%, 92.3% and 100% higher 

cracking loads than the control corbel C1 made with normal concrete. It can be seen, for corbels with small length fiber 

(steel or polyolefin) exhibited a significant increase the cracking load capacity. This has been attributed to the bridging 

of large number of microcracks in the composite due to a much uniform distribution of short fibers in the mix [33].  

From Table 8, the ultimate loads of fiber-reinforced corbels C2, C3, C4, C5, C6 and C7 are 51.7%, 48.3%, 31.0%, 

24.1%, 12.1%, and 3.4% higher than that of the control corbel C1. Obviously, from these results, it can be concluded 

that the ultimate load increases as the steel fiber aspect ratio and length (with similar aspect ratio) increase. This may be 

because increasing the length of the fiber leads to bridges discrete macrocracks at higher loads [33]. With the same 

length of fiber (30 mm), the corbel made with hooked steel fiber C4 (with aspect ratio of 60) exhibits an ultimate load 

greater than that of the corbel made with crimped steel fiber C5 (with aspect ratio of 55). For the corbel made with fibers 

with a length of 60 mm, the ultimate load of the hooked steel fiber corbel C2 (with aspect ratio of 80) is higher than that 

of the polyolefin fiber corbel C7(with aspect ratio of 71). This may be attributed to the many of the fibers may break 

before they dissipate energy by sliding out polyolefin fiber with cement matrix in contrast the tensile strength of steel is 

greater than that of polyolefin fibers. The straight short steel fibers corbel C6 exhibits a lower ultimate load than all 

corbels made with steel fibers C2, C3, C4, and C5. Referring to the fiber is the shortest and is not hooked at the ends or 

twisted along its length but it is not long enough to bridge cracks after formation and propagation. The typical inclined 

crack patterns for all tested specimens are shown in Figures 8 and 9. All the tested corbels fail in inclined shear; the 

comparison is performed with the first cracking load for the control C1, fiber-reinforced concrete corbels made with 

steel fibers of different lengths and shapes C2, C3, C4, C5 and C6 , furthermore, corbel made with concrete containing 

polyolefin fiber C7. 

3.4. Load – Deflection Response 

Figure 11 demonstrates the load-deflection curves for the tested RC corbels. The load-deflection curve can be divided 

into two stages, the first of which appears to be a straight line and begins at the initial points and ends at the developed 

crack, representing the linear behavior of the tested specimens. The second segment is usually represented by a curve 
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that depicts the nonlinear behavior of the concrete corbels and runs from the developed first visible crack to the final 

failure stage. From Figure 11, it is clear that the addition of fiber to concrete increases the stiffness in the elastic stage 

and the ductility in the plastic stage. Additionally, it can be innovated that the corbel, which contains steel fibers sizes 

50 mm and 60 mm in length exhibits high stiffness in the pre-cracking phase and after cracking. For the steel fibers 

sized 30 mm and 12 mm in length and the polyolefin fibers, the opposite trend is observed. In the plastic stage, the 

corbels with long steel fibers exhibit higher ductility than the other corbels, which means more toughness. It seems that 

the stiffness of specimens after initiations of cracking becomes larger than that of the first stage. This performance is 

revealed to that after inclined crack formation, the behavior of the corbel converts to arch action behavior instead of 

flexural performance. 

 

Figure 11. Load deflection relationships of corbels 

4. Conclusions 

The important observations that can be made based on the findings of this experimental study are as follows: 

 The length and aspect ratio of the fiber and the presence of a hook at the ends or twisting along the length of the 

fiber affect the properties of the fresh and hardened concrete. So optimization or hybrid fibers must be considered 

because the role of fiber size, strength, and bond is remarkable. The corbel with the greater length and aspect ratio 

steel fibers yields an ultimate load greater than those with all other types of fiber used in this study. It also has 

good cracking load compared with concrete corbels, which have no fibers. Therefore, it can be concluded that a 

corbel with long steel fiber has an excellent reserve of strength compared to the other corbels. 

 The corbel has small length fibers that demonstrate a cracking load more than the others. Because of the bridging 

of micro-cracks at the pre-cracking load stage. The corbels with longer steel fibers have greater stiffness in the 

first stages of loading (elastic stage) than those containing short steel fibers and the control corbel. 

 The yield strength of fibers affects the shear behavior of RC corbels. It is clear that in corbels containing polyolefin 

fiber, where exhibited ultimate load, gain in strength, and stiffness lower than those of steel fiber, which had the 

same length and diameter. 

 It can be noticed that polyolefin fiber concrete corbels without hoop bars collapse shortly after the generation of 

cracks compared to steel fiber concrete corbels. 

 The best corbels are fabricated with hooked steel fibers C2 and C3, due to much more gain in strength and the 

ability of the corbel to sustain deformation plastically before fracture. 

 Studying the presence of hybrid long and short steel fibers on the behavior of high strength corbels with and 

without closed stirrups is recommended for future work. 
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