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Abstract: In comparison with integer-order chaotic systems, fractional-order chaotic systems exhibit
more complex dynamics. In recent years, research into fractional chaotic systems for the utilization of
image cryptosystems has become increasingly highlighted. This paper describes the development,
testing, numerical analysis, and electronic realization of a fractional-order memcapacitor. Then, a new
four-dimensional (4D) fractional-order memcapacitive hyperchaotic system is suggested based on this
memcapacitor. Analytically and numerically, the nonlinear dynamic properties of the hyperchaotic
system have been explored, where various methods, including equilibrium points, phase portraits of
chaotic attractors, bifurcation diagrams, and the Lyapunov exponent, are considered to demonstrate
the chaos behaviour of this new hyperchaotic system. Consequently, an encryption cryptosystem
algorithm is used for colour image encryption based on the chaotic behaviour of the memcapacitive
model, where every pixel value of the original image is incorporated in the secret key to strengthen
the encryption algorithm pirate anti-attack robustness. For generating the keyspace of that employed
cryptosystem, the initial condition values, parameters, and fractional-order derivative value(s) (q) of
the memcapacitive chaotic system are utilized. The common cryptanalysis metrics are verified in
detail by histogram, keyspace, key sensitivity, correlation coefficient values, entropy, time efficiency,
and comparisons with other recent related fieldwork in order to demonstrate the security level of
the proposed cryptosystem approach. Finally, images of various sizes were encrypted and recovered
to ensure that the utilized cryptosystem approach is capable of encrypting/decrypting images of
various sizes. The obtained experimental results and security metrics analyses illustrate the excellent
accuracy, high security, and perfect time efficiency of the utilized cryptosystem, which is highly
resistant to various forms of pirate attacks.

Keywords: chaotic system; fractional-order; nonlinear dynamics; memcapacitive; colour image;
cryptosystem

1. Introduction

Multimedia, especially images, are one of the most essential information types nowa-
days, and they are simpler to obtain than in the past, thanks to the prevalence of smart
technologies [1]. However, when these images must be transferred (exchanged) over differ-
ent channels, security concerns arise, especially if any of them contain private information,
such as military, national defence, legal concerns, and medicine applications [2,3].

The chaotic systems provide highly pseudorandom sequences with extreme entropy
and low correlation between pixels in the encrypted image [4]. Matthews, a British scientist,
proposed the first chaotic-based cryptosystem [5]. Due to the strength of the key generated
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using chaotic systems, a chaos-based cryptosystem has created a wide gap between the
plain image and its consistent encrypted image, making this system difficult for intruders
and attackers to recover the encrypted images [6].

Memcapacitor systems are a new family of memory-enabled circuit elements that
accompany memristor systems. Chua proposed a different family of new circuit elements
in the late 1970s and was one of the four guests in talks at the European Conference on
Circuit Theory and Design in 1978 (ECCTD) [7]. A hysteretic loop, which may or may not
intersect with the origin, is the most distinguishing feature [8]. The memristor has been
used in a range of memcapacitor-based design application fields, including neuromorphic
constructions, processer systems, and digital circuits, due to its particular properties [9].

Fractional calculus has recently gained a lot of attention since it provides more accurate
models than integer-order calculus [10]. Fractional calculus may be used to describe
many systems in transdisciplinary areas [11]. Fractional calculus is being employed in
various areas of engineering and sciences, such as circuit theory, bioengineering, oscillators,
viscoelasticity, electronics, chemistry, robotics, signal processing, and control theory [12].
Fractional-order chaotic models have additional complex dynamical behaviours compared
with integer models because they include the fractional-order derivative value(s) parameter
as well as the original system properties. This makes them beneficial in cryptosystems and
secure communication protocols [13].

Recently, many image cryptosystem techniques based on chaotic systems have been
developed for the public. In 2022, Qiang Lai et al. introduced a new memristive neuron
model with hyperchaotic behaviours, where this new model has been employed for devel-
oping an image encryption scheme [14]. A new Hopfield neural network (HNN) based on
a new memristor was designed by Qiang Lai et al. in 2022 [15]. That HNN was applied
to investigate a new image encryption system. In 2021, Duzhong Zhang et al. proposed a
hyperchaotic system-based image encryption scheme, where they employed transformed
zigzag diffusion and ribonucleic acid (RNA) operation in this work [16]. Three-dimensional
chaotic maps and reconstruction techniques have been used by Xiaoliang Qian et al. for
suggesting a novel colour image encryption algorithm [17]. Noura Khalil et al. introduced
an efficient chaos-based colour/grayscale image encryption scheme, where they used hy-
perchaotic maps that were considered in this article [18]. Lin Teng et al. presented a colour
image encryption scheme based on a nonlinear discrete cross 2D chaotic map, wherein this
algorithm combined cycle shift scrambling and selecting diffusion was utilized [19]. Shixu
Li et al. established an image encryption scheme based on the fractional-order Lorenz
system for encrypting colour images [20,21]. Our proposed cryptosystem was compared
with these literature methods as summarized in Table 1.

Table 1. Comparison metrics of our cryptosystem with similar works in the topic area.

Algorithm Keyspace NPCR UACI Horizontal
rxy

Vertical
rxy

Diagonal
rxy

H(s) Time
Efficiency

Ref. [14] 2256 0.99602 0.3348 0.0019 0.0069 0.0087 7.9976 N/A
Ref. [15] N/A 0.99602 0.3348 0.0019 0.0069 0.0087 7.9976 N/A
Ref. [16] 2256 0.99661 0.33617 0.0046 0.0024 0.0051 7.9973 28.49 s
Ref. [17] 2600 0.99690 0.33437 0.0004 0.0019 0.0012 N/A N/A
Ref. [18] 2262 0.99620 0.33560 0.0023 0.0012 0.0001 7.9994 N/A
Ref. [19] N/A 0.99643 0.33502 0.000617 0.000535 0.000411 7.9914 0.8379 s
Ref. [20] 2279 0.99613 0.334706 0.000312 0.002088 0.001444 7.9976 1.708 s

Ours 2744 0.99814 0.336251 0.000262 0.000472 0.00013 7.9996 0.45 s

According to this comparison, it is clear that the keyspace of our cryptosystem has high
precision and is large enough to stick up to statistical attack. Additionally, it can be observed
from Table 1 that the NPCR and UACI results of the proposed cryptosystem are quite near
the ideal (theoretical) values, and the cryptosystem is effective against both plaintext and
differential attacks. Additionally, the employed algorithm is better than all mentioned
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algorithms in the light of correlation coefficients and information entropy. Furthermore, the
results of the security analysis and comparisons exposed that our proposed cryptosystem
not only has high-security performance, but also has speed advantage compared with
other related works, where it has encryption/decryption time faster than other literature
encryption algorithms.

In our article, we suggest a new 3D fractional-order memcapacitive hyperchaotic-
oscillator that contains a single unstable equilibrium. A fractional-order memcapacitor has
been developed, experienced, numerically simulated, and electronically realized. Then, this
fractional-order memcapacitor is considered for constructing the objected fractional-order
memcapacitive hyperchaotic oscillator.

Furthermore, experiments such as phase portraits of chaotic attractors, system equi-
libria, bifurcation diagrams, and Lyapunov exponents are explored to demonstrate the
proposed memcapacitive hyperchaotic system’s complex dynamical chaotic behavior. More-
over, the new fractional-order memcapacitive hyperchaotic system was utilized for devel-
oping an efficient image cryptosystem. Additionally, histogram, keyspace, key sensitivity,
entropy, time efficiency, correlation coefficient, and comparisons with similar fieldwork
are used to display the cryptanalysis metrical tests in detail in order to approve the secu-
rity strength of the employed encryption approach and its robustness resistance against
different attacks. Finally, images of various sizes and extensions were encrypted and
recovered to demonstrate that the proposed cryptosystem approach was capable of en-
crypting/decrypting images of various sizes. MATLAB was used to validate our work,
testing, and results.

The remainder of this article is organized as follows: In Section 2, a brief basic knowl-
edge of fractional-order systems is reviewed. Section 3 presents an investigation of the
developed fractional-order memcapacitor model, testing and electronically realizing that
memcapacitor and fixing its parameters, and the charge–voltage characteristic curve was
obtained in this section. A new fractional-order memcapacitive hyperchaotic oscillator
based on that established fractional-order memcapacitor is designed in Section 4, and also,
the system equilibria and its chaotic attractors are discussed in this section. As presented in
Section 5, bifurcation diagrams and Lyapunov exponents are used to display the dynamical
behavior properties of the proposed hyperchaotic system.

The details of our suggested image cryptosystem technique are presented in Section 6.
Experimental results and some common security cryptoanalysis metrics of the employed
cryptosystem are given in Sections 7 and 8, respectively. In Section 9, the conclusions of
this paper are offered.

2. Mathematical Preliminaries

The concept of a noninteger (fractional order) derivative was first introduced in a letter
from Leibniz to L’Hospital in 1695 [22]. Recently, many different relations of fractional-
order derivative and integral operators have been discovered to be very significant and
productive owing to their proven applicability in a wide range of fields. Many of these
fractional-order operators offer fascinating and actually useful tools for solving ordinary
and partial differential equations, as well as integral, integrodifferential equations and
differintegral equations [23]. They are fractional-calculus equivalents and extensions of
each of these equations and a variety of other problems involving special functions of
applied mathematics and mathematical physics, as well as their extensions and generalities
in one or further variables. Riemann–Liouville, Grünwald–Letnikov, and Caputo are three
of the most popular fractional-order operators in the fractional-order calculations [24].

The fractional calculus is based on generalizing integration and differentiation to
any order, which can be integer, noninteger (fractional), and complex. The fundamental
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continuous differintegral operator with order value (q) was created as a result of this
generalization, as described by the following Equation (1) [25]:

t0Dq
t f (t) =


dk f (t)

dtk q > 0
1 q = 0
t∫

0
( f (τ))−qdτ q < 0

(1)

Generally, in the fractional calculus, the gamma function, symbolized as Γ(.), is the
essential function, as specified in Equation (2) [26]:

Γ(n) =
∫ +∞

0
e−ttn−1dt ; n > 0; Γ(1) = 1, Γ(0) = +∞ (2)

Riemann–Liouville acquired a fractional-order integral operator (Jq) in 1847, which is
defined as follows [27]:

Jq f (t) =


1

Γ(q)

t∫
0
(t− τ)q−1 f (t)dτ ; q < 0

f (t) ; q = 0.
(3)

where q represents the fractional-order value.
The Grünwald–Letnikov derivative is a fundamental fractional extension of the natural

derivative. Anton Karl Grünwald introduced it in 1867, followed by Aleksey Vasilievich
Letnikov in 1868. It was written like this [28]:

Dqx(t) = f (x, t) = lim
h→0

h−q(−1)
t/h

∑
j=0

(−1)
(

q
j

)
x(t− jh) (4)

where h denotes the step size.
Caputo introduced a mathematical model for a fractional-order derivative of a function

f (t), which is specified as follows in Equation (5) [29]:

t0Dq
t f (t) =


1

Γ(k−q)

t∫
t0

f (k)(τ)
(t−τ)q−k+1 dτ; k− 1 < q < k

dk f (t)
dtk ; q = k.

(5)

3. Memcapacitor Model

A memcapacitor is a type of memristive system whose features are defined by a
relationship between the flux time integral (ϕ(t)) and the charge time integral (σ(t)) [30].
In 2009, the concept of memristor was extended to memcapacitor, as well as by Di Ventra
et al., where memcapacitor is defined as [31]:

qM(t) = CM(σ, vM, t)vM(t)
.
σ = f (σ, vM, t)

vM(t) = C−1
M (σ, qM, t)qM(t)

.
σ = f (σ, qM, t)

(6)

where qM represents the quantity of the charge passing through the memcapacitor at time t,
vM is the consistent voltage across the memcapacitor,

.
σ signifies the memcapacitor internal

state variable, and CM and C−1
M denote the meme capacitance and memcapacitance inverse,
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respectively. The memcapacitor model can be simplified in terms of the flux time integral
and the charge time integral as follows:

qM(t) = CM[
t∫

t0

vM(τ)dτ]vM(t) = CM[ϕ(t)]vM(t)

vM(t) = C−1
M [

t∫
t0

qM(τ)dτ]qM(t) = C−1
M [σ(t)]qM(t)

(7)

Equation (7) demonstrates the memcapacitors in terms of voltage-controlled and
charge-controlled memcapacitors. The charge-controlled memcapacitor model is the com-
mon useful model, and it is simply described by the following Equation (8) [32]:

vM(t) = C−1
M (σ(t), qM(t))

.
σ(t) = qM(t)

(8)

3.1. Integer-Order Situation

An integer voltage-controlled memcapacitor that is modelled in [21] and presented as
in Equation (9) is used for designing a memcapacitive hyperchaotic system:

vM(t) = (α + β |σ(t)|)qM(t)
.
σ(t) = qM(t)

(9)

where the memcapacitance inverse in Equation (9) is described by C−1
M = (a + b |σ(t)|).

Consequentially, the initial values of the memcapacitance and its variation in terms of
charge going through it are represented by α and β, respectively. Generally, α and β are
known as the memcapacitor parameters or constant coefficients. The memcapacitor parame-
ters can be customized to meet the needs of the memcapacitor state. Here, these parameters
are selected as α = −0.75 and β = 1.72. The memcapacitor hysteresis loop characteristics
of qM − vM are shown in Figure 1 when the excitation signal is the memcapacitor charge,
which is sinusoidal as presented below by the following Equation (10):

qM(t) = AMcos(2π f t) (10)
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Figure 1. qM − vM characteristic curve of memcapacitor (9): (a) f = 1 Hz and various amplitude
values; (b) Am = 10 C and various frequency values.

In Equation (10), AM and f present memcapacitor charge amplitude and its frequency,
respectively. The qM − vM hysteresis loop characteristics of the memcapacitor specified in
Figure 1 are obtained with different values of amplitudes and frequencies.
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3.2. Fractional-Order Situation

The memcapacitor values vary depending on the internal state variable and the
behavior of the hysteresis loop of the memcapacitor model. The internal states of the
charge-controlled memcapacitor display noticeable memory properties, and the relationship
between charge and the voltage represents the mentioned hysteresis loop. Therefore, the
fractional charge-controlled memcapacitor corresponding to model (9) was designated as
in the following equation:

vM(t) = (α + β |σ(t)|)qM(t)
dqσ
dtq = qM(t)

(11)

In the above Equation (11), the symbol q signifies the fractional-order derivative value
of the internal memcapacitor state (σ(t)). Here, it is necessary to distinguish the fractional-
order derivative value signified by the q symbol and the symbol qM that represents the
quantity of the charge pass through the memcapacitor. With the identical values of pa-
rameters selected in the above integer memcapacitor case, the qM − vM hysteresis loop
characteristics of the fractional-order memcapacitor were obtained as illustrated in Figure 2.
The amplitudes and frequencies of the injected charge are 10 C and 1 Hz, respectively, and
different fractional-order derivative values (q).
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3.3. Electronic Circuit of the Fractional-Order Memcapacitor

An electronic circuit realization of that fractional memcapacitor confirms the practical-
ity of using that fractional memcapacitor in real-world applications. According to Equation
(9), the realization of that memcapacitor can be validated using traditional operational
amplifiers for conducting the mathematical functions in this equation, such as inverting
arrangement, gain arrangement, integer integrator arrangement, and weighted summer
arrangement. Consequently, for realizing the memcapacitor in the fractional case, however,
the integer integrator arrangement must be substituted with a fractional-order arrangement,
as exposed in Equation (11). In other words, a fractional-order integrator can be built using
a traditional integer integrator arrangement by substituting the capacitor with a fractance
related to the required fractional order.

A fractance is a fractional-order impedance electrical component. Based on the conven-
tional description of the fractional differintegral, the fractional operators cannot be directly
implemented in time-domain simulations. To investigate such systems, approximations to
fractional functions using regular integer-order functions can be considered. According to
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circuit theory, the fractance equivalent circuit’s complex frequency domain can accomplish
fractional-order approximation formulation (q-order). The fractional order was employed
(q = 0.99), and the approximation of 1/s0.99 can be derived using Equation (12) [33]:

1
s0.99 =

1.1370(s + 10.355)(s + 11103.4)
(s + 0.0104)(s + 11.1034)(s + 11906)

(12)

where Equation (12) can be constructed using chain fractance made up of three pairs of
resistor capacitor, as shown in Figure 3:
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Therefore, a transfer function between the chain fractance terminals (A and B), which
is illustrated in Figure 3, can be calculated using Equation (13).

H0.99(s) =
1/C1

(s+1/R f 1C1)
+ 1/C2

(s+1/R f 2C2)
+ 1/C3

(s+1/R f 3C3)

= 1
C0


(

C0
C1

+
C0
C2

+
C0
C3

)s2+


(

c2+c3
R f 1

+
c1+c3

R f 2
+

c1+c2
R f 3

)
c1c2+c2c3+c1c3

S+


(

R f 1+R f 2+R f 3
R f 1R f 2R3

)
c1c2+c2c3+c1c3




(1+1/R f 1C1)(1+1/R f 2C2)(1+1/R f 3C3)


(13)

In Equation (13), C0 signifies a unit limit, choosing Co = 1 µF and H0.99(s)·C0 = 1/s0.99.
These electronic component properties result from using Equations (12) and (13), where the
comparison was used. Thus, the values of the resistors Rf1, Rf2, and Rf3 were obtained to
be 95.082 MΩ, 6.441 kΩ, and 6.436 kΩ, respectively, while the values of the capacitors C1,
C2, and C3 were calculated to be 13.982, 13.05, and 1.011 µF, as illustrated in Figure 3.

The chain fractance scheme shown in Figure 3 has been employed to substitute the
capacitor in the standard integer integrator arrangement to accomplish the fractional
integration with order derivative value (q = 0.99). As a result, based on the fractional-order
memcapacitor described by Equation (11), the fractional-order memcapacitor circuit has
been modelled to be as described by the fowling Equation (14):

vM(t) =
(

R5
R6

α + R5
R4
|σ(t)|

)
qM(t)

.
σ(t) = 1

R1Ceq
qM(t)

(14)

In Equation (14), Ceq is the fractional-order impedance comparable to the fractance
cell, and it corresponds to proving the fractional integrator with order value (q = 0.99). As a
result, the equivalent electronic circuit consistent with Equation (14) has been realized as
illustrated in Figure 4.
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Figure 4. The electronic circuit layout of the fractional-order memcapacitor.

By applying a charge with 10 C amplitude, 1 Hz frequency, and 0.99 fractional deriva-
tive value of the fractional-order memcapacitor, the qM− vM characteristic curve is obtained,
as displayed in Figure 5. The electronic circuit of the fractional-order memcapacitor is
realized using Multisim. The figurative scheme of a fractional-order memcapacitor is
shown in Figure 6.
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4. Fractional-Order Memcapacitive-Based Chaotic Circuit

Because the limited hysteresis loop or recall of prior states is an important aspect
of the memcapacitor, chaotic circuits containing memristors must be evaluated using a
method that considers memory effects and provides more degrees of freedom for analysis.
In this work, a fractional-order memcapacitive chaotic circuit with the fractional-order
memcapacitor modelled by Equation (11) is proposed. Figure 7 depicts the proposed
fractional-order memcapacitive chaotic circuit.
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By applying Kirchhoff’s current law to the circuit in Figure 7, the fractional-order
memcapacitor’s state equations are determined as follows:

L dqiL
dtq = vC − vM

C dqvC
dtq = −iL − vC

R2

iM = iL − vC
R1

(15)

Then, by replacing the voltage (vM ) of and the internal state (
.
σ(t)) of the fractional-

order memcapacitor designated by Equation (11) in Equation (15), the dynamics of the pro-
posed fractional-order memcapacitive chaotic system can be calculated using Equation (16):
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dqiL
dtq = 1

L (vC − (α + β |σ(t)|)qM(t))
dqvC
dtq = 1

C

(
−iL − vC

R2

)
dqqM

dtq = iL − (α+β |σ(t)|)qM(t)
R1

dqσ
dtq = qM(t)

(16)

Dimensionless dynamics can be found for the fractional-order memcapacitive chaotic
model defined by Equation (16) as follows. Let iL = x, vC = y, qM = z, σ = u, 1/L = a,
1/C = b, 1/R1 = d, and 1/R2 = g; thus, the fractional-order memcapacitive chaotic model
can be defined as:

dqx
dtq = a(y− (α + β |u|)z)

dqy
dtq = b(−x− gy)

dqz
dtq = iL − d(α + β |u|)z

dqu
dtq = z

(17)

where a, b, d, g, α, and β signify the parameter, while x, y, z, and u represent the state
variables and the fractional-order derivative value symbolized by q.

4.1. Chaotic Behaviours of the Memcapacitive System

The proposed fractional-order memcapacitive system modelled by Equation (17) can
exhibit chaotic behaviours when its parameters are selected to be a = 2.2222, b = 0.1667,
d = 0.45, g = 2, α = −0.75, and β = 1.72. That system is numerically simulated with initial
conditions (x0, y0, z0, u0) = (0.001, 0, 0, 0) and two different fractional-order derivative
values (q = 0.97 and q = 0.99). Figure 8 depicts the phase portrait attractors of a fractional-
order memcapacitive chaotic model (17) consistent with these designated setting values. A
layout of phase portrait chaotic attractors is showed in two-dimensional (2D) and three-
dimensional (3D) topologies.

4.2. Equilibria and Stability

Simply, the fractional-order memcapacitive-based basic chaotic system’s equilib-
ria (equilibrium or fixed points) can be computed by setting the state equations of the
system (17) to be zero as follows:

dqx
dtq = a(y− (α + β |u|)z) = 0

dqy
dtq = b(−x− gy) = 0

dqz
dtq = x− d(α + β |u|)z = 0

dqu
dtq = z = 0

(18)

By solving the system (18), it is clear that the fractional-order memcapacitive chaotic
model (17) contains only one equilibrium point, which is (x*, y*, z*, u*) = (0, 0, 0, 0). The
Jacobian matrix will be used for determining the stability of the system equilibrium points,
where the following highlighted Theorem 1 is used:

Theorem 1. Consider the following fractional-order system described by the following
Equation (19) [34]:

dqx(t)
dtq = f (x(t)) (19)

The equilibrium points of f (x(t)) are locally asymptotically stable if all eigenvalues λi (i = 1,
2, 3 . . . , n) of the Jacobian matrix J = ∂ f (x(t))/ ∂x(t) evaluated at the equilibrium points satisfy
|arg(λi)| > q π

2 .
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By the linearizing approach, we gained the Jacobian matrix of the system (17), as
described by the following Equation (20):

J =


0 a −a(α− β |u|) −aβzsgn(u)
−b −bg 0 0
1 0 −d(α− β |u|) −dβzsgn(u)
0 0 1 0

 (20)

As defined by following Equation (21), the Jacobian calculation consistent with the
evaluated equilibrium point P(0,0,0,0) was computed.

JE(0,0,0,0) =


0 a −aα 0
−b −bg 0 0
1 0 −dα 0
0 0 1 0

 (21)

The system parameters were used as a = 2.2222, b = 0.1667, d = 0.45, g = 2, α = −0.75,
and β = 1.72. Therefore, the eigenvalues corresponding to the matrix described by Equation
(21) were calculated as (λ1 = 0, λ2,3 = −0.6926 ± 0.1105i, and λ4 = 1.3668). Based on
Theorem 1, it’s clear that the fractional-order derivative value (q) limits the stability of
the equilibrium point. Because we used fractional derivative order value (q = 0.99) in
this study, the first and fourth eigenvalues have |arg(λ1,4)|= 0. That indicates that the
stability condition specified in Theorem 1 was not obeyed. Therefore, the equilibrium point
P(0,0,0,0) is classified as an unstable equilibrium point. As a result, an excitation from this
unstable equilibrium point P(0,0,0,0) might be used to generate a self-excited attractor. As a
result, the suggested fractional-order memcapacitive system defined by Equation (17) is
excited by this equilibrium point, which is accountable for its chaotic performance.

5. Dynamic Analysis

In this section, for investigating the nonlinear dynamics of the advised fractional-order
memcapacitive chaotic model defined by Equation (17), bifurcation analysis and Lyapunov
exponents are used.

5.1. Bifurcation Diagrams

When one or more system parameters are slightly changed, bifurcation diagrams are
a valuable tool for evaluating system behavior. It can also be used to figure out various
system properties, such as the path to chaos [35]. In this work, the effect of a slight change
in the α parameter of the system (17) is explored to show the nonlinear dynamics behavior
when a slight change occurs in this parameter, where α is plotted in contradiction to the
system state variable x(t) as exposed in Figure 9. Furthermore, the system state variable x(t)
is plotted versus the system fractional-order derivative value (q), employing bifurcation
diagrams to investigate the system’s nonlinear dynamics. The bifurcation illustration,
shown in Figure 10, was used to demonstrate the impact of the fractional-order derivative
value on the dynamical behaviour of the system. The bifurcation diagrams in Figures 9
and 10 are exposed with initial conditions (x0, y0, z0, u0) being (0.001,0,0,0), with the system
(17) parameters and fractional-order derivative value (q) as shown in Table 2.
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Table 2. The system (17) parameters and fractional-order derivative value (q) utilized in examination
bifurcation diagrams (Figures 9 and 10).

Figure 9 Figure 10

Parameter Value Parameter Value

a 2.2222 a 2.2222
b 0.1667 b 0.1667
d 0.45 d 0.45
g 2 g 2
α Variable α 0.75
β 1.72 β 1.72

Fractional-order (q) 0.99 Fractional-order (q) Variable



Electronics 2022, 11, 1505 14 of 30

As shown in Figure 9, the suggested model displays chaotic performance when the
system parameter α is slightly changed. Additionally, as demonstrated in the bifurcation
diagram in Figure 10, the system (17) can also stimulate chaotic performance when the
model fractional-order derivative value is more than 0.985 (q > 0.985).

As shown in Figures 9 and 10, the suggested fractional-order memcapacitive chaotic
system given by Equation (17) exhibits various bifurcation topological patterns.

These findings indicate that a new fractional-order memcapacitive chaotic model can
generate chaotic action. In this work, the bifurcation diagrams in Figures 9 and 10 were
plotted using Roberto Garrappa’s procedure with a step of size (h = 0.005) and an advanced
code that we wrote [36].

5.2. Lyapunov Exponents

In nonlinear systems, Lyapunov exponents were computed and powerfully verified
that our new system can display chaotic behaviours [37]. The Lyapunov exponents (Lei;
I = 1, 2, . . . , n) represent the exponential attraction or time leave taking of two adjacent
orbits in the phase space. An n-dimensional system has n Lyapunov exponents [38]. When
the system contains at least one (at least) positive Lyapunov exponent, the system is said to
be in a chaotic system [39]. Consequently, a system that exhibits chaotic behavior with at
least two positive Lyapunov exponents is often defined as a hyperchaotic system.

In this work, the Lyapunov exponents are exposed in two arrangements. In the first
Lyapunov exponent investigation, the Lyapunov exponents are considered with respect to
the time as illustrated in Figure 11. The numerical investigation of the constructed system’s
Lyapunov exponents is obtained over a simulation time of 500 s, where the settling values
the Lyapunov exponents as Le1 = 0.0291, Le2 = 0.0035, Le3 = −0.006, and Le4 = −0.211.
The presence of two positive Lyapunov exponents (Le3 and Le4) is plenty to prove that the
system (17) is a hyperchaotic system.
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In the second Lyapunov exponent investigation, Lyapunov exponents are measured
in contradiction to changing the fractional-order derivative value (q), where q ∈ [0.98,1],
as presented in Figure 12. The settling values of Lyapunov exponents were obtained to be
Le1 = 0.0317, Le2 = 0.0174, Le3 = −0.0187, and Le4 = − 0.1071.



Electronics 2022, 11, 1505 15 of 30

Electronics 2022, 11, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 11. Lyapunov exponents in contradiction of time. 

In the second Lyapunov exponent investigation, Lyapunov exponents are measured 
in contradiction to changing the fractional-order derivative value (q), where q ∈ [0.98,1], 
as presented in Figure 12. The settling values of Lyapunov exponents were obtained to be 
Le1 = 0.0317, Le2 = 0.0174, Le3 = −0.0187, and Le4 = − 0.1071. 

  
Figure 12. The system (17) Lyapunov exponents in contradiction to varying the system fractional-
order derivative value (q). 

It is clear in Figures 11 and 12 that the proposed fractional-order memcapacitive sys-
tem named by Equation (17) is capable of exhibiting chaotic dynamics behaviours, and it 
is a hyperchaotic system. Figures 11 and 12 are numerically exposed to initial conditions 
(x0, y0, z0, u0) being (0.001, 0, 0, 0), with the system (17) parameters and fractional-order 
derivative value (q) as shown in Table 3. 

Figure 12. The system (17) Lyapunov exponents in contradiction to varying the system fractional-
order derivative value (q).

It is clear in Figures 11 and 12 that the proposed fractional-order memcapacitive
system named by Equation (17) is capable of exhibiting chaotic dynamics behaviours, and
it is a hyperchaotic system. Figures 11 and 12 are numerically exposed to initial conditions
(x0, y0, z0, u0) being (0.001, 0, 0, 0), with the system (17) parameters and fractional-order
derivative value (q) as shown in Table 3.

Table 3. The system (17) parameters utilized in examination Lyapunov exponents.

Figure 11 Figure 12

Parameter Value Parameter Value

a 2.2222 a 2.2222
b 0.1667 b 0.1667
d 0.45 d 0.45
g 2 g 2
α 0.75 α 0.75
β 1.72 β 1.72

Fractional-order (q) 0.99 Fractional-order (q) Variable

6. Image Encryption Algorithm

Chaotic encryption algorithms have been successfully utilized to encrypt a variety of
images, ranging from remote sensing to medical and elsewhere. In this part, we present an
image cryptosystem technique that uses the fractional-order memcapacitive hyperchaotic
system defined by Equation (14). This system produces chaotic signals (x, y, z, and u). By
integrating these obtained chaotic sequences with the plain image pixels, we will encrypt
and decrypt an image. Figure 13 describes the overall encryption operations.
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The encryption algorithm in the proposed chaotic-based cryptosystem is described in
full below:

Step 1. Read a coloured plain image to obtain its pixel values as a matrix IM*N, where M
and N represent the rows and columns of the image pixels, respectively.

Step 2. Decompose this image into its three basic bands, which are R (red), G (green),
and B (blue).

Step 3. Read these three bands, R, G, and B, to obtain their pixel values as matrices
IRM*N, IGM*N, and IBM*N, respectively. Then shuffle these three matrixes, where
the histogram will remain unchanged, whereas it will be further difficult for an
intruder to decode the image unless he knows the specific shuffling procedure.

Step 4. Each shuffled pixel matrix of the bands R, G, and B is split to four nonoverlapped
submatrices (KP1, KP2, KP3, KP4; P = R,G,B), as shown in Figure 13. In other
words, the original band matrix is divided into four blocks, taking into account
the total number of elements in the obtained four submatrices equivalent to
the pixel number of the basic band matrix. The size of these submatrices is
determined as follows:

Size(KP1) = Round(M/2) × round(N/2)

Size(KP2) = Round(M/2) × floor(N-N/2)

Size(KP3) = Floor (M-M/2) × round(N/2)

Size(KP4) = Floor (M-M/2) × floor(N-N/2)

Step 5. For the fractional-order memcapacitive hyperchaotic system defined by
Equation (17), set the following values: initial conditions (x(0), y(0), z(0), u(0)),
fractional-order derivative value (q), and parameters, which are a, b, d, g, α, and β.



Electronics 2022, 11, 1505 17 of 30

Step 6. Use these determined values in step 5 for simulating the fractional-order memca-
pacitive hyperchaotic system (17). Consequently, iterate the solving process with
fixed steps to ensure the iteration solution set coverage of the submatrix size of the
generated chaotic sequence for each state variable (x, y, z, and u). Then randomly
select elements from the solution set for each state variable of the system (17) with
a number equivalent to the decomposed four blocks in step 4, where x, y, z, and
u state variables are responsible for generating matrices with element numbers
equivalent to these four blocks, KP1, KP2, KP3, and KP4, respectively.

Step 7. To determine the secret keys Sx,y,z,u, preprocess the chaotic sequences of the state.
variables obtained in step 6. The following mathematical operations are used to
obtain these secret keys:

Sxi =
∣∣round

(
mod(|(xi − f loor(|xi|)|) ∗ 5 ∗ 105), 256))

∣∣; i
= 1, 2, . . . , Round(M/2)round(N/2).

Syi =
∣∣round

(
mod(|(yi − f loor(|yi|)|) ∗ 5 ∗ 105), 256))

∣∣; i
= 1, 2, . . . , Round(M/2) f loor(N − N/2).

Szi =
∣∣round

(
mod(|(zi − f loor(|zi|)|) ∗ 5 ∗ 105), 256))

∣∣; i
= 1, 2, . . . , Floor(M−M/2)round(N/2).

Sui =
∣∣round

(
mod(|(ui − f loor(|ui|)|) ∗ 5 ∗ 105), 256))

∣∣; i
= 1, 2, . . . , Floor(M−M/2) f loor(N − N/2).

Step 8. Reshape these obtained secret keys in step 7 to form the matrices Sx, Sy, Sz, and
Su, where their sizes as round(M/2) × round(N/2), round(M/2) × floor(N-N/2),
floor(M-M/2) × round(N/2), and floor(M-M/2) × floor(N-N/2), respectively.

Step 9. Encrypt the pixels in the four blocks of each band (R, G, and B) of the plain image
using the obtained secret key in step 8 by the flowing operations:

ER1 = KR1 ⊕ Sx; ER2 = KR2 ⊕ Sy; ER3 = KR3 ⊕ Sz; ER4 = KR4 ⊕ Su
EG1 = KG1 ⊕ Sx; EG2 = KG2 ⊕ Sy; EG3 = KG3 ⊕ Sz; EG4 = KG4 ⊕ Su
EB1 = KB1 ⊕ Sx; EB2 = KB2 ⊕ Sy; EB3 = KB3 ⊕ Sz; EB4 = KG4 ⊕ Su

where ⊕ signifies the B-XOR operation, and ERi(i = 1,2,3,4), EGi(i = 1,2,3,4), and
EBi(i = 1,2,3,4) are the encrypted blocks of the R, G, and B bands, respectively.

Step 10. Rearrange (reshape) these encrypted blocks obtained in step 9 to form the
encrypted matrix bands (encrypted R, encrypted G, and encrypted B) of the
original image.

Step 11. Recompose the encrypted bands obtained in step 10 to give the encrypted image
corresponding to the coloured plain image.

Consequently, the decryption technique is an exact inverse operation of the encryption
procedure in order to restore the original image, as illustrated in Figure 14. Because we
employed a symmetric key encryption algorithm, the cryptosystem sides (source and
destination) can use a secret approach to exchange encryption/decryption keys. There are a
number of common means for doing this, including saving the encryption/decryption keys
beforehand and exchanging them over a secret channel or a disguised trusted postman.
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7. Experimental Results

In this section, a “Lena.png” colour plain image of size 512 × 512 was experimentally
tested, where this image was encrypted and decrypted using the proposed hyperchaotic-
based cryptosystem. That was performed to demonstrate the feasibility and efficiency of
the proposed hyperchaotic-based cryptosystem.

In this test, the parameters of the fractional-order hyperchaotic system were given
values as a = 2.2222, b = 0.1667, d = 0.45, g = 2, α =−0.75, and β = 1.724 with initial conditions
(x0, y0, z0, u0) = (0.001, 0, 0, 0) and a fractional-order derivative value (q = 0.99). The system
(17) was numerically solved with iterations, which ensures that the number of solution sets
of the total state variables (x, y, z, and u) can cover 262,144 samples. These samples match
the whole number of pixels in the original image (MN = 512 × 512).

Then from these obtained solution sets, 65,536 (MN/4) samples were chosen for each
state variable (x, y, z, and u) to create a chaotic sequence that is responsible for secret
key matrices (Sx, Sy, Sz, and Su) highlighted in step 7 (Section 6). Figure 15 displays the
visual investigation of the employed hyperchaotic-based cryptosystem on a “Lena.png”
colour plain image of size 512 × 512. Figure 15a displays the plain image. R, G, and B
bands of the original image are illustrated in Figure 15b–d, respectively. On the other
hand, the encrypted (ciphered) images of the respective original R, G, and B are exposed
in Figure 15e,f. The recovered (decrypted) images corresponding to the encrypted images
are displayed in Figure 15i–l in their respective arrangements. As can be seen in Figure 15,
it demonstrates the exact identicalness between the plain and recovered image, which
shows the high accuracy of the proposed cryptosystem in recovering the original images.
Furthermore, the encrypted images are wholly different from their respective plain images,
and these images do not display any pattern similar to the plain images. As a result, the
attacker will be unable to extract any information or patterns from the encrypted images.
That shows the robust resistance of the cryptosystem against attacks.
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Figure 15. Experimental results of a plain “Lena.png” 512 × 512 color image: (a) the original image,
(b) R band, (c) G band, (d) B band, (e) encrypted Lena image, (f) encrypted R band, (g) encrypted G
band, (h) encrypted B band, (i) recovered (decrypted) Lena image, (j) recovered R band, (k) recovered
G band, (l) recovered B band.

8. Cryptanalysis

The performance efficiency of the suggested hyperchaotic-based image cryptosystem
is evaluated in this section utilizing several security test methods. A good cryptosystem, as
is well known, should exhibit very robust resistance to different attacks and high sensitivity
to the key(s) and contain a great plenty of keyspace to thwart adventurer attempts [40].
Here, the following common metrics were explored: histogram, key sensitivity, information
entropy, correlation coefficients of adjacent pixels, time efficiency, and other common
metrics used to evaluate the efficiency of the image cryptosystems.

8.1. Histogram Check

Generally, the histograms are used to count and plot the spreading of an image’s pixel
values (pixel brightness levels). Since the colour image contains three bands (R, B, and
B) and each band is an 8-bit image, the original colour image can be considered a 24-bit
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image. Thus, there are 256 (28) different possible brightnesses of each of these three bands,
which are from 0 to 255. As a result, the histogram will display 256 numbers representing
the distribution of the image pixels signifying their intensity levels [41]. The histogram
of an encrypted image must be statistically and visually dissimilar from the histogram of
the plain image. In order to resist statistical pirate attacks, the histogram of the encrypted
image and its R, G, and B bands must have a reasonably consistent (flat) shape. The
flatness of the histogram specifies the randomness of the encrypted image pixel values.
Figure 16a displays the histograms of the plain colour Lena image. Figure 16b–d displays
the histogram of the R, G, and B bands of the plain Lena image. On the other hand, the
histograms of the encrypted images of the respective original Lena, R, G, and B are shown
in Figure 16e,f. The recovered images consistent with the encrypted images are shown in
Figure 16i–l in their respective arrangements.
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As exposed in Figure 16, it can be understood that the encrypted image histograms
have a significantly different distribution compared with the original image’s histograms,
and that the encrypted image’s pixel intensities have a uniform distribution (flat), demon-
strating that the proposed cryptosystem algorithm offers excellent robustness to statistical
attacks. In other words, the encrypted image’s histograms are equally distributed. As a
result, the encrypted images offer no information about the original images. Furthermore,
the histogram distribution of the recovered image in Figure 16e–h is exactly similar to that
of the plain image histogram in Figure 16i–l, respectively. As a result, the plain image can
be successfully retrieved with perfect accuracy.

8.2. Keyspace Analysis

The keyspace in any cryptosystem is a significant facet of the security when a pirate
force assault takes place [42]. The secret keys are generated in our work by suggesting
the fractional-order memcapacitive hyperchaotic system termed by Equation (17). There-
fore, the secret keys include the system (17) initial condition values (x(0), y(0), z(0), u(0)),
parameters (a, b, d, g, α, and β), and fractional-order derivative value (q).

Fractional-order chaotic systems, as highlighted in the introduction section, are ex-
tremely sensitive to slight variations in the fractional-order derivative value (q), the system
parameters, and the initial conditions. Assuming that each employed key takes 10−15 step
alteration, then the whole keyspace is computed to be (1016)14 = 10224 ≈ 2744. These findings
indicate that the keyspace of the utilized encryption approach is large enough to resist all
forms of brute force attacks.

8.3. Key Sensitivity Analysis

In any cryptosystems, extreme key sensitivity is required for verifying highly secure
encryption methods, which means that the ciphered image cannot be recovered successfully
even if the encryption and decryption keys are only slightly changed [43]. The robust
encryption algorithm should be extremely sensitive to any slight variations in the secret
(encryption/decryption) keys. This guarantees the safety of the cryptosystem approach
against brute force attacks. In this work, the system (17) initial condition values (x0, y0, z0,
u0), its parameters (a, b, d, g, α, and β), and the fractional-order derivative value (q) control
the sensitivity of the secret keys in the employed cryptosystem approach.

Generally, the key sensitivity is determined by computing the net pixel change rate
(NPCR) and the unified average changing intensity (UACI). These values compute the
influence of little variations in the secret keys for retrieving the plain image. Higher NPCR
and UACI ratings mean that the encryption method is very resistant to various pirate
attacks [44].

The NPCR calculates the percentage change of the pixel number alteration degree
between two images. UACI, on the other hand, calculates the average brightness of the
differences between the two images. The following Equations (22) and (23) can be used to
compute the NPCR and UACI, respectively [45]:

NPCR =
∑M

i=1 ∑N
j=1|sign(I(i, j)− D(i, j))|

M·N × 100% (22)

UACI =
1

255
∑M

i=1 ∑N
j=1|I(i, j)− D(i, j)|

M·N × 100% (23)

In Equation (22), M × N grants image size, I(i, j) presents plain image, D(i, j) presents
recovered image, (i, j) grants pixel image location, and if I(i, j) 6= D(i, j),|sign(·)| =1;
otherwise, |sign(·)| = 0. In the experimental test, the secret keys Sx,y,z,u are created based
on the solution set of the system (17) with the chosen parameters a = 2.2222, b = 0.1667,
d = 0.45, g = 2, α = −0.75, and β = 1.724 with initial conditions (x0, y0, z0, u0) = (0.001, 0,
0, 0) and fractional-order derivative value (q = 0.99), where a 512 × 512 color “Lena.png”
plain image is encrypted by these keys. Consequently, in the decryption procedure, just
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the fractional-order derivative value (q) was very slightly varied as q = 0.99 + 10−15 in
NPCR and UACI tests for determining key sensitivity. Table 4 illustrates the results of key
sensitivity comparative assessments of NPCR and UACI. Furthermore, Figure 17 depicts
the experimental results of a recovering image with the aforementioned very little variation
at the decryption key.

Table 4. Key sensitivity analysis.

Direction Original Images

Lena R Band G Band B Band

NPCR 0.99814 0.99783 0.9982 0.99813
UACI 0.33625 0.336192 0.33626 0.33620
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These findings imply that the original image cannot be retrieved by utilizing the
incorrect keys (even if they varied very slightly somewhat from the original key). As a result,
the proposed cryptosystem based on the fractional-order memcapacitive hyperchaotic
system (17) is extremely sensitive to secret keys, and it is also effective for resisting brute
force attacks.
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8.4. Correlation Coefficients Analysis

The correlation coefficients are calculated by comparing the values of two adjacent
pixels, and they are used to measure data randomness of the encrypted images. Two head-
to-head pixels in the original image are significantly connected to each other. However,
for the encrypted image, this number should be as low as feasible, meaning the lowest
possible correlation between two neighbouring pixels. A high-security image encryption
system must be capable of diminishing the correlation between the neighbouring pixels of
an encrypted image. In other words, the cryptosystem’s security is inversely related to the
correlation coefficient scores obtained [46].

Commonly, correlation coefficient values are computed for a specific number of adja-
cent pixels in horizontal arrangement (H), vertical arrangement (V), and diagonal arrange-
ment (D).

In an image, the correlation coefficients of two head-to-head pixel x, y values are
computed as follows [47]:

rxy =
cov(x, y)√

D(x)
√

D(y)
(24)

In Equation (24), x and y signify the two neighbouring pixel values, cov(x, y) presents
the covariance function, and D(.) denotes the variance. The values cov(x, y) and D(.) can be
computed as in the following Equations (25) and (26), respectively [48]:

cov(x, y) =
∑N

i=1 (xi − E(x))(xi − E(y))
N

(25)

D(k) =
∑N

i=1 (ki − E(k))2

N
(26)

where the whole number of selected pixels in the image was symbolled by N in Equation
(22), and the average is E(k), which can be calculated by Equation (27) as in the following:

E(k) =
∑N

i=1 ki

N
(27)

In our work, for the correlation confection computation, we arbitrarily chose 4000
pairings of adjacent pixels from the plain and its encrypted images in vertical, horizontal,
and diagonal arrangements. Table 5 shows the gained correlation confections of adjacent
pixels for the plain image and its consistent encrypted image.

Table 5. Correlation coefficients of the proposed cryptosystem.

Direction Plain Images Encrypted Images

Lena R Band G Band B Band Lena R Band G Band B Band
Vertical 0.9821 0.9712 0.9677 0.9675 0.000472 0.000466 0.000413 0.000398

Horizontal 0.9743 0.9638 0.9847 0.9789 0.000262 0.000269 0.000245 0.000221
Diagonal 0.9672 0.9855 0.9789 0.9813 0.00013 0.000157 0.000173 0.000141

Table 5 shows that the plain image pixels have a very robust correlation, while the
encrypted image pixels have an actual low correlation, demonstrating that the utilized
cryptosystem approach is quite robust for resisting brute force attacks.

Moreover, Figure 18 displays the correlation coefficient plots of the plain Lena image
and its consistent encrypted image in horizontal, vertical, and diagonal orders. Conse-
quently, the correlation coefficient plots of the R of the plain Lena image and its correspond-
ing encrypted R band are visibly illustrated in Figure 19. Figure 20 depicts the correlation
coefficient plots of the G band of the plain Lena image and its equivalent encrypted G band.
On the other hand, the B band of the plain image and its consistent B encrypted band are
demonstrated in Figure 21.
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It can be seen from Figures 18–21 that the plain image and its R, G, and B bands show a
very weighty correlation of the related pixels. In other words, as illustrated in Figure 18a–c,
Figure 19a–c, Figures 20a–c and 21a–c, all of the pixel points in the plain image and its R,
G, and B bands are concentrated along with the diagonal alliance. On the other hand, as
shown Figure 18d–f, Figure 19d–f, Figures 20d–f and 21d–f, the responded encrypted image
pixel dots are distributed across the whole entire plane. This verifies that the correlations
between various pixels in the encrypted image have significantly lessened. The ability to
change closely related pixels of a plain image into unrelated pixels of an encrypted image is
a desirable feature of an encryption method. As a result, the encrypted image has a lot more
randomness, which makes statistical analysis difficult for attackers. This demonstrates that
the employed cryptosystem based on a fractional-order memcapacitive system offers great
security effectiveness.

8.5. Entropy Evolution

The entropy of an image determines the distribution of its pixel values between 0 and
255 [49]. It determines the degree of unpredictability and ambiguity in the image. The
perfect theoretical rate of information entropy in the encrypted image is 8 because each
of the 256 intensity levels of a pixel image is specified by 8 bits. Practically, the encrypted
image’s information entropy value should be closer as possible to 8. Equation (28) expresses
the entropy of information as follows [50]:

H(s) =
255

∑
i=1

p(si)log2

(
1

p(si)

)
(28)

In Equation (28), p(.) signifies the pixel value probability. Table 6 presents the com-
puted entropy evaluations of the plain color (Lena image) and its R, G, and B bands and
their equivalent encrypted images, respectively.

Table 6. Entropy evaluations of the employed cryptosystem.

Original Image Encrypted Image

Lena 7.2351 7.9996
R Band 7.1334 7.9994
G Band 6.9541 7.9995
B Band 7.1263 7.9993

As can be seen from Table 6, wholly, the encrypted image’s entropy evaluations are
quite close to the theoretical perfect (ideal) value. As a result, our cryptosystem provides
robust resistance to entropy attacks.

8.6. Time Efficiency

The time efficiency of any cryptosystem algorithm is a significant metric for evaluating
the performance of the cryptosystem. The maximum duration of time it could take for
any algorithm to accomplish a computational task with perfect precision can be defined as
execution time [51]. A real cryptosystem must have excellent encryption/decryption speeds
as well as its high-security function. In this article, for the colour plain “Lena.png” image of
size 512 × 512, the average time efficiency of the utilized encryption/decryption procedure
is 0.5 s. These findings specify the advantages of the used cryptosystem technique in items
of speed efficacy.

8.7. Comparison with Related Works

As is well known, any work should be compared with similar works in the topic area in
order to demonstrate the developed work’s performance efficiency. In order to demonstrate
the high-performance efficiency and security of the proposed fractional-order memcapaci-
tive hyperchaotic system described by Equation (17) in an image encryption application,
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we compare our obtained findings with other highlighted works in the introduction section
for metrics of the employed cryptanalysis tests.

Table 1 displays a comparison for the encrypted image, where the best values for the
cryptanalysis test coefficients were chosen from the publications that were compared. In
summary, the image encryption approach based on the new fractional-order memcapacitive
hyperchaotic system (17) demonstrates an excellent encryption result, a high level of
security, and perfect time efficiency, as shown in Table 1.

Finally, the colour “macaws.jpg” with a size of 300 × 309 and “fruits.bmp” with a
size of 236 × 235 were encrypted and recovered. This was revealed in order to test the
effectiveness of the cryptosystem algorithm employed to encrypt and recover various-sized
images and different extensions. The plain image, encrypted image, and recovered image of
the macaws are shown in Figure 22a–c, correspondingly. Consequently, Figure 22d–f shows
the histogram graphs that correspond to Figure 22a–c, respectively. Figure 23a–c shows the
original image, its consistent encrypted image, and the corresponding recovered image of
the fruits, correspondingly. Figure 23d–f shows the histogram graph that corresponds to
Figure 23a–c.

Electronics 2022, 11, x FOR PEER REVIEW 28 of 31 
 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 22. Test of “macaws.jpg”, 300 × 309: (a) original image, (b) encrypted image, (c) recovered 
image, (d–f) histograms consistent with (a–c), respectively. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 23. Test of “fruits.jpg”, 236 × 235: (a) plain image, (b) encrypted image, (c) recovered image, 
(d–f) histograms consistent with (a–c), respectively. 

9. Conclusions 
In this article, a fractional-order memcapacitor was developed, numerically investi-

gated, and electronically realized. Then this fractional-order memcapacitor was employed 
for suggesting a novel fractional-order memcapacitive chaotic oscillator. To demonstrate 
the nonlinear dynamical performances of this system, the chaotic attractors, equilibrium 

Figure 22. Test of “macaws.jpg”, 300 × 309: (a) original image, (b) encrypted image, (c) recovered
image, (d–f) histograms consistent with (a–c), respectively.



Electronics 2022, 11, 1505 28 of 30

Electronics 2022, 11, x FOR PEER REVIEW 28 of 31 
 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 22. Test of “macaws.jpg”, 300 × 309: (a) original image, (b) encrypted image, (c) recovered 
image, (d–f) histograms consistent with (a–c), respectively. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 23. Test of “fruits.jpg”, 236 × 235: (a) plain image, (b) encrypted image, (c) recovered image, 
(d–f) histograms consistent with (a–c), respectively. 

9. Conclusions 
In this article, a fractional-order memcapacitor was developed, numerically investi-

gated, and electronically realized. Then this fractional-order memcapacitor was employed 
for suggesting a novel fractional-order memcapacitive chaotic oscillator. To demonstrate 
the nonlinear dynamical performances of this system, the chaotic attractors, equilibrium 
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9. Conclusions

In this article, a fractional-order memcapacitor was developed, numerically investi-
gated, and electronically realized. Then this fractional-order memcapacitor was employed
for suggesting a novel fractional-order memcapacitive chaotic oscillator. To demonstrate
the nonlinear dynamical performances of this system, the chaotic attractors, equilibrium
point, bifurcation maps, and Lyapunov exponents were examined analytically and numeri-
cally. According to the dynamic analysis, the new fractional-order memcapacitive chaotic
system is extremely sensitive to slight changes in parameters, initial conditions, and its
fractional-order derivative values. As a result, the system produces chaotic sequences with
a high randomness degree. Consequently, it has been employed in a cryptosystem approach
for encrypting color plain images. The initial conditions, state variables, parameters, and
fractional-order derivative values of the memcapacitive chaotic system were used to pro-
duce the keyspace of the proposed cryptosystem. In order to confirm the security strength
of the proposed cryptosystem algorithm, the common cryptanalysis metrics were explored
in detail, including keyspace analysis, histogram analysis, key sensitivity, entropy analysis,
correlation coefficients, time efficiency examination, and comparisons with articles in a
comparable topic area. The obtained values of the investigated cryptanalysis metrics were
as keyspace = 2744, NPCR = 0.99814, UACI = 0.336251, H(s) = 7.9996, and time efficiency
= 0.45 s. The acquired experimental findings and detailed security assessments support
the utilized cryptosystem’s effectiveness, high-level security, and good time efficiency, and
show high robust resistance to various types of attacks.
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