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Abstract. The main result of the paper is a global implicit function theorem.

In the proof of this theorem, we use a variational approach and apply Mountain
Pass Theorem. An assumption guarantying existence of an implicit function on

the whole space is a Palais-Smale condition. Some applications to differential

and integro-differential equations are given.

1. Introduction. In the paper, we derive a global implicit function theorem for
a map F : X × Y → H where X, Y are real Banach spaces and H is a real
Hilbert space. In the proof, we use a variational approach and apply Mountain Pass
Theorem. Such a method has been used in paper [3] to prove a theorem on the
global diffeomorphism between Banach and Hilbert spaces (global inverse function
theorem). The main assumption guarantying the existence of an implicit function
λ : Y → X described by the equation F (x, y) = 0 is a Palais-Smale condition
connected with F , with respect to x ∈ X.

In the literature, some extensions of the local implicit function theorem to the
global ones are known. In [6], the case of Banach spaces X, Y , H is considered.
Author uses a concept of “continuation property” which is equivalent to the so-
called “path-lifting property”. In [2], some variants of global implicit function
theorems in the case of Banach spaces X, Y and H = Y , have been obtained.
The main assumptions are some inequalities involving partial differentials Fx(x, y),
Fy(x, y) and a function ω : [0,∞) → [0,∞) such that

∫∞
1

ds
ω(s) = ∞. In paper

[8], the authors consider the case of X = Rm, Y = Rn, H = Rm. As a condition
guarantying existence of an implicit function on the whole space they propose a
“lower bound” condition imposed on the Jacobian Fx(x, y). The comparison of the
above results to our ones seems to be not so easy and remains an open question.

Our paper consists in two parts. In the first part, we derive a global implicit
function theorem. The second part is devoted to some applications. First, we study
the classical nonlinear ordinary Cauchy problem involving a functional parameter u
(nonlinearly). Next, we analyze an integro-differential Cauchy problem of Volterra
type involving two functional parameters u (nonlinearly) and v (linearly). Problem
of such a type but without u, was investigated in [3]. In both cases, we obtain exis-
tence, uniqueness and global, differentiable dependence of solutions on parameters.
Differentials of the mappings describing these dependencies are also given.
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2. Local implicit function theorem. We have the following classical local infi-
nite-dimensional implicit function theorem ([4]).

Theorem 2.1. Let X, Y , Z be real Banach spaces. If U ⊂ X × Y is an open set,
F = F (x, y) : U → Z is of class C1, F (a, b) = 0 and

• differential Fx(a, b) : X → Z is bijective,

then there exist balls B(a, r), B(b, ρ) and a function λ : B(b, ρ)→ B(a, r) such that
B(a, r)×B(b, ρ) ⊂ U and

• equations F (x, y) = 0 and λ(y) = x are equivalent in the set B(a, r)×B(b, ρ)
• function λ is of class C1 with differential λ′(y) given by

λ′(y) = −[Fx(λ(y), y)]−1 ◦ Fy(λ(y), y) (1)

for y ∈ B(b, ρ).

3. Mountain Pass Theorem. Let X be a real Banach space and I : X → R - a
functional of class C1. A point u∗ ∈ X is called the critical point of I if I ′(u∗) = 0.
In such a case I(u∗) is called the critical value of I.

A sequence (um) satisfying conditions:

• |I(um)| ≤M for all m ∈ N and some M > 0,
• I ′(um) −→ 0,

is called the Palais-Smale (PS) sequence for functional I. We say that I satisfies
Palais-Smale (PS) condition if any (PS) sequence admits a convergent subsequence.

Let d 6= 0 be a point of X. By Wd we denote the set

Wd = {U ⊂ X; U is open, 0 ∈ U and d /∈ U}.

We have ([1], [5])

Theorem 3.1 (Mountain Pass Theorem). Let I : X → R be a functional of class
C1 satisfying (PS) condition and such that I(0) = 0. If there exist constants ρ,

α > 0 such that I |∂B(0,ρ)≥ α and I(e) ≤ 0 for some e ∈ X \B(0, ρ), then

b := sup
U∈We

inf
u∈∂U

I(u)

is a critical value of I and b ≥ α.

4. Global implicit function theorem. The main result of the paper is the fol-
lowing infinite-dimensional global implicit function theorem. The method of the
proof is the same as in [3] in the case of the global inverse function theorem.

Theorem 4.1. Let X, Y be real Banach spaces, H - a real Hilbert space. If F :
X × Y → H is of class C1 and

• differential Fx(x, y) : X → H is bijective for any (x, y) ∈ X × Y
• the functional

ϕ : X 3 x 7−→ (1/2) ‖F (x, y)‖2 ∈ R (2)

satisfies the (PS) condition for any y ∈ Y ,

then there exists a unique function λ : Y → X such that

• equations F (x, y) = 0 and λ(y) = x are equivalent in the set X × Y.
This function is of class C1 with differential λ′(y) given by (1) for y ∈ Y .
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Proof. It is clear, in view of the local implicit function theorem, that it is sufficient
to show that for any y ∈ Y there exists exactly one x ∈ X such that F (x, y) = 0.
So, let us fix a point y ∈ Y . Functional ϕ, being a superposition of two mappings
of class C1, is of the same type and its differential ϕ′(x) at x ∈ X is given by

ϕ′(x)h = 〈F (x, y), Fx(x, y)h〉

for h ∈ X. As a mapping of class C1, bounded below and satisfying (PS) condition,
ϕ has a minimizer x∗ on X ([7, Corollary 2.5]). Consequently,

〈F (x∗, y), Fx(x∗, y)h〉 = 0

for h ∈ X. Since Fx(x∗, y)X = H, F (x∗, y) = 0. Now, let us suppose that there
exist x1, x2 ∈ X, x1 6= x2, such that F (x1, y) = F (x2, y) = 0. Let us put e = x2−x1

and

g(x) = F (x+ x1, y)

for x ∈ X. Of course,

g(x) = g′(0)x+ o(x) = Fx(x1, y)x+ o(x)

for x ∈ X, where o(x)/ ‖x‖X → 0 in H when x→ 0 in X. So,

β ‖x‖X ≤ ‖Fx(x1, y)x‖H ≤ ‖g(x)‖H + ‖o(x)‖H ≤ ‖g(x)‖H + (1/2)β ‖x‖X
for sufficiently small ‖x‖X and some β > 0 (existence of such an β follows from the
bijectivity of Fx(x, y)). Thus, there exists ρ > 0 such that

(1/2)β ‖x‖X ≤ ‖g(x)‖H
for x ∈ B(0, ρ). Without loss of the generality one may assume that ρ < ‖e‖X . Put

ψ(x) = (1/2) ‖g(x)‖2H = (1/2) ‖F (x+ x1, y)‖2H = ϕ(x+ x1)

for x ∈ X. Of course, ψ is of class C1 and

ψ′(x) = ϕ′(x+ x1).

Consequently, since ϕ satisfies (PS) condition, ψ has this property, too. Moreover,

ψ(0) = ψ(e) = 0, e /∈ B(0, ρ) and ψ(x) ≥ α for x ∈ ∂B(0, ρ) with α = (1/8)β2ρ2 >
0. Thus, ψ : X → R satisfies assumptions of the Mountain Pass Theorem. So,
b = sup

U∈We

inf
x∈∂U

ψ(x) is a critical value of ψ and b ≥ α, i.e. there exists a point

x∗ ∈ X such that ψ(x∗) = b > 0 and

ψ′(x∗)h = 〈F (x∗ + x1, y), Fx(x∗ + x1, y)h〉 = 0

for h ∈ X. The first condition means that F (x∗ + x1, y) 6= 0. The second one
and equality Fx(x∗ + x1, y)X = H imply that F (x∗ + x1, y) = 0. The obtained
contradiction completes the proof.

Remark 1. The first assumption can be replaced by a less restrictive one, namely:
“differential Fx(x, y) : X → H is bijective for any (x, y) ∈ X×Y such that F (x, y) =
0 and F (x, y) ∈ Fx(x, y)X for any (x, y) ∈ X × Y such that F (x, y) 6= 0”.

Remark 2. When X = Rn, Y = Rm and H = Rn, assumption on ϕ can be
replaced by the following one: “ϕ is coercive for any y ∈ Rm, i.e. ϕ(x)→∞ when
|x| → ∞”.
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5. Applications. In this section, we give two examples illustrating the obtained
results. First of them concerns a nonlinear differential Cauchy problem containing
a functional parameter.

Example 1. Let us consider the following control system

x′(t) = f(t, x(t), u(t)), t ∈ J = [0, 1] a.e., (3)

where f : J × Rn × Rm → Rn, x ∈ AC2
0 = AC2

0 (J,Rn) = {x : J → Rn; x is
absolutely continuous, x(0) = 0, x′ ∈ L2(J,Rn)}, u ∈ L∞(J,Rm). On the function
f we assume that

(A1) f(·, x, u) is measurable on J for any x ∈ Rn, u ∈ Rm; f(t, ·, ·) is continuously
differentiable on Rn × Rm for t ∈ J a.e.

(A2) there exist functions a, b ∈ L2(J,R+
0 ), γ ∈ C(R+

0 ,R
+
0 ) such that

|f(t, x, u)| ≤ a(t) |x|+ b(t)γ(|u|)

for t ∈ J a.e., x ∈ Rn, u ∈ Rm and∫ 1

0

(a(t))2tdt < 1/8

(A3) there exist functions c, d ∈ L2(J,R+
0 ), α, β ∈ C(R+

0 ,R
+
0 ) such that

|fx(t, x, u)| , |fu(t, x, u)| ≤ c(t)α(|x|) + d(t)β(|u|)

for t ∈ J a.e., x ∈ Rn, u ∈ Rm.

We shall check that the mapping

F : AC2
0 × L∞(J,Rm)→ L2(J,Rn),

F (x, u) = x′(t)− f(t, x(t), u(t)),

satisfies assumptions of global implicit function theorem with X = AC2
0 , Y =

L∞(J,Rm), H = L2(J,Rn). In a standard way one can check that it is of class C1

and the differential with respect to x

Fx(x, u) : AC2
0 3 h 7−→ h′(·)− fx(·, x(·), u(·))h(·) ∈ L2(J,Rn)

is “one-one” and “onto” (cf. [4, Theorem 0.4.1]).
Now, let us fix a function u ∈ L∞(J,Rm) and consider the functional

ϕ : AC2
0 3 x 7−→ (1/2) ‖F (x, u)‖2 = (1/2)

∫ 1

0

|x′(t)− f(t, x(t), u(t))|2 ∈ R.

It is easy to see that, for any x ∈ AC2
0 ,

|ϕ(x)| ≥ (1/2) ‖x‖2AC2
0
−
∫ 1

0

x′(t)f(t, x(t), u(t))dt

and ∣∣∣∣∫ 1

0

x′(t)f(t, x(t), u(t))dt

∣∣∣∣ ≤ ‖x‖AC2
0

(

∫ 1

0

|f(t, x(t), u(t))|2 dt)(1/2).
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Since∫ 1

0

|f(t, x(t), u(t))|2 dt ≤
∫ 1

0

(a(t) |x(t)|+ b(t)γ(|u(t)|))2
dt

≤ 2

∫ 1

0

(
(a(t))2 |x(t)|2 + (b(t))2(γ(|u(t)|))2

)
dt

≤ 2

∫ 1

0

(a(t))2tdt

∫ 1

0

|x′(t)|2 dt+ 2

∫ 1

0

(b(t))2(γ(|u(t)|))2dt

≤ 2

∫ 1

0

(a(t))2tdt ‖x‖2AC2
0

+ 2

∫ 1

0

(b(t))2(γ(|u(t)|))2dt,

therefore

|ϕ(x)| ≥ (1/2) ‖x‖2AC2
0
− ‖x‖AC2

0

(
2

∫ 1

0

(a(t))2tdt ‖x‖2AC2
0
+ 2

∫ 1

0

(b(t))2(γ(|u(t)|))2dt
)(1/2)

≥ (((1/4)− 2

∫ 1

0

(a(t))2tdt) ‖x‖4AC2
0
− 2

∫ 1

0

(b(t))2(γ(|u(t)|))2dt ‖x‖2AC2
0
)

/((1/2) ‖x‖2AC2
0
+ ‖x‖AC2

0

(
2

∫ 1

0

(a(t))2tdt ‖x‖2AC2
0
+ 2

∫ 1

0

(b(t))2(γ(|u(t)|))2dt
)(1/2)

)

for x ∈ AC2
0 . This means that ϕ is coercive.

In a standard way, we check that the differential ϕ′(x) of ϕ at x is given by

ϕ′(x)h =

∫ 1

0

(x′(t)− f(t, x(t), u(t)))(h′(t)− fx(t, x(t), u(t))h(t))dt

for h ∈ AC2
0 . Consequently, for any xm, x0 ∈ AC2

0 ,

(ϕ′(xm)− ϕ′(x0))(xm − x0) = ‖xm − x0‖2AC2
0

+
∑5

i=1
ψi(xm) (4)

where

ψ1(xm) =

∫ 1

0

x′m(t) (fx(t, xm(t), u(t))(x0(t)− xm(t)))dt,

ψ2(xm) =

∫ 1

0

x′0(t) (fx(t, x0(t), u(t))(xm(t)− x0(t))) dt,

ψ3(xm) =

∫ 1

0

f(t, xm(t), u(t)) (fx(t, xm(t), u(t))(xm(t)− x0(t)))dt,

ψ4(xm) =

∫ 1

0

f(t, x0(t), u(t)) (fx(t, x0(t), u(t))(x0(t)− xm(t))) dt,

ψ5(xm) =

∫ 1

0

(f(t, x0(t), u(t))− f(t, xm(t), u(t)))(x′m(t)− x′0(t))dt.

Now, we are in a position to prove that ϕ satisfies (PS) condition. Indeed, if
(xm) is a (PS) sequence for ϕ, then the coercivity of ϕ implies its boundedness.
Consequently, there exists a subsequence (xmk

) which is weakly convergent in AC2
0

to some x0 (we recall that the weak convergence of functions in AC2
0 implies the
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uniform convergence of these functions and weak convergence of their derivatives in
L2(I,Rn)). Let us observe that

|ψ1(xmk )| ≤ (

∫ 1

0

∣∣x′mk
(t)
∣∣2 dt)(1/2)(∫ 1

0

|fx(t, xmk (t), u(t))|
2 |xmk (t)− x0(t)|

2 dt

)(1/2)

≤ (

∫ 1

0

∣∣x′mk
(t)
∣∣2 dt)(1/2)(∫ 1

0

(c(t)α(|xmk (t)|) + d(t)β(|u(t)|))2 |xmk (t)− x0(t)|
2 dt

)(1/2)

≤ Cmax{|xmk (t)− x0(t)|
2 ; t ∈ [0, 1]}

where C > 0 is a constant depending on the sequence (xmk
) and control u. Thus,

from the uniform convergence of (xmk
) to x0 the convergence of (ψ1(xmk

)) to 0
follows. In the same way, one can check that sequences (ψi(xmk

)), i = 2, 3, 4,
converge to 0. Convergence of the sequence (ψ5(xmk

)) to 0 follows from the weak
convergence of (xmk

) to x0 in L2(J,Rn) and from the convergence of the sequence
(f(t, xmk

(t), u(t))) to f(t, x0(t), u(t)) in L2(J,Rn) (the last convergence follows from
the Lebesgue dominated convergence theorem). Thus, from (4) it follows that (xmk

)
converges to x0 in AC2

0 , i.e. ϕ satisfies (PS) condition.
So, all assumptions of the global implicit function theorem are satisfied. Con-

sequently, for any u ∈ L∞(J,Rm) there exists a unique solution xu ∈ AC2
0 of the

equation (3) and the mapping

λ : L∞(J,Rm) 3 u 7−→ xu ∈ AC2
0

is of class C1 with the differential λ′(u) at a point u ∈ L∞(J,Rm) given by

L∞(J,Rm) 3 g 7−→ zg ∈ AC2
0

where zg is such that

z′g(t)− fx(t, xu(t), u(t))zg(t) = fu(t, xu(t), u(t))g(t)

a.e. on J .

An example of a function satisfying conditions (A1), (A2), (A3) is the function
f(t, x, u) = 1

3 t
5 sinx+

√
t(sin2 x)u.

Second example concerns a nonlinear integro-differential Cauchy problem con-
taining two functional parameters. It is a generalization of the Cauchy problem
considered in [3] and illustrating the global inverse function theorem.

Example 2. Let us consider a nonlinear integro-differential control system of
Volterra type

x′(t) +

∫ t

0

Φ(t, τ, x(τ), u(τ))dτ = v(t), t ∈ J a.e., (5)

where Φ : P∆ × Rn × Rm → Rn (P∆ = {(t, τ) ∈ J × J ; τ ≤ t}), x ∈ AC2
0 ,

u ∈ L2(J,Rm), v ∈ L2(J,Rn). On the function Φ we assume that

(B1) Φ(·, ·, x, u) is measurable on P∆ for any x ∈ Rn, u ∈ Rm; Φ(t, τ, ·, ·) is contin-
uously differentiable on Rn × Rm for (t, τ) ∈ P∆ a.e.

(B2) there exist a function a ∈ L2(P∆,R+
0 ) and a constant b > 0 such that

|Φ(t, τ, x, u)| ≤ a(t, τ) |x|+ b |u|
for (t, τ) ∈ P∆ a.e., x ∈ Rn, u ∈ Rm and∫

P∆

a2(t, τ)dtdτ < 1/2
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(B3) there exist functions c, e ∈ L2(P∆,R+
0 ), α, β ∈ C(R+

0 ,R
+
0 ) and constants d,

p, C > 0 such that

|Φx(t, τ, x, u)| ≤ c(t, τ)α(|x|) + d |u| ,
|Φu(t, τ, x, u)| ≤ e(t, τ)β(|x|) + p |u|

for (t, τ) ∈ P∆ a.e., x ∈ Rn, u ∈ Rm and∫ t

0

c2(t, τ)dτ ≤ C, t ∈ J a.e.

We shall show that the mapping

F : AC2
0 × L2(J,Rm+n)→ L2(J,Rn),

F (x, u, v) = x′(t) +

∫ t

0

Φ(t, τ, x(τ), u(τ))dτ − v(t)

satisfies assumptions of the global implicit function theorem with X = AC2
0 , Y =

L2(J,Rm+n), H = L2(J,Rn).
In a standard way, one can check that F is of class C1 and the mappings

Fx(x, u, v) : AC2
0 → L2(J,Rn),

Fx(x, u, v)h = h′(t) +

∫ t

0

Φx(t, τ, x(τ), u(τ))h(τ)dτ

Fu,v(x, u, v) : L2(J,Rm)× L2(J,Rn)→ L2(J,Rn),

Fu,v(x, u, v)(f, g) =

∫ t

0

Φu(t, τ, x(τ), u(τ))f(τ)dτ − g(t)

are the differentials of F in x and (u, v), respectively.
Let us fix a function (u, v) ∈ L2(J,Rm+n). The mapping

Φ̃ : P∆ × Rn → Rn

Φ̃(t, τ, x) = Φ(t, τ, x, u(t))

satisfies assumptions of Theorem 4.1 from the paper [3]. Since

h′(t) +

∫ t

0

Φx(t, τ, x(τ), u(τ))h(τ)dτ = h′(t) +

∫ t

0

Φ̃x(t, τ, x(τ))h(τ)dτ,

therefore, just as in [3], one can show that the mapping Fx(x, u, v) is “one-one” and
“onto” for any x ∈ AC2

0 .
Moreover, in the same way as in the proof of Theorem 4.1 from [3], one can show

that, for any fixed (u, v) ∈ L2(J,Rm+n), the functional

ϕ : AC2
0 → R,

ϕ(x) = (1/2) ‖F (x, u, v)‖2L2(J,Rn) = (1/2)

∫ 1

0

∣∣∣∣x′(t) +

∫ t

0

Φ̃(t, τ, x(τ))dτ − v(t)

∣∣∣∣2 dt
satisfies (PS) condition.

Thus, from the global implicit function theorem it follows that for any (u, v) ∈
L2(I,Rm+n) there exists a unique solution xu,v ∈ AC2

0 of the equation (5) and the
mapping

λ : L2(J,Rm+n) 3 (u, v) 7−→ xu,v ∈ AC2
0

is of class C1 with the differential λ′(u, v) at a point (u, v) ∈ L2(J,Rm+n) of the
form

L2(J,Rm+n) 3 (f, g) 7−→ zf,g ∈ AC2
0



2556 DARIUSZ IDCZAK

where zf,g is such that

z′f,g(t) +

∫ t

0

Φx(t, τ, xu,v(τ), u(τ))zf,g(τ)dτ

= −
∫ t

0

Φu(t, τ, xu,v(τ), u(τ))f(τ)dτ + g(t)

a.e. on J .

An example of a function satisfying conditions (B1), (B2), (B3) is the function
Φ(t, τ, x, u) = 1

3 t
5
√
τ sinx+

√
tτ3(sin2 x) sinu.
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