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1 Introduction
Because of advances in spectroscopy and the development 

of novel sensor technologies such as spectrophotometers and 
cameras, non-destructive and rapid assessments of quality-related 
factors in foods are becoming more common (Groß et al., 2019; 
Kucha et al., 2018). Researchers may now acquire data at the 
molecular level regarding physical and chemical components 
in food or biological materials because of advancements in 
spectroscopy (Abasi et al., 2018). Spectroscopic methods (e.g., 
ultra-violet spectroscopy, X-ray fluorescence spectroscopy (FS), 
mass spectroscopy, nuclear magnetic resonance spectroscopy, 
near-infrared spectroscopy, Fourier and Raman-transform 
infrared spectroscopy, atomic absorption spectroscopy) have 
been used to analyze infections caused by fungi in plant materials 
(e.g., seeds, fruits), to enhance the overall quality of food, safety, 
and sensory qualities, to explore structure-function connections 
in foods (both solid and liquid), and to study the movement of 
various chemical constituents in food ingredients (Boyaci et al., 
2015; Esteki et al., 2018; Franca & Nollet, 2017; McQueen et al., 
1995; Nawrocka & Lamorska, 2013; Petersen  et  al., 2021; 

Pignataro  et  al., 2020; Shi  et  al., 2012; Szmatoła  et  al., 2018; 
Wang et al., 2017). It’s typically complicated, problem-specific, 
and time-consuming to process, analyze, and show this data. 
Chemometrics is a well-established method for adjusting 
spectral data (Andre & Soukoulis, 2020; Granato et al., 2018; 
Xu  et  al., 2020). Fluorescence signals are multi-dimensional 
data with overlapping fluorophore fingerprints (Yıldız  et  al., 
2017). Their processing is time-consuming and necessitates 
the use of sophisticated gear and software (Nishi et al., 2015; 
Ren et al., 2014). FS has been studied for a variety of applications, 
including the measurement of meat components, structural 
characteristics of cheese and meat, polyphenolic concentration 
in drinks, and yeast and bacterial cell differentiation, among 
others (Hassoun et al., 2019; Karoui & Blecker, 2011; Sahar et al., 
2016; Sikorska et al., 2005).

Chemometrics refers to all of the procedures that convert 
complicated data and analytical signals into usable knowledge. 
FS is usually analyzed in one of two ways: univariate or 
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Abstract
Vegetable oils (VOs) come in a wide range of flavors and trademarks. VOs are very similar in appearance, flavor, and taste, and it’s 
frequently difficult to tell them from just by looking at them. Approaches for classifying these oils are sometimes expensive and 
time-intensive, and they frequently include analytical chemical techniques as well as mathematical algorithms like as Artificial 
Neural Networks (ANNs), Properties of Partial Least Squares (PLS), Principal Components Regression (PCR), and Principal 
Component Analysis (PCA) to enhance their effectiveness. Because of the large range of goods available, more productive 
techniques for qualifying, characterizing, and classifying these substances are required, as the ultimate cost should indicate the 
quality of the commodity that reaches the user. This study provides a technique for classifying VOs such as different manufacturers’ 
soybean, corn, sunflower, and canola. This method utilized a Charge-Coupled Device (CCD) array sensor, a light emission 
diode, and a straightforward mathematical approach to capture the generated fluorescence spectrum (FS) in diluted oil. The 
spectrum classifications are performed using an ANN with three layers, each having four neurons. The approach can categorize 
VO and enables rapid network training with a 72% success rate utilizing only a few mathematical changes in the spectra data.
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multivariate. The goal of the univariate analysis is to discover a 
couple of excitation-emission wavelengths in which the signal 
is produced by just one or a few known components (Ali et al., 
2018; Christensen  et  al., 2005; Sádecká & TóthoVá, 2007; 
Sikorska et  al., 2019). Artificial Neural Network (ANN) and 
Channel Relationships techniques have been widely utilized 
to handle spectral data in recent years (Silva  et  al., 2015; 
Vasilescu et al., 2011). ANNs for simulation and modeling have 
gained popularity in various fields, including control, water 
treatment, chemical engineering, and energy (Molajou et al., 
2021; Nourani et al., 2019a, b). The use of ANN in food chemistry 
and research is investigated (Gonzalez-Fernandez et al., 2019; 
Haroni et al., 2018; Zhou et al., 2019). ANN is a mathematical 
model of a certain structure made up of several single processing 
components (neurons, nodes) stacked in interconnected layers 
(Sharghi et al., 2018; Sharghi et al., 2019; Nourani et al., 2019c). 
Each input vector is multiplied using its weight, the products 
are added, and the sum is sent through a transfer function to 
generate the output (Bisgin et al., 2018). An ANN is made up of 
a collection of artificial neurons that are linked together. It has 
three layers: one for input, one for hiding, and one for output. 
Neurons can be found in each stratum. Each neuron receives 
information and changes it before sending it to other neurons 
with whom it is linked (Hernández, 2009; Pouladzadeh et al., 
2016). The receiving neurons are used to calculate weights and 
biases. The network is tuned based on its capability to forecast a 
set of known outcomes using a subset or dataset of observations 
(Dash et al., 2020; Goñi et al., 2008).

Marine et al. (2007) used a mixture of two distinct neural 
network architectures to resolve simulated binary mixes of olive 
oils from various cultivars. Cámara  et  al. (2012) concluded 
that the Radial Basis Network (RBN) mathematical method 
proposed may be considered a reliable approach to monitor the 
stability of lycopene in tomato products (ketchups, sauces, and 
juices, etc.) during their shelf life and maybe a useful approach 
for monitoring lycopene degradation kinetics in tomato-based 

products using RBN with a mean prediction error lower than 
2.62% and a correlation coefficient (CC) higher than 0.983. Also, 
artificial neural networks were used to recognize patterns in the 
FS of olive oil (Gonzalez-Fernandez et al., 2019).

Food safety issues are major concerns in the food business 
that are linked to social and health advancement on a global 
scale (King et al., 2017; Olaimat et al., 2020). Consumers are 
increasingly searching for trustworthy food brands, and producers 
and merchants are expected to deliver high-quality goods 
(Fung et al., 2018). Food product authentication has become 
more complex as customer knowledge of food safety and quality 
problems has grown. However, the majority of these procedures 
are time intensive and need significant sample preparation, 
dangerous chemicals, and experienced and professional personnel 
(Ashurst & Dennis, 2013; Danezis et al., 2016). Because of these 
drawbacks, new and easier techniques, such as fluorimetry, have 
been developed.

According to the vast number of trademarks for vegetable 
oils (VOs) on the Marketplace, it’s usual to have doubts about 
whether the purchased material is truly pure. VOs have a lot of 
similarities in terms of color, smell, and flavor, and it’s frequently 
impossible to tell them from just by looking at them. In this 
paper, based on a few mathematical manipulations and the use 
of ANN to distinguish the FS of VOs, we present a technique 
for their classification.

2 Material and methods
The data was collected using a spectrofluorometer type CCD/

LED created at the Federal University of Bahia (UFBA) in Brazil’s 
Laboratory of Optical Properties (LAPO). FS between 350 and 
1050 nm may be obtained using this apparatus. This apparatus 
was patented in 2012 and is listed in the QUIMIS catalog as 
Q-798FIL (Meira et  al., 2014, 2015; Tomazzoni et  al., 2014). 
Figure 1 indicates a schematic diagram of a spectrofluorometer. 
A Light Emitting Diode (LED) is utilized as the source of 

Figure 1. The LED/CCD spectrofluorimeter Q-798FIL.
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excitation light. Standard 3.5 mL cuvettes, microscope slides, 
or micro cuvettes may all be placed in the sample container. 
The LED emits short-wavelength light on the sample, which is 
then converted into fluorescent light of a different wavelength. 
The detector captures both fluorescence light from the sample 
and dispersed light from the LED optical system.

There are ten different VO brands available at local shops 
in Salvador. Several of them make several different types of VO 
(Soybean, Corn, Sunflower, and Canola). Using four distinct 
VOs, they may be categorized into six separate brands. Each 
oil was divided into twenty dilutions, yielding 480 samples in 
total. The neural network was trained using them. We created 
158 additional samples from another batch, using two brands 
for each oil, to construct the validation set employing the same 
technique. Every sample was made by diluting the VO in heptane 
in a volume of 30 mL and varying the amount of the VO from 5% 
to 100% in 5% increments. Oils of the same labels used during 
training but from various production batches were utilized to 
validate the network and the categorization technique created.

2.1 Data collection and analysis

A 382 nm light-emitting diode was used as the excitation 
source for the FS. The CCD was maintained active for 1000 ms 
during the fluorescence light collecting. This time is referred to 
as integration time, and it is used to charge the metal–oxide–
semiconductor (MOS) structure of each CCD pixel. The electrons 
from the CCD’s active outer layer, where the photoelectric 
effect occurs, charge the CCD like an “almost capacitor.” The 
data carried by the fluorescence photons is accumulated in the 
form of electrical charge as a result. The apparatus is cleared of 
its content at the conclusion of the integration time. An analog 
to digital converter receives the voltage gathered in each pixel 
and converts it to digital, resulting in wavelength data and light 
intensity in a two-dimensional array. To obtain spectral data, 
each sample was exposed to light for 15 seconds. It was necessary 
to conduct certain mathematical calculations:

1)	The LED spectrum A was first subtracted from the overall 
spectrum to get the sample fluorescence known as FLU.

2)	Following that, a constant C was used to split the FLU.

The maximum fluorescence intensity observed for the sum of 
640 samples was C = 10,422.95 in this research (100% corn oil). 
This division facilitates comparisons by obtaining normalized 
spectra (NOR).

2.2 Ann training

The number of neurons in the hidden layer of the ANN was 
changed from 3 to 13 to get the best possible classification results. 
The number of successful examples in the hidden layer dwindled 
as the number of neurons increased. In the buried layer, there 
were four neurons with the most effective instances. The best 
efficiency was found between 1 and 4000 nm across a wide range 
of weights. The network mistakes were considerably different 
while utilizing shorter gaps for the weights. The feedforward 
supervised approach was utilized for training the ANN in this 

study, as shown in Figure 2. Each layer of the ANN has four 
neurons. The material to be categorized is described as follows 
in the output layer. Each neuron’s output has a binary value of 
false (0) or true (1), and there are no combinations with more 
than one true neuron. As a result, the scenarios that may occur 
are as follows: for Soybean [0 0 0 1], for Corn [0 0 1 0], for 
Sunflower [0 1 0 0], and for Canola [1 0 0 0].

MATLAB® was used to create the neural network. As previously 
stated, several alternative layouts and network parameters were 
explored, with the configuration with four neurons in each layer 
providing the best results.

3 Results and discussion
An empty bucket was put in the sample container in order 

to get the spectrum A mentioned before. To put it another way, 
it’s a device that doesn’t contain any samples. Figure 3 shows the 
spectrum of LED excitation. Light dispersed by the bucket walls 
reaches the detecting fiber. The spectrofluorimeter employed can 
measure fluorescence light between 350 and 1050 nanometres, 
as seen in this diagram. The existence of LED light (382 nm) was 
obviously reliant on the quantity of dispersed excitation light 

Figure 2. ANN model.

Figure 3. The empty fluorimeter/ LED spectrum’s light spectrum.
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that did not interact with the fluorescent medium in certain 
samples, as shown by the measured spectra. The dispersed 
light from the LED was more prominent for tiny quantities of 
the oils at various dilutions. Spectra of canola oil (Bom Preço 
brand) samples at various dilutions ranging from 5 to 100% are 
shown in Figure 4.

Figure  5 shows the spectra of all VOs (soybean, corn, 
sunflower, and canola) utilized at a concentration of 100%  for 
the excitation light (LED) centered at 382 nm. Although the 
spectra were comparable, having peaks that were extremely 
near to one another, the intensity of light was very different. 
The numerical separation of even extremely close peaks was 
possible. As a result, the FS were highly distinctive and could 
be utilized to determine the oil type.

Nikolova et al. (2012) discovered similar spectra as well. 
When the network training time was compared to the training 
time for the previous approach in all spectra (Silva et al., 2015), 
the network training was determined to be 1.2 times quicker. 
As previously stated, The LED spectrum was removed from 
the total spectrum as the only mathematical treatment of the 
spectra and the result was divided by 10.42295. The spectra for 
the various VOs utilized in ANN training are given in Figure 6, 
resulting from this mathematical method.

In the validation tests, the ANN’s responses are shown 
in Table  1. The approach was successful in 2 situations, and 
the best effects may be seen in soybean (brand Liza) and corn 
(brand Mazola) oils. Only 5 of the Sunflower oil (brand Bom 
Preço) samples were accurately identified, which was the poorest 

Figure 4. Canola oil light spectra at concentrations ranging from 5% to 100%.

Figure 5. Four VOs’ light spectra and an empty apparatus.
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result of all. During earlier testing, it was discovered that some 
Sunflower samples’ FS have been much more identical to those 
of canola oil samples, and the network was unable to differentiate 
between them.

A technical modification of fats and oils allows more flexibility 
in the selection of raw materials and helps to adjust the trends 
among local supply and demand in order to satisfy market 
demands and offer homogenous products from raw variables.

4 Conclusions
It was decided to create an approach based on artificial neural 

networks. This approach enables quick network training and only 

utilizes a few arithmetic operations on the spectra data. From 
the perspective of VO quality management, this is a promising 
technique that may be utilized to design future research focusing 
on the resolution of actual blends of oils from different cultivars, 
namely for soybean and corn oils. More research on canola and 
sunflower oils is needed to enhance categorization precision. The 
requirement for thorough research of the features that characterize 
the regions of interest across the FS is confirmed by this novel 
technique, which uses the most relevant characteristics of the 
FS as input data for ANN. Thus, interpreting the data from FS 
of VOs and other more sophisticated compounds requires first 
examining the fluorescence of the basic components that make 
up the samples to be examined.
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