Received date: 26-7-2021 Accepted date: 15-11-2021 Available online date: 31-12-2021

The Rational \boldsymbol{r} - Powers of Bernstein-Kantorovich Sequence

Iman A. Abdul Samad*
iman.math.msc@gmail.com
Ali J. Mohammad
alijasmoh@gmail.com
IRAQ, Basrah, University of Basrah, College of Education for Pure Sciences, Dept. of Mathematics.

Abstract

. The rational r-powers of Bernstein-Kantorovich sequence $K B_{n, r}(f ; x)$ is defined and studied in this paper. In the beginning the study shows that the sequence $K B_{n, r}(f ; x)$ is converged to the function $f \in C[0,1]$ whenever $n \rightarrow \infty$. Next, for this sequence, the moments of order m and the Voronovskaja-type asymptotic formula are given. Also, a numerical application for the sequence $K B_{n, r}(f ; x)$ is given for the test function $f(t)=\sin 10 t$ to explain the convergence properties and compared with the numerical results of the classical Bernstein-Kantorovich sequence $K B_{n}(f ; x)$. It shows that, the sequence $K B_{n, r}(f ; x)$ has better numerical approximation properties than the sequence $K B_{n}(f ; x)$.

Keywords: Voronovskaja-type asymptotic formula, Ordinary approximation, Rational Bernstein sequence.
MSC 2010: 41A25, 41A36.

[^0]
2.1 Introduction.

The well-known Bernstein sequence of order n :

$$
B_{n}(f ; x)=\sum_{k=0}^{n} b_{n, k}(x) f\left(\frac{k}{n}\right)
$$

where $f \in C[0,1], b_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ and $x \in[0,1]$.
In 1930, Kantorovich [6], gave a modification to the sequence of Bernstein for a function $f \in C[0,1]$ as:

$$
K B_{n}(f ; x)=(n+1) \sum_{k=0}^{n} b_{n, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t
$$

where $k=0,1,2, \ldots, n$.
After that, some other generalizations and modifications have been introduced by some researchers (see, [3], [4], [5]).

In 2000, Cal and Vall [2], introduced a class of sequences that are general to particular many cases.

In 2013, Mahmudov and Sabancigil [8], have introduced a generalization of q-type Bernstein-Kantorovich sequence as follows:

$$
B_{n, q}(f ; x)=\sum_{k=0}^{n} b_{n, k}(q, x) \int_{0}^{1} f\left(\frac{[k]+q^{k} t}{[n+1]}\right) d_{q} t
$$

where $f \in C[0,1], 0<q<1$.
In 2018, Acu, Manav and Sofonea [1], have studied the approximation properties and asymptotic type results concerning the Kantorovich variant of λ-Bernstein sequences.

$$
K B_{n, \lambda}(f ; x)=(n+1) \sum_{k=0}^{n} \hat{b}_{n, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t
$$

where $\lambda \in[-1,1]$ and $\hat{b}_{n, k}(\lambda ; x)=b_{n, k}(x)+\lambda\left(\frac{n-2 k+1}{n^{2}-1} b_{n+1, k}(x)-\frac{n-2 k-1}{n^{2}-1} b_{n+1, k+1}(x)\right)$.
In 2019, Karahan and Izgi [7], have studied the generalized of Bernstein-Kantorovich sequences for the function of two variables.

$$
K B_{n, m}(f ; x, y)=\frac{n+1}{2} \frac{m+1}{2} \sum_{k=0}^{n} \sum_{j=0}^{m} \varphi_{n, k}^{k, j}(x, y) \int_{2 \frac{k}{n+1}-1}^{\int_{2 \frac{j}{m+1}-1}^{2 \frac{k+1}{n+1}-1} f(t, u) d t d u, ~}
$$

where $\quad f \in C(A), \quad A=[-1,1] \times[-1,1], \quad n, m \in \mathbb{N}, \varphi_{n, m}^{k, j}(x, y)=b_{n, k}(x) b_{m, j}(y), \quad$ and $b_{n, k}(x)=\frac{1}{2^{n}}\binom{n}{k}(1+x)^{k}(1-x)^{n-k}$.

In 2020, Mohiuddine and Özger [10], construct Stancu-type Bernstein-Kantorovich sequences based on parameter α.

$$
S_{n, \alpha}^{\theta, \beta}(f ; y)=(n+\beta+1) \sum_{i=0}^{n} p_{n, j}^{(\alpha)}(y) \int_{\frac{i+\theta}{n+\beta+1}}^{\frac{j+\theta+1}{n+\beta+1}} f(s) d s
$$

where $p_{n, j}^{(\alpha)}(y)=\left[(1-\alpha) y\binom{n-2}{j}+(1-\alpha)(1-y)\binom{n-2}{j-2}+\alpha y(1-y)\binom{n}{j}\right] y^{j-1}(1-$ $y)^{n-j-1} \quad n \geq 2$ and $\alpha, y \in[0,1]$.

In 2021. Mohammad and Abdul Samad [9], have introduced and studied the rational r-powers of the Bernstein sequence $B_{n, r}(f ; x)$ for $f \in C[0,1]$ and $r \in \mathbb{N}:=\{1,2, \ldots\}$ as follows:

$$
B_{n, r}(f ; x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x) f\left(\frac{k}{n}\right)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}
$$

In this paper, the rational r-power of the Bernstein-Kantorovich sequence $K B_{n, r}(f(t) ; x)$ is defined as:

$$
K B_{n, r}(f(t) ; x)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}
$$

Where $f \in C[0,1], r \in \mathbb{N}$ and $b_{n, k}^{r}(x)=\left(\binom{n}{k} x^{k}(1-x)^{n-k}\right)^{r}$.
For the sequence $K B_{n, r}(f(t) ; x)$, the moment of order m, Korovkin theorem, and the Voronovskaja -type asymptotic formula is studied.

2. Preliminary Results.

Some preliminaries relative to the sequence r-th powers of the rational BernsteinKantorovich polynomials are introduced here.

Lemma 2.1. [9]
(i) $B_{n, r}(1 ; x)=1$;
(ii) $\quad B_{n, r}(t ; x) \simeq \frac{(r(n+1)-1) x}{r n}+\frac{1-r}{2 r n}$;
(iii) $B_{n, r}\left(t^{2} ; x\right) \simeq \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2} n^{2}} x^{2}+\frac{(2-r)(r(n+1)-1)}{r^{2} n^{2}} x+\frac{(1-r)^{2}}{4 r^{2} n^{2}}$;
(iv) $B_{n, r}\left(t^{m} ; x\right)=\frac{(r(n+1)-1)!}{r^{m} n^{m}(r(n+1)-m-1)!} x^{m}+\frac{m(m-r)}{2} \frac{(r(n+1)-1)!}{r^{m} n^{m}(r(n+1)-m)!} x^{m-1}+T L P(x)$.

Lemma 2.2.
For $x \in[0,1], m \in \mathbb{N}^{0}:=\{0,1,2, \ldots\}$, the following conditions are satisfied
(i) $K B_{n, r}(1 ; x)=1$;
(ii) $K B_{n, r}(t ; x) \simeq \frac{(r(n+1)-1) x}{r(n+1)}+\frac{1}{2 r(n+1)}$;
(iii) $K B_{n, r}\left(t^{2} ; x\right) \simeq \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2}(n+1)^{2}} x^{2}+\frac{2(r(n+1)-1)}{r^{2}(n+1)^{2}} x+\frac{r^{2}+3}{12 r^{2}(n+1)^{2}}$;
(iv) $K B_{n, r}\left(t^{m} ; x\right)=\frac{(r(n+1)-1)!}{r^{m}(n+1)^{m}((n+1) r-m-1)!} x^{m}+\frac{m(r(n+1)-1)!}{2 r^{m}(n+1)^{m}((n+1) r-m)!} x^{m-1}+T L P(x)$.

Where $\operatorname{TLP}(x)$ means terms in lower powers of x.

Proof.

The proof of the above polynomials is going as:
By direct evaluation, one has

$$
K B_{n, r}(1 ; x)=1 .
$$

To prove (ii)

$$
\begin{aligned}
& K B_{n, r}(t ; x)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} t d t \\
& =\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\frac{t^{2}}{2}\right]_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{2 \sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\left(\frac{k+1}{n+1}\right)^{2}-\left(\frac{k}{n+1}\right)^{2}\right] \\
& =\frac{2(n+1) \sum_{k=0}^{n} k b_{n, k}^{r}(x)}{2(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{2(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)^{\prime}}
\end{aligned}
$$

Applying Lemma 2.1, one has

$$
\begin{aligned}
& K B_{n, r}(t ; x) \simeq \frac{(r(n+1)-1) x}{r(n+1)}+\frac{1-r}{2 r(n+1)}+\frac{1}{2(n+1)} \\
& \simeq \frac{(r(n+1)-1) x}{r(n+1)}+\frac{1}{2 r(n+1)} .
\end{aligned}
$$

To prove (iii)

$$
K B_{n, r}\left(t^{2} ; x\right)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} t^{2} d t
$$

$$
\begin{aligned}
& =\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\frac{t^{3}}{3}\right]_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{3 \sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\left(\frac{k+1}{n+1}\right)^{3}-\left(\frac{k}{n+1}\right)^{3}\right] \\
& =\frac{3 \sum_{k=0}^{n} k^{2} b_{n, k}^{r}(x)}{3(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{3 \sum_{k=0}^{n} k b_{n, k}^{r}(x)}{3(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)}{3(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)^{\prime}},
\end{aligned}
$$

Applying Lemma 2.1, one has

$$
\begin{aligned}
& \simeq \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2}(n+1)^{2}} x^{2}+\frac{(2-r)(r(n+1)-1)}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}} \\
& +\frac{(r(n+1)-1)}{r(n+1)^{2}} x+\frac{1-r}{2 r(n+1)^{2}}+\frac{1}{3(n+1)^{2}} \\
& \simeq \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2}(n+1)^{2}} x^{2}+\frac{(r(n+1)-1)(2-r+r)}{r^{2}(n+1)^{2}} x \\
& +\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}}+\frac{1-r}{2 r(n+1)^{2}}+\frac{1}{3(n+1)^{2}} . \\
& K B_{n, r}\left(t^{2} ; x\right) \simeq \\
& \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2}(n+1)^{2}} x^{2}+\frac{2(r(n+1)-1)}{r^{2}(n+1)^{2}} x+\frac{r^{2}+3}{12 r^{2}(n+1)^{2}} .
\end{aligned}
$$

In general,

$$
\begin{aligned}
& K B_{n, r}\left(t^{m} ; x\right)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} t^{m} d t \\
& =\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\frac{t^{m+1}}{m+1}\right]_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{m+1 \sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\left(\frac{k+1}{n+1}\right)^{m+1}-\left(\frac{k}{n+1}\right)^{m+1}\right] \\
& =\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{(n+1)^{m+1}(m+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[(k+1)^{m+1}-k^{m+1}\right] \\
& =\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)}{(n+1)^{m}(m+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& \times\left\{k^{m+1}+(m+1) k^{m}+\frac{m(m+1)}{2} k^{m-1}+\cdots+(m+1) k+1-k^{m+1}\right\} \\
& =\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)}{(m+1)(n+1)^{m} \sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& \times\left\{(m+1) k^{m}+\frac{m(m+1)}{2} k^{m-1}+\cdots+(m+1) k\right\}+\frac{1}{(n+1)^{m}(m+1)} \\
& =\frac{(m+1) \sum_{k=0}^{n} k^{m} b_{n, k}^{r}(x)}{(n+1)^{m}(m+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{m(m+1) \sum_{k=0}^{n} k^{m-1} b_{n, k}^{r}(x)}{2(n+1)^{m}(m+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}+T L P(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sum_{k=0}^{n} k^{m} b_{n, k}^{r}(x)}{(n+1)^{m} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{m \sum_{k=0}^{n} k^{m-1} b_{n, k}^{r}(x)}{2(n+1)^{m} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+T L P(x), \\
& =\frac{1}{(n+1)^{m}}\left(\frac{(r(n+1)-1)!}{r^{m}(r(n+1)-m-1)!} x^{m}+\frac{m(m-r)}{2} \frac{(r(n+1)-1)!}{r^{m}(r(n+1)-m)!} x^{m-1}+T L P(x)\right) \\
& +\frac{m}{2(n+1)^{m}}\left(\frac{(r(n+1)-1)!}{r^{m-1}((n+1) r-m)!} x^{m-1}\right. \\
& \left.+\frac{(m-1)(m-1-r)}{2} \frac{(r(n+1)-1)!}{r^{m-1}(r(n+1)-m+1)!} x^{m-2}+T L P(x)\right) \\
& =\frac{(r(n+1)-1)!}{r^{m}(n+1)^{m}(r(n+1)-m-1)!} x^{m} \\
& +\left(\frac{m(m-r)}{2} \frac{(r(n+1)-1)!}{r^{m}(n+1)^{m}(r(n+1)-m)!} x^{m-1}+\frac{m}{2(n+1)^{m}} \frac{(r(n+1)-1)!}{r^{m-1}(r(n+1)-m)!} x^{m-1}\right)+T L P(x) \\
& =\frac{((n+1) r-1)!}{r^{m}(n+1)^{m}(r(n+1)-m-1)!} x^{m} \\
& +\left(\frac{m((n+1) r-1)!}{2 r^{m-1}(n+1)^{m}(r(n+1)-m)!} x^{m-1}\left(\frac{m-r+r}{r}\right)\right)+T L P(x) \\
& K B_{n, r}\left(t^{m} ; x\right) \\
& =\frac{(r(n+1)-1)!}{r^{m}(n+1)^{m}(r(n+1)-m-1)!} x^{m}+\frac{m(r(n+1)-1)!}{2 r^{m}(n+1)^{m}(r(n+1)-m)!} x^{m-1} \\
& +T L P(x) . ■
\end{aligned}
$$

For $m \in \mathbb{N}^{0}$, we define the following:
The m-th order moment $\mu_{n, m}^{r}(x)$ of the polynomials $K B_{n, r}(f(t) ; x)$

$$
\mu_{n, m}^{r}(x)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}(t-x)^{m} d t
$$

The two functions $\omega_{n+1, m+1}(x)$ and $\varphi_{n+1, m+1}(x)$

$$
\begin{aligned}
& \omega_{n+1, m+1}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& \varphi_{n+1, m+1}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}
\end{aligned}
$$

The next lemma shows the relation between the two functions above and the function $\mu_{n, m}^{r}(x)$.

Lemma 2.3.

For $m \in \mathbb{N}^{0}$, the functions $\mu_{n, m}^{r}(x)$ have

$$
\mu_{n, m}^{r}(x)=\frac{n+1}{m+1}\left(\omega_{n+1, m+1}(x)-\varphi_{n+1, m+1}(x)\right) .
$$

Proof.

$\mu_{n, m}^{r}(x)=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}(t-x)^{m} d t$
$=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\frac{(t-x)^{m+1}}{m+1}\right]_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}$
$=\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}{(m+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}\left[\left(\frac{k+1}{n+1}-x\right)^{m+1}-\left(\frac{k}{n+1}-x\right)^{m+1}\right]$
$\mu_{n, m}^{r}(x)=\frac{n+1}{m+1}\left[\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}-\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}\right]$
$\mu_{n, m}^{r}(x)=\frac{n+1}{m+1}\left(\omega_{n+1, m+1}(x)-\varphi_{n+1, m+1}(x)\right)$

Lemma 2.4.

The functions $\omega_{n+1, m+1}(x)$ and $\varphi_{n+1, m+1}(x)$ have the following recurrence relations (i) $\omega_{n+1, m+2}(x)=\frac{x(1-x)}{r(n+1)}\left(\omega_{n+1, m+1}^{\prime}(x)+(m+1) \omega_{n+1, m}(x)\right)+\omega_{n+1, m+1}(x) \omega_{n+1,1}(x)$, where $\omega_{n+1,1}(x) \simeq \frac{(1-2 x)+r}{2 r(n+1)}, \omega_{n+1,2}(x) \simeq \frac{(2-r(n+1)) x^{2}}{r^{2}(n+1)^{2}}-\frac{(2-r n) x}{r^{2}(n+1)^{2}}+\frac{1}{4 r^{2}(n+1)^{2}}$.
(ii) $\varphi_{n+1, m+2}(x)=\frac{x(1-x)}{r(n+1)}\left(\varphi_{n+1, m+1}^{\prime}(x)+(m+1) \varphi_{n+1, m}(x)\right)+\varphi_{n+1, m+1}(x) \varphi_{n+1,1}(x)$
where $\varphi_{n+1,1}(x) \simeq \frac{(1-2 x)-r}{2 r(n+1)}, \varphi_{n+1,2}(x) \simeq \frac{(2-r(n+1))}{r^{2}(n+1)^{2}} x^{2}-\frac{(2-r(n+2))}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}}$.

Proof.

The proof of the consequence (i) is going as:
$\omega_{n+1,1}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}=\frac{\sum_{k=0}^{n} k b_{n, k}^{r}(x)}{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{1}{n+1}-x$
$\simeq \frac{(r(n+1)-1) x}{r(n+1)}+\frac{1-r}{2 r(n+1)}+\frac{1}{(n+1)}-x$
$\simeq \frac{2 r n x+2 r x-2 x+1-r+2 r-2 r n x-2 r x}{2 r(n+1)} \simeq \frac{(1-2 x)+r}{2 r(n+1)}$.

$$
\begin{aligned}
& \omega_{n+1,2}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{2}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& \simeq \frac{\sum_{k=0}^{n} k^{2} b_{n, k}^{r}(x)}{(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+2 \frac{\sum_{k=0}^{n} k b_{n, k}^{r}(x)}{(n+1)^{2} \sum_{k=0}^{n} b_{n, k}^{r}(x)}+\frac{1}{(n+1)^{2}}-2 x \frac{\sum_{k=0}^{n} k b_{n, k}^{r}(x)}{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& -\frac{2 x}{(n+1)}+x^{2} \\
& \simeq \frac{(r(n+1)-1)(r(n+1)-2)}{r^{2}(n+1)^{2}} x^{2}+\frac{(2-r)(r(n+1)-1)}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}} \\
& +2\left(\frac{(r(n+1)-1) x}{r(n+1)^{2}}+\frac{1-r}{2 r(n+1)^{2}}\right)+\frac{1}{(n+1)^{2}} \\
& -2 x\left(\frac{(r(n+1)-1) x}{r(n+1)}+\frac{1-r}{2 r(n+1)}\right)-\frac{2 x}{(n+1)}+x^{2} \\
& \simeq\left(\frac{r^{2}(n+1)^{2}-3 r(n+1)+2}{r^{2}(n+1)^{2}}-\frac{2 r(n+1)-2}{r(n+1)}+1\right) x^{2}+ \\
& \left(\frac{2 r(n+1)-2}{r^{2}(n+1)^{2}}-\frac{r^{2}(n+1)-r}{r^{2}(n+1)^{2}}+\frac{2 r(n+1)-2}{r(n+1)^{2}}-\frac{1-r}{r(n+1)}-\frac{2 x}{(n+1)}\right) x \\
& +\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}}+\frac{1-r}{r(n+1)^{2}}+\frac{1}{(n+1)^{2}} \\
& \omega_{n+1,2}(x) \simeq \frac{(2-r(n+1)) x^{2}}{r^{2}(n+1)^{2}}-\frac{(2-r n) x}{r^{2}(n+1)^{2}}+\frac{(1+r)^{2}}{4 r^{2}(n+1)^{2}} .
\end{aligned}
$$

Now,
$\omega_{n+1, m+1}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$\omega_{n+1, m+1}^{\prime}(x)=\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x) \sum_{k=0}^{n} b_{n, k}^{r}(x)\left((-1)(m+1)\left(\frac{k+1}{n+1}-x\right)^{m}\right)}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}}$
$+\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x) \sum_{k=0}^{n}\left(b_{n, k}^{r}(x)\right)^{\prime}\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}}$
$-\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1} \sum_{k=0}^{n}\left(b_{n, k}^{r}(x)\right)^{\prime}}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}}$
$=-(m+1) \omega_{n+1, m}(x)+\frac{\sum_{k=0}^{n}\left(b_{n, k}^{r}(x)\right)^{\prime}\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k,}^{r}(x)}$

$$
\begin{aligned}
& -\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1} \sum_{k=0}^{n}\left(b_{n, k}^{r}(x)\right)^{\prime}}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}} \\
& x(1-x)\left(\omega_{n+1, m+1}^{\prime}(x)+(m+1) \omega_{n+1, m}(x)\right) \\
& =\frac{\sum_{k=0}^{n} x(1-x)\left(b_{n, k}^{r}(x)\right)^{\prime}\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)} \\
& -\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1} \sum_{k=0}^{n} x(1-x)\left(b_{n, k}^{r}(x)\right)^{\prime}}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}},
\end{aligned}
$$

by using the fact $x(1-x)\left(b_{n, k}^{r}(x)\right)^{\prime}=(k r-n r x) b_{n, k}^{r}(x)$, one has
$=\frac{r \sum_{k=0}^{n} b_{n, k}^{r}(x)(k-n x+x-x+1-1)\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$-\frac{\sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1} r \sum_{k=0}^{n} b_{n, k}^{r}(x)(k-n x+x-x+1-1)}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}}$
$=\frac{r(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\left(\frac{k+1}{n+1}-x\right)+\frac{(x-1)}{n+1}\right)\left(\frac{k+1}{n+1}-x\right)^{m+1}}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$-\frac{r(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\frac{k+1}{n+1}-x\right)^{m+1} \sum_{k=0}^{n} b_{n, k}^{r}(x)\left(\left(\frac{k+1}{n+1}-x\right)+\frac{(x-1)}{n+1}\right)}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{2}}$
$=r(n+1)\left(\omega_{n+1, m+2}(x)\right)+r(x-1) \omega_{n+1, m+1}(x)-r(n+1) \omega_{n+1, m+1}(x) \omega_{n+1,1}(x)$
$-r(x-1) \omega_{n+1, m+1}(x)$
$=r(n+1) \omega_{n+1, m+2}(x)-r(n+1) \omega_{n+1, m+1}(x) \omega_{n+1,1}(x)$,
hence,
$\omega_{n+1, m+2}(x)=\frac{x(1-x)}{r(n+1)}\left(\omega_{n+1, m+1}^{\prime}(x)+(m+1) \omega_{n+1, m}(x)\right)+\omega_{n+1, m+1}(x) \omega_{n+1,1}(x)$.
Using similar steps, we have
$\varphi_{n+1,1}(x) \simeq \frac{(1-2 x)-r}{2 r(n+1)} ;$
$\varphi_{n+1,2}(x) \simeq \frac{(2-r(n+1))}{r^{2}(n+1)^{2}} x^{2}-\frac{(2-r(n+2))}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}} ;$
$\varphi_{n+1, m+2}(x)=\frac{x(1-x)}{r(n+1)}\left(\varphi_{n+1, m+1}^{\prime}(x)+(m+1) \varphi_{n+1, m}(x)\right)+\varphi_{n+1, m+1}(x) \varphi_{n+1,1}$.

Lemma 2.5.

The moment $\left(\mu_{n, m}^{r}(x)\right)$ of order m has the recurrence relation
$\mu_{n, m+1}^{r}(x)=\frac{(m+1) x(1-x)}{r(m+2)(n+1)}\left(\left(\mu_{n, m}^{r}(x)\right)^{\prime}+m \mu_{n, m-1}^{r}(x)\right)+\frac{(m+1)}{(m+2)} \frac{(1-2 x)}{r(n+1)} \mu_{n, m}^{r}(x)+$ $\frac{1}{2(m+2)}\left(\omega_{n+1, m+1}(x)+\varphi_{n+1, m+1}\right)$,
where $\mu_{n, 0}^{r}(x)=1$, and $\mu_{n, 1}^{r}(x) \simeq \frac{(1-2 x)}{2 r(n+1)}$.

Proof.

From Lemma 2.3, one gets
$\frac{1}{n+1} \mu_{n, 0}^{r}(x)=\omega_{n+1,1}(x)-\varphi_{n+1,1}(x)$
$\frac{1}{n+1} \mu_{n, 0}^{r}(x) \simeq \frac{(1-2 x)+r}{2 r(n+1)}-\frac{(1-2 x)-r}{2 r(n+1)} \simeq \frac{2 r}{2 r(n+1)} \simeq \frac{1}{n+1}$
$\mu_{n, 0}^{r}(x)=1$, and
$\frac{2}{n+1} \mu_{n, 1}^{r}(x)=\omega_{n+1,2}(x)-\varphi_{n+1,2}(x)$
$\frac{2}{n+1} \mu_{n, 1}^{r}(x) \simeq\left(\frac{(2-r(n+1))}{r^{2}(n+1)^{2}} x^{2}-\frac{(2-r n)}{r^{2}(n+1)^{2}} x+\frac{(1+r)^{2}}{4 r^{2}(n+1)^{2}}\right)$
$-\left(\frac{(2-r(n+1))}{r^{2}(n+1)^{2}} x^{2}-\frac{(2-r(n+2))}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}}\right)$
$\simeq\left(-\frac{(2-r n)}{r^{2}(n+1)^{2}} x+\frac{(1+r)^{2}}{4 r^{2}(n+1)^{2}}\right)-\left(\frac{-(2-r(n+2))}{r^{2}(n+1)^{2}} x+\frac{(1-r)^{2}}{4 r^{2}(n+1)^{2}}\right)$
$\mu_{n, 1}^{r}(x) \simeq \frac{1-2 x}{2 r(n+1)}$.
Then,
$\omega_{n+1, m+2}(x)-\varphi_{n+1, m+2}(x)$
$=\left(\frac{x(1-x)}{r(n+1)}\left(\omega_{n+1, m+1}^{\prime}(x)+(m+1) \omega_{n+1, m}(x)\right)+\omega_{n+1, m+1}(x) \omega_{n+1,1}(x)\right.$
$\left.-\frac{x(1-x)}{r(n+1)}\left(\varphi_{n+1, m+1}^{\prime}(x)+(m+1) \varphi_{n+1, m}(x)\right)+\varphi_{n+1, m+1}(x) \varphi_{n+1,1}(x)\right)$
$=\frac{x(1-x)}{r(n+1)}\left\{\left(\omega_{n+1, m+1}^{\prime}(x)+(m+1) \omega_{n+1, m}(x)\right)-\left(\varphi_{n+1, m+1}^{\prime}(x)+(m+1) \varphi_{n+1, m}(x)\right)\right\}$
$+\omega_{n+1, m+1}(x) \omega_{n+1,1}(x)-\varphi_{n+1, m+1}(x) \varphi_{n+1,1}(x)$

$$
\begin{aligned}
& =\frac{x(1-x)}{r(n+1)}\left\{\omega_{n+1, m+1}^{\prime}(x)-\varphi_{n+1, m+1}^{\prime}(x)+(m+1)\left(\omega_{n+1, m}(x)-\varphi_{n+1, m}(x)\right)\right\} \\
& +\omega_{n+1, m+1}(x) \omega_{n+1,1}(x)-\varphi_{n+1, m+1}(x) \varphi_{n+1,1}(x) \\
& =\frac{x(1-x)}{r(n+1)}\left\{\omega_{n+1, m+1}^{\prime}(x)-\varphi_{n+1, m+1}^{\prime}(x)+(m+1)\left(\omega_{n+1, m}(x)-\varphi_{n+1, m}(x)\right)\right\} \\
& +\frac{(1-2 x)+r}{2 r(n+1)} \omega_{n+1, m+1}(x)-\frac{(1-2 x)-r}{2 r(n+1)} \varphi_{n+1, m+1}(x) \\
& =\frac{x(1-x)}{r(n+1)}\left\{\omega_{n+1, m+1}^{\prime}(x)-\varphi_{n+1, m+1}^{\prime}(x)+(m+1)\left(\omega_{n+1, m}(x)-\varphi_{n+1, m}(x)\right)\right\} \\
& +\frac{(1-2 x)}{2 r(n+1)}\left(\omega_{n+1, m+1}(x)-\varphi_{n+1, m+1}(x)\right)+\frac{1}{2(m+1)}\left(\omega_{n+1, m+1}(x)+\varphi_{n+1, m+1}(x)\right)
\end{aligned}
$$

In view of Lemma 2.3, one has
$\frac{m+1}{n+1} \mu_{n, m}^{r}(x)=\left(\omega_{n+1, m+1}(x)-\varphi_{n+1, m+1}(x)\right)$
$\mu_{n, m+1}^{r}(x)=\frac{(m+1) x(1-x)}{r(m+2)(n+1)}\left(\left(\mu_{n, m}^{r}(x)\right)^{\prime}+m \mu_{n, m-1}^{r}(x)\right)+\frac{(m+1)}{(m+2)} \frac{(1-2 x)}{2 r(n+1)} \mu_{n, m}^{r}(x)+$
$\frac{1}{2(m+1)}\left(\omega_{n+1, m+1}(x)+\varphi_{n+1, m+1}(x)\right)$
Now, by the direct evaluations and apply the recurrence relation above, one gets
$\mu_{n, 2}^{r}(x) \simeq \frac{r n x(1-x)}{r^{2}(n+1)^{2}}-\frac{2 x(1-x)}{r^{2}(n+1)^{2}}+\frac{r x(1-x)}{r^{2}(n+1)^{2}}+\frac{r^{2}+3}{12 r^{2}(n+1)^{2}}$.

3.Main Results.

The Korovkin theorem and the Voronovskaja theorem for the sequence $\mathrm{K} B_{n, r}(f ; x)$ are proved here.

Theorem 3.1.

If $x \in[0,1], f \in C[0,1]$, exists , then $\lim _{n \rightarrow \infty} K B_{n, r}(f(t) ; x)=f(x)$.

Proof.

The proof of this Theorem holds From Lemma 2.2.

Theorem 3.2.

Let $x \in(0,1)$ and $f \in C[0,1]$, if $f^{\prime \prime}$ exists, the sequence $K B_{n, r}(f, x)$ is satisfied the following $\lim _{n \rightarrow \infty} n\left\{K B_{n, r}(f, x)-f(x)\right\}=\frac{(1-2 x)}{2 r} f^{\prime}(x)+\frac{x(1-x)}{2 r} f^{\prime \prime}(x)$.

Proof.

Using Taylor's expansion, one has
$f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{f^{\prime \prime}(x)}{2!}(t-x)^{2}+\varepsilon(t, x)(t-x)^{2}$
where $\varepsilon(t, x) \rightarrow 0$ as $t \rightarrow x$. So,
$K B_{n, r}(f(t), x)=f(x) K B_{n, r}(1 ; x)+f^{\prime}(x) K B_{n, r}((t-x) ; x)$
$+\frac{1}{2} f^{\prime \prime}(x) K B_{n, r}\left(\left(\frac{k}{n}-x\right)^{2} ; x\right)+K B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)$.
Then,
$n\left\{K B_{n, r}(f ; x)-f(x)\right\}=n \mu_{n, 1}^{r}(x) f^{\prime}(x)+n \mu_{n, 2}^{r}(x) \frac{f^{\prime \prime}(x)}{2!}+n\left(K B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right.$
$\lim _{n \rightarrow \infty}\left\{K B_{n, r}(f ; x)-f(x)\right\}=\lim _{n \rightarrow \infty} n\left(\frac{1-2 x}{2 r(n+1)}\right) f^{\prime}(x)$
$+\lim _{n \rightarrow \infty} n\left(\frac{r n x(1-x)}{r^{2}(n+1)^{2}}-\frac{2 x(1-x)}{r^{2}(n+1)^{2}}+\frac{r x(1-x)}{r^{2}(n+1)^{2}}+\frac{r^{2}+3}{6 r^{2}(n+1)^{2}}\right) \frac{f^{\prime \prime}(x)}{2!}$
$+\lim _{n \rightarrow \infty} n\left(K B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right.$
$=\frac{(1-2 x)}{2 r} f^{\prime}(x)+\frac{x(1-x)}{2 r} f^{\prime \prime}(x)+\lim _{n \rightarrow \infty} n\left(B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right.$.
Now,
$n\left|B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right|=\frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}\left|\varepsilon(t, x)(t-x)^{2}\right| d x}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
where $\varepsilon(t, x) \rightarrow 0$ as $t \rightarrow x$.
Now, for $\varepsilon>0 \exists \delta>0$ such that either $0<|t-x|<\delta \rightarrow|\varepsilon(t, x)|<\varepsilon$ or $|t-x| \geq \delta \rightarrow$ $\left|\varepsilon(t, x)(t-x)^{2}\right| \leq M t^{\alpha}$
$n\left|K B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right|$
$\leq \frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x|<\delta}\left|\varepsilon(t, x)(t-x)^{2}\right| d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$+\frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta}\left|\varepsilon(t, x)(t-x)^{2}\right| d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$.
$\leq n \varepsilon \mu_{n, 2}^{r}(x)+\frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta}\left|\varepsilon(t, x)(t-x)^{2}\right| d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$\leq \varepsilon O(1)+\frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta} M t^{\alpha} d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
since ε arbitrary then $\varepsilon O(1) \rightarrow 0$
$n\left|K B_{n, r}\left(\varepsilon(t, x)(t-x)^{2} ; x\right)\right|=\frac{n(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta} M t^{\alpha} d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$=n M \frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta} \sum_{i=0}^{\infty} \frac{(\alpha)_{i} x^{\alpha-i}}{i!}(t-x)^{i} d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$,
where $(\alpha)_{i}=\alpha(\alpha-1) \ldots(\alpha-i+1)$
$\leq \sup _{x \in[0,1]} n M \sum_{i=0}^{\infty} \frac{(\alpha)_{i} x^{\alpha-i}}{i!} \frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta}|t-x|^{i} d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$
$\leq n M \sum_{i=0}^{\infty} \frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{|t-x| \geq \delta}|t-x|^{i} d t}{\sum_{k=0}^{n} b_{n, k}^{r}(x)}$.
Now, applying Cauchy-Schwarz inequality for integration and then for summation, one gets
$\leq n M \sum_{i=0}^{\infty} \frac{(n+1)^{\frac{1}{2}+\frac{1}{2}} \sum_{k=0}^{n} b_{n, k}^{\frac{1}{2} r+\frac{1}{2} r}(x)\left(\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} d t\right)^{1 / 2}\left(\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}(t-x)^{2 i} d t\right)^{1 / 2}}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)^{\frac{1}{2}+\frac{1}{2}}}$
$\leq n M \sum_{i=0}^{\infty}\left(\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} d t}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)}\right)^{1 / 2}\left(\frac{(n+1) \sum_{k=0}^{n} b_{n, k}^{r}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}(t-x)^{2 i} d t}{\left(\sum_{k=0}^{n} b_{n, k}^{r}(x)\right)}\right)^{1 / 2}$
$\leq n M \sum_{i=0}^{\infty}\left(O\left(n^{-2 i}\right)\right)^{\frac{1}{2}} \leq O\left(n^{-s}\right)$ for any $s>0$, for $i>1$
$=o(1)$. Hence,
$\lim _{n \rightarrow \infty}(n+1) K B_{n, r}\left(\varepsilon\left(\frac{k}{n}, x\right)\left(\frac{k}{n}-x\right)^{2} ; x\right) \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

4. Numerical Example.

This example is a graph comparison among the convergence of the sequence, $K B_{n}(f ; x)=K B_{n, 1}(f ; x)$ (black color), $K B_{n, 2}(f ; x)$ (red color), $K B_{n, 3}(f ; x)$ (green color), $K B_{n, 5}(f ; x)$ (blue color) and the test function $f(t)=\sin 10 t \in C[0,1]$ (brawn color) (Fig4.1). Also, it is giving the graphs of the error functions $E(x)=\left(K B_{n, r}(f ; x)-f(x)\right)$, $r=1,2,3,5$ for these polynomials (in same colors above) for the values of $n=25$ and 50 (Fig4.2).

Fig 4.1: The convergence of $K B_{n, r}$ to the function $f(x)$ whenever $n=25,50, r=1,2,3,5$.

Fig 4.2: The functions $E(x)$.

Conclusion

This study is a generalization of well-known sequences of linear positive operators which are deduced as a special case from the r-th powers of the rational Bernstein polynomials. Also, the study gives a numerical example which are showed the numerical convergence of the polynomials $B_{n, r}(f ; x)$ to the test function. This numerical convergence shows by the graphs of the $B_{n, r}(f ; x)$ with the function $f(x)$. The numerical results appeared that numerical results became more accurate whenever r increase.

Reference.

[1]. Acu, M. A, Manav, N. and Sofonea, D. F: Approximation properties of λ Kantorovich operators. Inequal. Apple 202, 1-12, (2018).
[2]. Cal, J. D and Valle, A. M: A Generalization of Bernstein-Kantorovich Operators. Math. Anal. Appl 252, 750-766, (2000).
[3]. Cao, J. D: On Sikkema Kantorovich polynomials of order k. Approx. Theory. Appl 5, 99-109, (1989).
[4]. Cao, J. D: A generalization of the Bernstein polynomials. Math. Anal. Appl 209(1), 140-146, (1997).
[5]. Nagel, J: Kantorovich operators of second order. Monatsh. Math 95, 33-44, (1983).
[6]. Kantorovich, L. V: Sur certains developments suivant les polynômes de la forme de S. N. Bernstein, I, II, C. R. Adad. Sci. USSR. 563-568, 595-600, (1930).
[7]. Karahan, D and Izgi, A: Approximation properties of Bernstein-Kantorovich type operator of two variables. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2, 2313-2323, (2019)
[8]. Mahmudov, N. I and Sabancigil, P: Approximation theorems for q-BernsteinKantorovich operators. Filomat. 4, 721-730, (2013).
[9]. Mohammad, A. J and Abdul Samad, I. A: The r-th powers of the rational Bernstein polynomials. Basrah Journal of Science. 2, 179-191, (2021).
[10]. Mohiuddine, S. A and Özger, F: Approximation of function by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. The Royl Academy of Sciences.70, 1-17, (2020).

$$
\begin{aligned}
& \text { rـتتابعة برنشتاين-كانتروفج الكسرية من القوى rer } \\
& \text { ايمان عزيز عبد الصمد } \\
& \text { العر اق / جامعة البصرة / كلية التربية للعلوم الصرفة / قسم الرياضيات. }
\end{aligned}
$$

متتابعة برنشتاين- كانتروفج الكسرية من القوى rr 『KB】_(n,r) (f; x) عرفت ودرست في هذا البحث. في البداية تظهر الدراسة ان المتتابعة KB_(n,r) (f;x) تتقارب الى دالة الاختبار [fe[0,1 عندما nتقترب الى اللانهاياة. بعد ذلك اعطي العزم من الرتبة m وصيغة فرونفسكيا للتقارب. ايضاً اعطي تطبيق
 النتائج العددية لهغا التقريب مع متتابعة برنشتاين- كانتروفج الكلاسيكية .
 _n (f;x).

[^0]: *This paper is a part of M.Sc. Thesis in Mathematics Department, College of Education for pure Sciences, University of Basrah.

