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Abstract 

 This paper is defined and studied a new 𝑟-th powers of rational Bernstein 

polynomials. The convergence theorem, the recurrence relation for the 𝑚-th order 

moment, and the Voronovskaya-type asymptotic formula for these polynomials in 

ordinary approximation are given. Also, a numerical example for these polynomials is 

applied to approximate the test function sin 10𝑥 ∈ 𝐶,0,1-. The results obtained from this 

example are shown that these polynomials are given better than the corresponding 

numerical results for the classical Bernstein polynomials and the square rational 

Bernstein polynomials. The comparison is done by plot the graphs of the function and 

its approximations as well as the evaluation of the average absolute errors for these 

approximations. 
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1. Introduction  

For   ∈  ,0,1-, the well-known  -th order of Bernstein polynomials of the function   is 

defined as: 

  (   )  ∑   , ( )

 

   

 (
 

 
), 

where   , ( )  .
 
 
/   (1   )    and  ∈ ,0,1-. 

In 2009, Pitul and Sablonniere are defined and studied a new family of univariate rational 

Bernstein polynomials defined as [6] 

  (    )  
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     , ( )

∑    , 
   
       , ( )

,  ∈  ,0,1-,   1, 

the weights of the denominator are assumed to be strictly positive while the weights  ̅ ,  and the 

abscissae   ,  of the numerator satisfy the following relations: 
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 for 1      1  

After that, many researchers have been interested in the sequences of linear positive operators of 

rational polynomials. Please see [8] and [5]. In 2014, Render has discussed some convergence 

properties and error estimates of rational Bernstein polynomials in the general case [7].In 2017, 

Gavrea and Ivan have defined the square Bernstein polynomials as [3]: 

  , (   )  
∑   , 

 ( ) .
 
 /  

   

∑   , 
 ( )  

   

,   1,2,    

where   , 
 ( )  .  , ( )/

 

. 

In 2019, Holhos proved the Voronovskaya-type asymptotic formula for squared Bernstein 

polynomials. [4] 

This paper defines a new rational Bernstein polynomial of  -th power as follows: 

For  ∈  ,0,1- and   ∈   *1,2,  +, the  -th power   , (   ) is defined 

  , (   )  
∑   , 

 ( ) .
 
 / 
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Clearly,   , (   )    (   )  
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Here, the convergence theorem, the  -th order moment, and the Voronovskaya-type asymptotic 

formula for the polynomials   , (   ) are given. re, we assume that   is a constant not has the 

same value in different cases. 

2. Preliminary Results 

      Some primary results relative to the  -th power of rational Bernstein polynomials are given 

in this section.  

Lemma 2.1  

For  ∈  , the function   , 
 ( ) has the following: 

(i)   (1   ) .  , 
 ( )/

 

 (      )  , 
 ( ); 

(ii) ∑   , 
 ( )  

    (1   )  ∑
((  ) ) 

(  ) 
 
   

   

(    )  . 

Proof. 

The proof of the consequence (i) is going as:  
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 ( )/
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Hence,  (1   ) .  , 
 ( )/
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The proof of the consequence (ii) is doing by the direct evaluation as follows: 
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Therefore, 

∑   , 
 ( ) 
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((  ) )
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 For  ∈   , we define   , 
 ( ) of the polynomials   , (   ) as follow: 
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Lemma 2.2  

       For  ∈    The function   , 
 ( ) has the following recurrence relation  
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Lemma 2.3  
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Proof. 

The consequence (i) holds immediately by the direct computations. The consequence (ii) 

claims by using Maple software, from Lemma 2 2, the consequences (iii)  hold, Finally, (iv) 

using indction on  , the general relation gets immediate.    

Lemma     

For,   ∈ ,0,1- and  ∈  , there exist the polynomials   , , ( )independent of   and   

such that 
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Proof. 

If   0 or   1, then the relation is true.  

For  ∈ (0,1) the proof is doing by induction on  . The relation is true for   1. Suppose that 
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The relation is true for   1.   

 For  ∈   , the  -th order moment   , 
 ( ) for the polynomials   ,  is defined as 
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Lemma 2.5 

The function   , 
 ( ) has the following recurrence relation  
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where   , 
 ( )  1, and   , 
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 Using the recurrence relation above and the direct evaluations, one has 
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3. Main Results 

The convergence theorem and the Voronovskaya-type asymptotic formula for the 

polynomials   , (   ) are given in this section.  

 

3.1 Theorem (Korovkin Theorem)   

If  ∈  ,0,1-, exists and continuous and  ∈ ,0,1-, then 

 i 
   

  , ( ( )  )   ( )  

Proof. 

From Lemma 2 3, the proof of this theorem holds.   

3.2 Theorem  ( Voronovskaya-type asymptotic formula)   

Let   ∈  ,0,1- and   ∈ (0,1),  if     exists, the polynomials    , ( ,  ) satisfy the 

asymptotic relation: 
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4. Numerical Example. 

 This example compares among the polynomials,   (   )    , (   ) (brown color), 

  , (   ) (blue color),   , (   ) (red color),   , (   ) (green color) and the test function is 

 ( )  sin 10 ∈  ,0,1- (black color). Also, evaluates the average absolute errors 

∑ |  , (    )  (  )|
 
   

 
, for some values of   50, 100 and   ∈ ,0,1-,   0,1,       where 

  1,2,3,5. It turns out that, the numerical results become more accurate whenever   increases.  

 

 

  

  50,   1,2,3,5 

 

 

  50,   1,2,3,5 

Fig. 1: The convergence of the polynomials   , ,   , ,   , ,   ,  to the test function   
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Fig. 2: The graph of average error functions |  ,   |,   1,2,3,5. 

 

 

 

 

 

 

 

 

 

 

  50,   1,2,3,5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  100,   1,2,3,5 
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Table 1: The average absolute errors of 
∑ |  , (    )  (  )|

 
   

 
,   ∈ ,0,1- and |       |  0 1.  

 

 

Conclusions 

This study is a generalization of some well-known sequences of linear positive operators 

which are deduced as a special case from the  -th powers of the rational Bernstein polynomials. 

Also, the study gives a numerical example which is shown the numerical convergence of the 

polynomials    , (   ) to the test function. This numerical convergence shows by the graphs of 

the   , (   ) with the function  ( ). The numerical results appeared that numerical results 

became more accurate whenever   increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    50   100 

1 0.08860203574 0.04643920283 

2 0.05094378977 0.02585223416 

3 0.03897204886 0.01956340062 

5 0.02910692553 0.01445737662 
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 القوى الرائية لمتعددة حدود برنشتاين الكسرية

 علي جاسم محمد                      ايمان عزيز عبد الصمد

 العراق-البصرة-جامعة البصرة-كلية التربية للعلوم الصرفة-الرياضياتقسم 

 المستخلص

وصيغح   ودساسح ذقاستها وانعزو يٍ انشذثح    في هزا انثحث ذى ذعشيف يرعذداخ حذود جذيذج نثشَشرايٍ يٍ انقىي    

sinفشوَىفسكيا نهرقاسب نها. ذى ذطثيق يثال عذدي نرقشية دانح اخرثاس  .انُرائج انعذديح انري ذى انحصىل عهيها يٍ ذطثيق   10

ذعطي َرائج أفضم يٍ يرعذداخ حذود تشَشرايٍ انكسشيح    رنك انًثال ذظهش تاٌ يرعذداخ حذود تشَشرايٍ انكسشيح يٍ انًُظ 

وذقشيثاذها وحساب  انرشتيعيح ويرعذداخ حذود تشَشرايٍ الاصهيح. ذى اجشاء انًقاسَح عٍ طشيق سسى انًخططاخ انثياَيح نهذانح

 يعذل الأخطاء انًطهقح انري حذثد تيٍ هزِ انرقشيثاخ.
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