
338, 2021-329), 3(Vol. 39                                                                       Basrah Journal of Science 

339 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

 

An Efficient Three-step Iterative Methods Based on Bernstein Quadrature 

Formula for Solving Nonlinear Equations 

Huda J. Saeed, Noori Y. Abdul-Hassan*,  

Department of Mathematics, College of Education for Pure Sciences, University of Basrah, 

Basrah, Iraq. 

*Corresponding author  E-mail: nooriyasir65@gmail.com     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

In this study, we suggest and analyze two new one-parameter families of an 

efficient iterative methods free from higher derivatives for solving nonlinear 

equations based on Newton theorem of calculus and Bernstein quadrature formula, 

Bernoulli polynomial basis, Taylor’s expansion and some numerical techniques. We 

prove that the new iterative methods reach orders of convergence ten with six and 

eight with four functional evaluations per iteration, which implies that the efficiency 

index of the new iterative methods is (10)1/6
 ≅ 1.4678 and (8)1/4

 ≅ 1.6818 respectively. 

Numerical examples are provided to show the efficiency and performance of our 

iterative methods, compare to Newton’s method and other relevant methods. 
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1. Introduction: 

  A frequently occurring and most important problem in mathematics, science and 

engineering is how to find the solution of nonlinear equations which can be expressed in general 

as follows 

𝑓(𝑥) = 0,                                                                                                                                       (1) 

where 𝑓 ∶  𝐷 ⊂  ℝ →  ℝ  is a scalar function on an open interval 𝐷. 

Since the numerical analysis is to devise algorithms that give quick and accurate answers 

to mathematical problems for scientists and engineers, nowadays using computers. Therefore, 

numerically iterative methods are often the only choice for solving this general problem. 

The Newton’s method is one of the famous classical iterative methods to find the root of 

equation (1). The iterative scheme is given by 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 ,    𝑛 = 0,1, …                                                                                                 (2) 

which it has quadratic convergence, [1]. In the recent past, much attention has been given to 

developed several iterative methods for solving the nonlinear equations. Many of iterative 

methods have been obtained by using different techniques such as Taylor expansion, 

decomposition, homotopy, variational iteration, geometric methods and quadrature formulas 

also, we know that quadrature formula plays an important role in the evaluation of the numerical 

integrals. 

The first study of quadrature formula was by S. Weerakoon and T.G.I. Fernando in 2000, 

studied new variant of Newton's method based on trapezoidal instead of a rectangle and they got 

new two-step iterative method. It has third-order convergence, [2], defined by 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)+𝑓′(𝑦𝑛)
 ,     𝑛 = 0, 1, …   

By improving Newton’s method say, V. I. Hasanov et al. in 2002, modified Newton’s 

method by approximate the definite integral in quadrature rule by using Simpson’s formula and 
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they obtained a new two-step iterative method with third-order convergence, [3]. G. Nedzhibov 

in 2002, gave several classes of two-step iterative methods by using different quadrature rules, 

[4]. M. Frontini and E. Sormani in 2003, extended the results of the iterative methods in [2], and 

got new two- step iterative method of order three independent of the integration formula, [5]. A. 

Y. Ozban et al. in 2004, presented some new two-step variant of Newton’s method based on 

harmonic mean and midpoint integration rule, [6].  H.H.H. Homeier in 2005, modified the 

iterative method in [2] by using Newton’s theorem for the invers function and he got new classes 

of iterative methods with cubic convergence, [7]. M. A. Noor in 2007, suggested new two-step 

iterative methods also by using quadrature formula, [8]. L. Liu and X. Wang in 2010, proposed 

new three-step iteration scheme by using the method of weight functions, [9]. M. A. Noor et al. 

in 2010, suggested and analyzed some new iterative methods for solving the nonlinear equations 

using the decomposition technique coupled with the system of equations, [10]. X. Wang and L. 

Liu in 2010, derived two new three-step iterative methods based on Newton’s method and 

modified Ostrowski’s method with an eighth-order convergence for solving the simple roots of 

nonlinear equations by Hermite interpolation methods, [11]. A. Cordero and J.R. Torregrosa in 

2011, Presented a new three-step family of eighth-order methods obtained an eight-order 

convergence based on Ostrowski’s method, [12]. J. Jayakumar in 2013, proposed a 

generalization of two-step Simpson- Newton's method where Simpson's integration rule is 

applied for approximating the definite integral in quadrature formula, [13]. J. R. Sharma and H. 

Arora in 2014, presented a family of three-point iterative methods for solving nonlinear 

equations, [14]. O. Oghovese and E. O. John in 2014, introduced new two–step family of 

iterative method based on composite trapezoid rule and fundamental theorem of calculus, [15]. 

O. Oghovese  and E. O. John in 2014, proposed a new three steps iterative method of order six for 

solving nonlinear equations, [16]. A.A. Al-Harbi and I.A. Al-Subaihi in 2015, a new family of 

three-step optimal eighth-order iterative methods are presented, [17]. M. Saqib and M. Iqbal in 

2017, used quadrature rule to approximate the definite integral by rectangle integral rule and 

midpoint integral rule and they obtained new two-step iterative methods, [18]. R. Thukral in 

2018, proposed new three-step Simpson's type method requires the same number of evaluations 

of the function as classical method but of fifth order convergence, [19]. U. k. Qureshi in 2019, 

Suggested a new iterative method of order two which is derived from quadrature formula by 

approximate the definite integral by using composite trapezoidal rule and some numerical 

techniques, [20]. G. Sana et al. in 2020, introduced two new three-step iterative schemes by 
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applied quadrature formula and decomposition approach, [21]. B. Neta in 2021, developed a 

derivative-free method with memory based on Traub’s method as the first step, [22]. C. 

Zalinescuin 2021, introduced several methods for comparing two convergent iterative processes 

for the same problem, [23]. G. Sana et al. in 2021, suggested and analyzed some new q-iterative 

methods by using the q-analogue of the Taylor’s series and the coupled system technique, [24].  

In this paper, we present new families of iterative methods for solving equation (1) by 

using Bernstein integration formula to approximate the definite integral in the quadrature rule 

and we find that some of well-known iterative methods can be deduced as special cases from the 

proposed iterative methods. We approximate the higher derivatives in the new three-step 

iterative methods to reduce the number of functions needed in each iteration to update the 

efficiency index. Also, we introduce some numerical examples that confirm the theoretical 

results allow us to compare these methods with Newton’s method and with other relevant 

methods. Moreover, we introduce the graphical analysis for the uphold of numerical results. 

2. Preliminaries  

Offers some basic definitions, theorem and corollary that we need in our work. 

Definition 2.1, [25]: A sequence of iterates {𝑥𝑛}  is said to converge to the root  𝛼 ∈ 𝑅 if  

𝑙𝑖𝑚
𝑛→∞

|𝑥𝑛 − 𝛼| = 0. 

If 𝑥𝑛, 𝑥𝑛−1. . . , 𝑥𝑛−𝑚+1 are 𝑚 approximates to a root, then we write an iteration method in 

the form  

𝑥𝑛+1 = 𝜑(𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥𝑛−𝑚+1),                                                                                                 (3) 

where we have written the equation (1) in the equivalent form  

𝑥 = 𝜑(𝑥)                                                                                                                                              

The function 𝜑 is called the iteration function. For 𝑚 = 1, we get the one-point iteration 

method  

𝑥𝑛+1 = 𝜑(𝑥𝑛),    𝑛 = 0,1,2, . ..                                                                                                       (4) 
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 If 𝜑(𝑥) is continuous in the interval [𝑎, 𝑏] that contains the root and |𝜑′(𝑥)| ≤ 𝑐 < 1 in 

this interval, then for any choice of 𝑥0 ∈ [𝑎, 𝑏], the sequence of iterates {𝑥𝑛} obtained from (4) 

converges to the root of 𝑥 = 𝜑(𝑥) or 𝑓(𝑥) = 0 .                                                                                                                                                                                                                                                                         

Thus, for any iterative method of the form (3) or (4), we need the iteration function 𝜑(𝑥)                                                                                                                                            

and one or more initial approximations to the root. 

In practical applications, it is not always possible to find 𝛼 exactly. We therefore attempt 

to obtain an approximate root 𝑥𝑛+1 such that 

|𝑓(𝑥𝑛+1)| < 𝜀                                                                                                                                (5) 

and / or  

|𝑥𝑛+1 − 𝑥𝑛| < 𝜀                                                                                                                            (6) 

where 𝑥𝑛 and  𝑥𝑛+1 are two consecutive iterates and 𝜀 is the prescribed error tolerance. 

 

Definition 2.2, [2]: Let 𝑓 ∶  𝐷 ⊂  ℝ →  ℝ  is a scalar function on an open interval 𝐷 with a 

simple root 𝛼 of the nonlinear equation. An iterative method is said to have an integer order of 

convergence 𝑝 if it produces the sequence {𝑥𝑛} of real numbers such that 

𝑙𝑖𝑚
𝑥→∞

𝑥𝑛+1 − 𝛼

(𝑥𝑛 − 𝛼)𝑝
= 𝐴 ≠ 0, 

for some 𝐴 ≠ 0 𝑎𝑛𝑑 𝑝 ≥ 1, then 𝑝 is said to be the order of convergence of the sequence, and A 

is known as the asymptotic error constant. 

or equivalently 

𝑥𝑛+1 − 𝛼 = 𝐴(𝑥𝑛 − 𝛼)𝑝 + 𝑂((𝑥𝑛 − 𝛼)𝑝+1) 

Notation 2.1, [2]: Let 𝑒𝑛 = 𝑥𝑛 − 𝛼 is the error in the nth iteration. The equation 

𝑒𝑛+1 = 𝑐𝑒𝑛
𝑝 + 𝑂(𝑒𝑛

𝑝+1) is called the error equation for the method, 𝑝 being the order of 

convergence. 
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Definition 2.3, [13,2]: Let 𝛼 be a root of the nonlinear equation and suppose that 

𝑥𝑛−1, 𝑥𝑛 𝑎𝑛𝑑 𝑥𝑛+1 are three successive iterations closer to the root 𝛼. Then, the computational 

order of convergence (COC) denoted by 𝜌 can be computed using the formula 

𝜌 =
𝑙𝑛|𝑒𝑛+1 𝑒𝑛⁄ |

𝑙𝑛|𝑒𝑛 𝑒𝑛−1⁄ |
. 

Definition 2.4, [19]: The efficiency of a method is measured by the index  

E. I = 𝑝
1

𝜔, 

where 𝑝 is the order of convergence and 𝜔 is the total number of function evaluations per 

iteration. 

Theorem 2.1, [17]: Let 𝜓1(𝑥), 𝜓2(𝑥), . . . , 𝜓𝑟(𝑥) be iterative functions with the orders 

𝑠1, 𝑠2, . . . , 𝑠𝑟 , respectively. Then the composition of iterative functions 

𝜓(𝑥) = 𝜓1(𝑥)(𝜓2(𝑥)(. . . (𝜓𝑟(𝑥)). . . )) 

defines the iterative method of the order 𝑠1𝑠2. . . 𝑠𝑟. 

Corollary 2.1, [26,27]: For a continuous function 𝑓(𝑥)on [0, 1], we have 

∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎

≈ 𝐵𝑚(𝑓′, 𝑥) =
𝑏 − 𝑎

𝑚 + 1
∑ 𝑓′ (𝑎 + (𝑏 − 𝑎)

𝑘

𝑚
)

𝑚

𝑘=0

. 

3. Construct of New Iterative Methods 

In this section, we construct new Newton-type iterative methods and their modifications 

based on Newton’s theorem of calculus and Bernstein quadrature formula. 

Let 𝛼 ∈ 𝐷 be a simple root of equation (1) and 𝑥0  is initial guess sufficiently close to 𝛼.  

Consider Newton’s theorem of calculus, defined by 

𝑓(𝑥) = 𝑓(𝑥0) +  ∫ 𝑓′(𝜆)
𝑥

𝑥0
𝑑𝜆                                                                                                      (7) 

 If we approximate the definite integral in equation (7), by using Corollary 2.1, we have 
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𝑓(𝑥) = 𝑓(𝑥0) +  
(𝑥−𝑥0)

𝑚+1
 ∑ 𝑓′ (𝑥0 + (𝑥 − 𝑥0)

𝑘

𝑚
)𝑚

𝑘=0                                                                     (8) 

From equation (1) and solving equation (8) for 𝑥, we obtain 

𝑥 = 𝑥0 −
(𝑚+1)𝑓(𝑥0)

∑ 𝑓′(𝑥0+(𝑥−𝑥0)
𝑘

𝑚
) 𝑚

𝑘=0

                                                                                                        (9) 

Since the equation (9) is implicit we can overcome this by approximate (𝑥 − 𝑥0) in the right-

hand side by (−𝛽
𝑓(𝑥 0) 

𝑓′(𝑥0)
), we obtain 

𝑥 = 𝑥0 −
(𝑚+1)𝑓(𝑥0)

 ∑ 𝑓′(𝑥0−𝛽
𝑘

𝑚
(

 𝑓(𝑥0) 

𝑓′(𝑥0)
)) 𝑚

𝑘=0

                                                                                                  (10) 

Also, we can get from equation (10) by using Taylor expansion of 𝑓′ (𝑥0 − 𝛽
𝑘

𝑚

𝑓(𝑥 0) 

𝑓′(𝑥0)
), and 

neglecting the terms of the third order and above, we have  

𝑥 = 𝑥0 −
(𝑚+1)𝑓(𝑥0)𝑓′(𝑥0)

 ∑ ((𝑓′(𝑥0))
2

 − 𝛽 
𝑘

𝑚
 𝑓(𝑥0)𝑓′′(𝑥0)) 𝑚

𝑘=0

                                                                                    (11) 

Now, by using equations (10) and (11), we can suggest the following new one-step, two-step and 

three-step one-parameter family of iterative methods for solving nonlinear equation (1), 

respectively. 

Algorithm 2.1: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method   

𝑥𝑛+1 = 𝑥𝑛 −
(𝑚+1)𝑓(𝑥𝑛)

 ∑ 𝑓′(𝑥𝑛−𝛽
𝑘

𝑚

𝑓(𝑥𝑛) 

𝑓′(𝑥𝑛)
) 𝑚

𝑘=0

 ,      𝑛 = 0,1, … 

when 𝛽 = 0 and 𝑚 = 1, we get Newton’s method. 

Algorithm 2.2: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

𝑥𝑛+1 = 𝑥𝑛 −
(𝑚+1)𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

 ∑ {(𝑓′(𝑥𝑛))
2

 − 𝛽 
𝑘

𝑚
 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)}𝑚

𝑘=0

  ,      𝑛 = 0, 1, … 
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when 𝛽 = 0 and 𝑚 = 1, we get Newton’s method and also, when 𝛽 = 1 and 𝑚 = 1, we get 

Halley’s method in [28]. 

Algorithm 2.3: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  , 

𝑥𝑛+1 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)

 ∑ 𝑓′(𝑦𝑛−𝛽
𝑘

𝑚

𝑓(𝑦𝑛) 

𝑓′(𝑦𝑛)
) 𝑚

𝑘=0

  ,      𝑛 = 0, 1, … 

Algorithm 2.4: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)𝑓′(𝑦𝑛)

 ∑ {(𝑓′(𝑦𝑛))
2

 − 𝛽 
𝑘

𝑚
 𝑓(𝑦𝑛)𝑓′′(𝑦𝑛)}𝑚

𝑘=0

 ,      𝑛 = 0, 1, … 

Algorithm 2.5: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)

 ∑ 𝑓′(𝑦𝑛−𝛽
𝑘

𝑚

𝑓(𝑦𝑛) 

𝑓′(𝑦𝑛)
) 𝑚

𝑘=0

 , 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑧𝑛)
  ,     𝑛 = 0, 1, …  

Algorithm 2.6: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  , 

𝑧𝑛 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)𝑓′(𝑦𝑛)

 ∑ {(𝑓′(𝑦𝑛))
2

 − 𝛽 
𝑘

𝑚
 𝑓(𝑦𝑛)𝑓′′(𝑦𝑛)}𝑚

𝑘=0

  , 
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𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑧𝑛)
   ,       𝑛 = 0, 1, …    

     Since the purpose of our research is to obtain an efficient three-step iterative methods of 

higher order of convergence for solving equation (1), so we depend on Algorithms (3.5) and 

(3.6). Furthermore, to update the efficiency index of our iterative methods so, we approximate 

the derivatives 𝑓′(𝑦𝑛), 𝑓′′(𝑦𝑛) and 𝑓′(𝑧𝑛) respectively, to reduce the number of functional 

evaluations needed in each step of iteration by using an orthogonal polynomial as basis. This 

idea is very important and plays a significant part in developing many iterative methods. Now we 

look for an approximation of 𝑓′(𝑦𝑛), 𝑓′′(𝑦𝑛) and 𝑓′(𝑧𝑛) respectively. 

Consider the function  

𝑄(𝑡) = ∑ 𝑎𝑗
𝑟
𝑗=0 𝐵𝑗(𝑡 − 𝜉𝑛)                                                                                                          (12) 

where 𝜉𝑛 ∈ {𝑥𝑛, 𝑦𝑛, 𝑧𝑛}, 𝑎𝑗 , 𝑗 = 0, 1, 2, … , 𝑟 are unknowns to be found, and 

 𝐵𝑗, 𝑗 = 0, 1, 2, … , 𝑟 are forms Bernoulli basis polynomial, defined by 

𝐵0(𝑡 − 𝜉𝑛) = 1, 𝐵1(𝑡 − 𝜉𝑛) = (𝑡 − 𝜉𝑛) −
1

2
 , 𝐵2(𝑡 − 𝜉𝑛) = (𝑡 − 𝜉𝑛)2 − (𝑡 − 𝜉𝑛) +

1

6
 and 

𝐵3(𝑡 − 𝜉𝑛) = (𝑡 − 𝜉𝑛)3 −
3

2
(𝑡 − 𝜉𝑛)2 +

1

2
(𝑡 − 𝜉𝑛), 𝜉𝑛 ∈ {𝑥𝑛, 𝑦𝑛, 𝑧𝑛}. 

To approximate 𝑓′(𝑦𝑛) we construct a Bernoulli interpolation polynomial, that meets the 

interpolation conditions  

𝑓(𝑥𝑛) = 𝑄(𝑥𝑛), 𝑓′(𝑥𝑛) = 𝑄′(𝑥𝑛) and  𝑓(𝑦𝑛) = 𝑄(𝑦𝑛). 

 Here, take 𝑟 = 2 and 𝜉𝑛 = 𝑦𝑛 and from equation (12), then 𝑄(𝑡) can be written as: 

 𝑄(𝑡) = 𝑎0𝐵0(𝑡 − 𝑦𝑛) + 𝑎1𝐵1(𝑡 − 𝑦𝑛) + 𝑎2𝐵2(𝑡 − 𝑦𝑛). 

Applying the interpolation conditions above on 𝑄(𝑡), we get 

𝑓(𝑥𝑛) = 𝑎0 + 𝑎1 ((𝑥𝑛 − 𝑦𝑛) −
1

2
) + 𝑎2 ((𝑥𝑛 − 𝑦𝑛)2 − (𝑥𝑛 − 𝑦𝑛) +

1

6
), 

𝑓(𝑦𝑛) = 𝑎0 −
1

2
𝑎1 +

1

6
𝑎2, 
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𝑓′(𝑥𝑛) = 𝑎1 + 𝑎2(2(𝑥𝑛 − 𝑦𝑛) − 1), 

Solving the system above of three linear equations of three unknowns, we obtain 

𝑎0 = 𝑓(𝑥𝑛) − ((𝑥𝑛 − 𝑦𝑛) −
1

2
) 𝑎1 − ((𝑥𝑛 − 𝑦𝑛)2 − (𝑥𝑛 − 𝑦𝑛) +

1

6
) 𝑎2, 

𝑎1 = (
2

𝑥𝑛−𝑦𝑛
−

1

(𝑥𝑛−𝑦𝑛)2
) 𝑓(𝑥𝑛) + (

1

(𝑥𝑛−𝑦𝑛)2
−

2

𝑥𝑛−𝑦𝑛
) 𝑓(𝑦𝑛) + (

1

𝑥𝑛−𝑦𝑛
− 1) 𝑓′(𝑥𝑛), and  

 𝑎2 =
1

(𝑥𝑛 − 𝑦𝑛)2
(𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)) +

1

𝑥𝑛 − 𝑦𝑛
𝑓′(𝑥𝑛). 

After substituting the values of   𝑎1  and  𝑎2 in equation 𝑓′(𝑦𝑛) = 𝑎1 − 𝑎2, we get 

𝑓′(𝑦𝑛) =
2

𝑥𝑛−𝑦𝑛
(𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)) − 𝑓′(𝑥𝑛) ∶= 𝐻1(𝑥𝑛, 𝑦𝑛)                                                        (13) 

Also, to approximate 𝑓′′(𝑦𝑛) we construct a Bernoulli interpolation polynomial, that meets the 

interpolation conditions  

𝑓(𝑥𝑛) = 𝑄(𝑥𝑛), 𝑓(𝑦𝑛) = 𝑄(𝑦𝑛) 𝑎𝑛𝑑 𝑓′(𝑦𝑛) = 𝑄′(𝑦𝑛) . 

Take 𝑟 = 2 and 𝜉𝑛 = 𝑦𝑛 𝑎𝑛𝑑 from equation (12), then 𝑄(𝑡) can be written as: 

𝑄(𝑡) = 𝑎0𝐵0(𝑡 − 𝑦𝑛) + 𝑎1𝐵1(𝑡 − 𝑦𝑛) + 𝑎2𝐵2(𝑡 − 𝑦𝑛). 

Again, applying the interpolation conditions above on 𝑄(𝑡), we get 

𝑓(𝑥𝑛) = 𝑎0 + 𝑎1 ((𝑥𝑛 − 𝑦𝑛) −
1

2
) + 𝑎2 ((𝑥𝑛 − 𝑦𝑛)2 − (𝑥𝑛 − 𝑦𝑛) +

1

6
), 

𝑓(𝑦𝑛) = 𝑎0 −
1

2
𝑎1 +

1

6
𝑎2, 

 𝑓′(𝑦𝑛) = 𝑎1 − 𝑎2.  

Then by solving the system above of three linear equations of three unknowns, we obtain  

𝑎0 = 𝑓(𝑥𝑛) − ((𝑥𝑛 − 𝑦𝑛) −
1

2
) 𝑎1 − ((𝑥𝑛 − 𝑦𝑛)2 − (𝑥𝑛 − 𝑦𝑛) +

1

6
) 𝑎2, 

𝑎1 = −
1

(𝑥𝑛−𝑦𝑛)
(𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)) + (1 − (𝑥𝑛 − 𝑦𝑛))𝑎2, and 
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𝑎2 =
1

(𝑥𝑛−𝑦𝑛)2
𝑓(𝑥𝑛) −

1

(𝑥𝑛−𝑦𝑛)2
𝑓(𝑦𝑛) −

1

(𝑥𝑛−𝑦𝑛)
𝑓′(𝑦𝑛). 

After substituting the values of  𝑎2 in equation 𝑓′′(𝑦𝑛) = 2𝑎2 , we get 

𝑓′′(𝑦𝑛) =
2

(𝑥𝑛−𝑦𝑛)2 (𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)) −
2

(𝑥𝑛−𝑦𝑛)
𝐻1(𝑥𝑛, 𝑦𝑛)  ∶= 𝐻2(𝑥𝑛, 𝑦𝑛) .                              (14) 

Finally, to approximate 𝑓′(𝑧𝑛) we construct a Bernoulli interpolation polynomial, that meets the 

interpolation conditions 

 𝑓(𝑥𝑛) = 𝑄(𝑥𝑛), 𝑓(𝑦𝑛) = 𝑄(𝑦𝑛), 𝑓(𝑧𝑛) = 𝑄(𝑧𝑛) 𝑎𝑛𝑑 𝑓′(𝑥𝑛) = 𝑄′(𝑥𝑛). 

 And take, 𝑟 = 3 and 𝜉𝑛 = 𝑧𝑛 and from equation (12), then 𝑄(𝑡) can be written as: 

𝑄(𝑡) = 𝑎0𝐵0(𝑡 − 𝑧𝑛) + 𝑎1𝐵1(𝑡 − 𝑧𝑛) + 𝑎2𝐵2(𝑡 − 𝑧𝑛) + 𝑎3𝐵3(𝑡 − 𝑧𝑛). 

Also, by applying the interpolation conditions above on equation 𝑄(𝑡), we get 

 𝑓(𝑥𝑛) = 𝑎0 + 𝑎1 ((𝑥𝑛 − 𝑧𝑛) −
1

2
) + 𝑎2 ((𝑥𝑛 − 𝑧𝑛)2 − (𝑥𝑛 − 𝑧𝑛) +

1

6
) + 𝑎3 ((𝑥𝑛 − 𝑧𝑛)3 −

3

2
(𝑥𝑛 − 𝑧𝑛)2 +

1

2
(𝑥𝑛 − 𝑧𝑛)), 

 𝑓(𝑦𝑛) = 𝑎0 + 𝑎1 ((𝑦𝑛 − 𝑧𝑛) −
1

2
) + 𝑎2 ((𝑦𝑛 − 𝑧𝑛)2 − (𝑦𝑛 − 𝑧𝑛) +

1

6
) + 𝑎3 ((𝑦𝑛 − 𝑧𝑛)3 −

3

2
(𝑦𝑛 − 𝑧𝑛)2 +

1

2
(𝑦𝑛 − 𝑧𝑛)), 

 𝑓(𝑧𝑛) = 𝑎0 −
1

2
𝑎1 +

1

6
𝑎2, 

𝑓′(𝑥𝑛) = 𝑎1 + 𝑎2(2(𝑥𝑛 − 𝑧𝑛) − 1) + 𝑎3 (3(𝑥𝑛 − 𝑧𝑛)2 − 3(𝑥𝑛 − 𝑧𝑛) +
1

2
). 

Solving the system above of four linear equations of four unknowns, we obtain  

 𝑎0 = 𝑓(𝑥𝑛) − (𝑎 −
1

2
) 𝑎1 − (𝑎2 − 𝑎 +

1

6
) 𝑎2 − (𝑎3 −

3

2
𝑎2 +

1

2
𝑎) 𝑎3,  

 𝑎1 =
1

𝑏−𝑎
(𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)) − (𝑏 + 𝑎 − 1)𝑎2 − (𝑏2 + 𝑎𝑏 + 𝑎2 −

3

2
(𝑏 + 𝑎) +

1

2
) 𝑎3, 

  𝑎2 =
1

𝑎𝑏
(𝑓(𝑧𝑛) − 𝑓(𝑥𝑛)) +

1

𝑏(𝑏−𝑎)
(𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)) − (𝑏 + 𝑎 −

3

2
) 𝑎3, and 
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  𝑎3 = −
1

𝑎(𝑏−𝑎)
𝑓′(𝑥𝑛) −

1

𝑎2𝑏
(𝑓(𝑧𝑛) − 𝑓(𝑥𝑛)) +

1

𝑏(𝑏−𝑎)2
(𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)),  

where (𝑥𝑛 − 𝑧𝑛) = 𝑎 and (𝑦𝑛 − 𝑧𝑛) = 𝑏. 

After substituting the values of 𝑎1, 𝑎2 and 𝑎3 in equation 𝑓′(𝑧𝑛) = 𝑎1 − 𝑎2 +
1

2
𝑎3, we get                                                                      

𝑓′(𝑧𝑛) = 2 (
𝑓(𝑥𝑛)−𝑓(𝑧𝑛)

𝑥𝑛−𝑧𝑛
−

𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑦𝑛−𝑥𝑛
) +

𝑓(𝑦𝑛)−𝑓(𝑧𝑛)

𝑦𝑛−𝑧𝑛
+

𝑦𝑛−𝑧𝑛

𝑦𝑛−𝑥𝑛
(

𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑦𝑛−𝑥𝑛
− 𝑓′(𝑥𝑛)) ∶=

𝐻3(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)                                                                                                                              (15)                                                   

Therefore, we suggest new three-step one-parameter families of iterative methods free 

from second derivative for solving nonlinear equation (1) as follows:  

Algorithm 3.7: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following iterative 

method 

 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)

 ∑ 𝑓′(𝑦𝑛−𝛽
𝑘

𝑚
(

 𝑓(𝑦𝑛) 

𝐻1(𝑥𝑛,𝑦𝑛)
)) 𝑚

𝑘=0

 ,  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝐻3(𝑥𝑛,𝑦𝑛,𝑧𝑛)
  ,   𝑛 = 0, 1, … 

 Algorithm 3.8: For a given 𝑥0, compute the approximate solution 𝑥𝑛+1 by the following 

iterative method 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

 𝑧𝑛 = 𝑦𝑛 −
(𝑚+1)𝑓(𝑦𝑛)𝐻1(𝑥𝑛,𝑦𝑛)

 ∑ {(𝐻1(𝑥𝑛,𝑦𝑛))2 − 𝛽 
𝑘

𝑚
 𝑓(𝑦𝑛)𝐻2(𝑥𝑛,𝑦𝑛)}𝑚

𝑘=0

 , 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝐻3(𝑥𝑛,𝑦𝑛,𝑧𝑛)
  ,     𝑛 = 0, 1, …     

4. Analysis of Convergence  

In the following Theorems, we establish the convergence of the present Algorithms (3.7) 

and (3.8) respectively, when 𝑚 = 1. 
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Theorem 3.1: Let 𝛼 ∈ 𝐷, be a simple root of a sufficiently differentiable function   𝑓: 𝐷 ⊂ ℝ →

ℝ for an open interval 𝐷. If  𝑥0 is sufficiently close to 𝛼, then the Algorithm 3.7 has tenth-order 

convergence when β=1, while its convergence of eighth order for any 𝛽 ∈  ℝ − {1}. 

Proof: Let 𝛼 be a simple root of 𝑓(𝑥) = 0. (Since, 𝑓(𝛼) = 0 and 𝑓′(𝛼) ≠ 0). 

 Expanding 𝑓(𝑥𝑛)and 𝑓′(𝑥𝑛) by using Taylor expansion about 𝛼, we get 

𝑓(𝑥𝑛) = 𝑓′(𝛼)[𝑒𝑛 + 𝑐2𝑒𝑛
2 + 𝑐3𝑒𝑛

3 + 𝑂(𝑒𝑛
4)]                                                                              (16) 

Where     𝑐𝑠 =
𝑓(𝑠)(𝛼)

𝑠!𝑓′(𝛼)
 , 𝑠 = 2,3, …    &  𝑒𝑛 = 𝑥𝑛 − 𝛼. From (23), we have 

𝑓′(𝑥𝑛) = 𝑓′(𝛼)[1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒𝑛
2 + 4𝑐4𝑒𝑛

3 + 𝑂(𝑒𝑛
4)]                                                            (17) 

 Dividing equation (16) by (17), we get  

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
= 𝑒𝑛 − 𝑐2𝑒𝑛

2 + 2(𝑐2
2 − 𝑐3)𝑒𝑛

3 + (−3𝑐4 + 7𝑐2𝑐3 − 4𝑐2
3)𝑒𝑛

4+. . ..                                       (18) 

Also, we need to compute  

𝑦𝑛 = 𝛼 + 𝑐2𝑒𝑛
2 + 2(𝑐3 − 𝑐2

2)𝑒𝑛
3 + (3𝑐4 − 7𝑐2𝑐3 + 4𝑐2

3)𝑒𝑛
4+. . ..                                                (19) 

Expanding   𝑓(𝑦𝑛) 𝑎𝑛𝑑 𝑓′(𝑦𝑛)  about  𝛼 and using (19) we have 

𝑓(𝑦𝑛) = 𝑓′(𝛼)[𝑐2𝑒𝑛
2 + 2(𝑐3 − 𝑐2

2)𝑒𝑛
3 + (3𝑐4 − 7𝑐2𝑐3 + 5𝑐2

3)𝑒𝑛
4+. . . ]                                      (20) 

𝑓′(𝑦𝑛) = 𝑓′(𝛼)[1 + 2𝑐2
2𝑒𝑛

2 + 4(𝑐2𝑐3 − 𝑐2
3)𝑒𝑛

3 + (6𝑐2𝑐4 − 11𝑐2
2𝑐3 + 8𝑐2

4)𝑒𝑛
4+. . . ]                 (21) 

𝐻1(𝑥𝑛, 𝑦𝑛) = 𝑓′(𝛼)[1 + (2𝑐2
2 − 𝑐3)𝑒𝑛

2 + (6𝑐2𝑐3 − 2𝑐4 − 4𝑐2
3)𝑒𝑛

3+. . . ]                                   (22) 

𝑓′ (𝑦𝑛 − 𝛽
𝑓(𝑦𝑛)

𝐻1(𝑥𝑛,𝑦𝑛)
) = 𝑓′(𝛼)[1 − 2𝑐2

2(𝛽 − 1)𝑒𝑛
2 + 4𝑐2(𝑐2

2 − 𝑐3)(𝛽 − 1)𝑒𝑛
3+. . . ]                  (23) 

𝑧𝑛 = 𝛼 − 𝑐2
3(𝛽 − 1)𝑒𝑛

4 + 4𝑐2
2(𝑐2

2 − 𝑐3)(𝛽 − 1)𝑒𝑛
5+. ..                                                              (24) 

Expanding   𝑓(𝑧𝑛) about  𝛼 and using (24) we have        

𝑓(𝑧𝑛) = 𝑓′(𝛼)[−𝑐2
3(𝛽 − 1)𝑒𝑛

4 + 4𝑐2
2(𝑐2

2 − 𝑐3)(𝛽 − 1)𝑒𝑛
5+. . . ]                                                (25) 
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𝐻3(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = 𝑓′(𝛼)[1 + (−2𝛽𝑐2
4 + 2𝑐2

4 + 𝑐2𝑐4)𝑒𝑛
4 + (8(𝛽 − 1)𝑐2

5 − 8𝑐3𝑐2
3(𝛽 − 1) −

2𝑐2
2𝑐4 + 2𝑐2𝑐5 + 2𝑐3𝑐4)𝑒𝑛

5+. . . ]                                                                                        (26) 

Dividing equation (25) by (26), we get  

𝑓(𝑧𝑛)

𝐻3(𝑥𝑛,𝑦𝑛,𝑧𝑛)
= 𝑓′(𝛼)[−𝑐2

3(𝛽 − 1)𝑒𝑛
4 + 4𝑐2

2(𝑐2
2 − 𝑐3)(𝛽 − 1)𝑒𝑛

5+. . . ]                                (27) 

From equations (18), (20), (21), (23) and (27) we obtain 

𝑥𝑛+1 = 𝛼 + 𝑐2
4(𝛽 − 1)(𝑐2

3(𝛽 − 1) − 𝑐4)𝑒𝑛
8 − 8𝑐2

3(𝛽 − 1) ((𝛽 − 1)𝑐2
5 − 𝑐3𝑐2

3(𝛽 − 1) −

(
3

4
) 𝑐2

2𝑐4 + (
1

4
) 𝑐2𝑐5 + (

3

4
) 𝑐3𝑐4) 𝑒𝑛

9 + 2𝑐2
4 ((𝛽3 + 15𝛽2 − 34𝛽 + 18)𝑐2

7 − (
3

2
) 𝑐3 (𝛽2 +

(
68

3
) 𝛽 − 24) (𝛽 − 1)𝑐2

5 + (5 (𝛽2 − (
21

5
) 𝛽 +

33

10
)) 𝑐4𝑐2

4 + (12(𝛽 − 1)) (𝑐3
2𝛽 − 𝑐3

2 +

(
11

24
) 𝑐5) 𝑐2

3 + ((
3

4
) 𝛽2𝑐3𝑐4 + (− (

3

2
) 𝑐6 + (

41

2
) 𝑐3𝑐4) 𝛽 − (

43

2
) 𝑐3𝑐4 + (

3

2
) 𝑐6) 𝑐2

2 − (6(𝛽 −

1)) (𝑐3𝑐5 + (
3

4
) 𝑐4

2) 𝑐2 − 6𝑐3
2𝑐4(𝛽 − 1)) 𝑒𝑛

10 + 𝑂(𝑒𝑛
11)              (28)                                                                              

Implying that 

𝑒𝑛+1 = 𝑐2
4(𝛽 − 1)(𝑐2

3(𝛽 − 1) − 𝑐4) 𝑒𝑛
8 + ⋯ + 𝑂(𝑒𝑛

11)                                                              (29) 

When 𝛽 = 1 we have 

𝑒𝑛+1 = 𝑐2
4 (𝑐4𝑐2

4 −
1

2
𝑐3𝑐4𝑐2

2) 𝑒𝑛
10 + 𝑂(𝑒𝑛

11)                                                                               (30) 

Hence, Algorithm 3.7 has at least tenth-order convergence. 

Theorem 3.2: Let 𝛼 ∈ 𝐷, be a simple root of a sufficiently differentiable function 𝑓: 𝐷 ⊂ ℝ →

ℝ for an open interval 𝐷. If  𝑥0 is sufficiently close to 𝛼, then the Algorithm 3.8 has at least 

eighth order of convergence for any 𝛽 ∈ ℝ.  

Proof: With the same assumptions of the previous theorem, we have 

𝐻2(𝑥𝑛, 𝑦𝑛) = 2𝑐2 + 4𝑐3𝑒𝑛 + (2𝑐2𝑐3 + 6𝑐4)𝑒𝑛
2+. ..                                                                   (31) 

𝑧𝑛 = 𝛼 − (𝑐2
2(𝛽 − 1)+𝑐3)𝑐2𝑒𝑛

4 + ((4𝛽 − 4)𝑐2
4 + (−6𝛽 + 8)𝑐2

2𝑐3 − 2𝑐2𝑐4 − 2𝑐3
2)𝑒𝑛

5+. ..      (32) 
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Expanding   𝑓(𝑧𝑛) about  𝛼 and using (29) we have        

𝑓(𝑧𝑛) = 𝑓′(𝛼)[−(𝑐2
2(𝛽 − 1)+𝑐3)𝑐2𝑒𝑛

4 + ((4𝛽 − 4)𝑐2
4 + (−6𝛽 + 8)𝑐2

2𝑐3 − 2𝑐2𝑐4 −

2𝑐3
2)𝑒𝑛

5+. . . ]        (33) 

𝐻3(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = 𝑓′(𝛼) [1 − 2𝑐2((𝛽 − 1)𝑐2
3 + 𝑐2𝑐3 −

1

2
𝑐4)𝑒𝑛

4 + (8(𝛽 − 1)𝑐2
5 + (−12𝛽 +

16)𝑐3𝑐2
3 − 6𝑐2

2𝑐4 + (−4𝑐3
2 + 2𝑐5)𝑐2 + 2𝑐3𝑐4)𝑒𝑛

5+. . . ]                                 (34) 

Dividing equation (30) by (31), we get  

𝑓(𝑧𝑛)

𝐻3(𝑥𝑛,𝑦𝑛,𝑧𝑛)
= 𝑓′(𝛼)[−𝑐2((𝛽 − 1)𝑐2

2 + 𝑐3)𝑒𝑛
4 + (4(𝛽 − 1)𝑐2

4 + (−6𝛽 + 8)𝑐3𝑐2
2 − 2𝑐2𝑐4 −

2𝑐3
2)𝑒𝑛

5+. . . ]                                                                                                                                (35) 

Substituting equations (18), (20), (22), (31) and (35) in Algorithm 3.8 we get 

𝑥𝑛+1 = 𝛼 + ((𝛽 − 1)𝑐2
2 + 𝑐3)((𝛽 − 1)𝑐2

3 + 𝑐2𝑐3 − 𝑐4)𝑐2
2𝑒𝑛

8 + 𝑂(𝑒𝑛
9)                                     (36) 

Implying that 

𝑒𝑛+1 = ((𝛽 − 1)𝑐2
2 + 𝑐3)((𝛽 − 1)𝑐2

3 + 𝑐2𝑐3 − 𝑐4)𝑐2
2𝑒𝑛

8 + 𝑂(𝑒𝑛
9)                                            (37) 

When 𝛽 = 1 we have 

𝑒𝑛+1 = (𝑐2𝑐3 − 𝑐4)𝑐3𝑐2
2𝑒𝑛

8 + 𝑂(𝑒𝑛
9)                                                                                            

(38) 

Hence, Algorithm 3.8 has at least eighth-order convergence.                                                                                                                                                                                                                              

5. Numerical Examples  

In this section, we apply new three-step iterative methods that defined in Algorithms 

(3.7) and (3.8), to solve several nonlinear equations and make the comparison of newly 

established iteration methods with classical Newton’s method [1], S. Weerakoon et al method 

[2], and with some existing optimal eighth order methods. For example, R. Thukral method [29], 

L. Liu et al. method [9], X. Wang et al. methods [11], A. Cordero et al. method [12] and one of 

the methods by A.A. Al-Harbi [17]. The methods are given as follows:  

http://creativecommons.org/licenses/by-nc/4.0/


338, 2021-329), 3(Vol. 39                                                                       Basrah Journal of Science 

354 
 

                     This article is an open access article distributed under 

the terms and conditions of the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0 license) 

).nc/4.0/-http://creativecommons.org/licenses/by( 

 

Newton’s method (NM) : 

  𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  ,  𝑛 = 0, 1, … 

S. Weerakoon et al. method (WFM) : 

 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)

𝑓′(𝑥𝑛) + 𝑓′(𝑦𝑛)
 ,     𝑛 = 0, 1, … 

R. Thukral method (TM) : 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑥𝑛 −
(𝑓(𝑥𝑛))

2
+(𝑓(𝑦𝑛))

2

(𝑓(𝑥𝑛)−𝑓(𝑦𝑛))𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑥𝑛)
[(

1+𝜇𝑖
2

1−𝜇𝑖
)

2

− 2(𝜇𝑖)
2 − 6(𝜇𝑖)

3 +
𝑓(𝑧𝑛)

𝑓(𝑦𝑛)
+

4𝑓(𝑧𝑛)

𝑓(𝑥𝑛)
],     𝑛 = 0, 1, … 

where 𝜇𝑖 =
𝑓(𝑦𝑛)

𝑓′(𝑥𝑛)
. 

L. Liu et al. method (LWM) : 

  𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛)−2𝑓(𝑦𝑛)

𝑓(𝑦𝑛)

𝑓′(𝑥𝑛)
  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑥𝑛)
[(

𝑓(𝑥𝑛)−𝑓(𝑦𝑛)

𝑓(𝑥𝑛)−2𝑓(𝑦𝑛)
)

2

+
𝑓(𝑧𝑛)

𝑓(𝑦𝑛)−𝜇𝑓(𝑧𝑛)
+

4𝑓(𝑧𝑛)

𝑓(𝑥𝑛)+𝛽𝑓(𝑧𝑛)
],    𝑛 = 0, 1, … 

where 𝛽 = 𝜇 = 1. 

X. Wang  et al. methods (BM8 and BM8-2) : 

(BM8): 
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 𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
 ,  

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑧𝑛)
 ,     𝑛 = 0,1, … 

(BM8-2): 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

 𝑧𝑛 = 𝑦𝑛 −
𝑓(𝑦𝑛)

2𝑓[𝑥𝑛,𝑦𝑛]−𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

2𝑓[𝑥𝑛,𝑧𝑛]+𝑓[𝑦𝑛,𝑧𝑛]−2𝑓[𝑥𝑛,𝑦𝑛]+(𝑦𝑛−𝑧𝑛)𝑓[𝑦𝑛,𝑥𝑛,𝑥𝑛]
 ,   𝑛 = 0, 1, … 

A. Cordero et al. method (CTM) : 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)−𝑓(𝑦𝑛)

𝑓(𝑥𝑛)−2𝑓(𝑦𝑛)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑣𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑥𝑛)

3(𝛽2+𝛽3)(𝑣𝑛−𝑧𝑛)

𝛽1(𝑣𝑛−𝑧𝑛)+𝛽2(𝑦𝑛−𝑥𝑛)+𝛽3(𝑧𝑛−𝑥𝑛) 
 ,    𝑛 = 0, 1, … 

where 𝛽1 =  0,  𝛽2 = 1 𝑎𝑛𝑑 𝛽3 = 0 and   

𝑣𝑛 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑥𝑛)
[(

𝑓(𝑥𝑛)−𝑓(𝑦𝑛)

𝑓(𝑥𝑛)−2𝑓(𝑦𝑛)
+

1

2

𝑓(𝑧𝑛)

𝑓(𝑦𝑛)−2𝑓(𝑧𝑛)
)

2

].  

A. A. Al-Harbi et al. method (ASM) : 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑧𝑛 = 𝑥𝑛 −
𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

2𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 

𝑥𝑛+1 = 𝑧𝑛 − {(1 + 𝑡1
2 + 2𝑡1

3 + 𝜇𝑡1
4) + (−1 + 𝛽𝑡2) + (1 + 2𝑡3 + 𝛾𝑡3

2)}
𝑓(𝑧𝑛)

𝑓[𝑦𝑛,𝑧𝑛]
 , 
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                                                                                                                        𝑛 = 0, 1, … 

 where 𝜇 = 1, 𝛽 = 0 𝑎𝑛𝑑 𝛾 = −2 and 𝑡1 =
𝑓(𝑦𝑛)

𝑓′(𝑥𝑛)
, 𝑡2 =

𝑓(𝑧𝑛)

𝑓′(𝑦𝑛)
  and 𝑡3 =

𝑓(𝑧𝑛)

𝑓′(𝑥𝑛)
. 

      For writing programs, we use Maple   2016 program with 1000-digit floating point arithmetic 

(Digits: = 1000). We use the stopping criteria |𝑥𝑛+1 − 𝑥𝑛| < 𝜀 and |𝑓(𝑥𝑛+1)| < 𝜀, where 𝜀 =

10−15, for computer programs. Different test functions and their approximate root 𝛼 found up to 

the 28th decimal places are given in Table 1. Table 2 shows a comparison between the various 

iterative methods depending on the number of iterations (IT), the values of |𝑥𝑛+1 − 𝑥𝑛| 

and |𝑓(𝑥𝑛+1)| and computational order of convergence (COC). Figures (2.1- 2.8) show the 

graphical analysis for the uphold of numerical results. 

  

Table 1: The test functions and their root 𝛼  

𝒇(𝒙) 𝜶 

1 𝑓1(𝑥) = 𝑥3 + 4𝑥2 − 15 1.6319808055660635175221064455 

2 𝑓2(𝑥) = (𝑥 − 1)3 − 1 2.0000000000000000000000000000 

3 𝑓3(𝑥) = 𝑥3 − 𝑒−𝑥 0.7728829591492101128487486048 

4 𝑓4(𝑥) = (1 + 𝑐𝑜𝑠 𝑥)(𝑒𝑥 − 2) 0.6931471805599453095377829940 

5 𝑓5(𝑥) = 𝑠𝑖𝑛 𝑥 −
𝑥

2
 1.8954942670339809471440357380 

6 𝑓6(𝑥) = 𝑠𝑖𝑛−1(𝑥2 − 1) −
𝑥

2
+ 1 0.5948109683983691775226562351 

7 𝑓7(𝑥) = (𝑠𝑖𝑛 𝑥)2 − 𝑥2 + 1 2.0000019101432763850749104202 
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Table 2. Comparison our iterative methods with Newton’s method and relevant various methods  

𝒇(𝒙) 𝒙𝟎 Methods IT |𝒙𝒏+𝟏 − 𝒙𝒏| |𝒇(𝒙𝒏+𝟏)| COC 

𝒇𝟏 1.9 

 

NM 5 4.7627717e-16 2.0179551e-30 2.0000070 

WFM 4 3.5538378e-26 1.9121725e-76 2.9997779 

TM 3 7.11868510e-22 6.7158442e-106 4.8688477 

LWM 3 1.2777913e-56 2.2612305e-448 7.9411776 

BM8 3 3.8860695e-63 2.6388788e-501 7.9592052 

BM8-2 3 2.1273196e-65 1.1467258e-519 7.9633384 

CTM 3 7.8460648e-62 1.0680800e-490 7.9548448 

ASM 3 7.71083310e-59 2.2975939e-466 7.9419739 

NBM 3 4.8981129e-143 0.0 11.9628371 

NBM1 3 1.4736548e-72 7.9792114e-578 7.9792114 

𝒇𝟐 1.8 NM 6 3.0908727e-21 2.8660481e-41 2.0000004 

WFM 4 4.8567907e-17 4.0097399e-49 3.0037564 

TM 4 1.2301362e-47 4.5069838e-234 5.0041787 

LWM 3 4.8376766e-34 4.5997183e-266 8.1771117 

BM8 3 9.5534938e-42 2.0817044e-328 8.1048138 

BM8-2 3 2.5437487e-45 2.3373966e-357 8.08560810 

CTM 3 2.8011765e-40 1.3478179e-316 8.1326889 

ASM 3 2.0337759e-35 2.7318796e-277 8.1892898 

NBM 3 1.3599031e-95 0.0 12.0908695 

NBM1 3 4.4756985e-53 5.3674172e-420 8.0212447 

𝒇𝟑 3.5 NM 9 6.5470578e-20 8.9491765e-39 2.0000016 

WFM 6 1.9993598e-16 1.9761660e-47 2.9966706 
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TM 5 5.6254001e-47 4.5689177e-231 4.99626010 

LWM 4 4.4125419e-29 3.9927632e-227 7.7982095 

BM8 4 3.97083810e-39 8.1562120e-308 7.8800229 

BM8-2 4 7.1398043e-47 1.7077867e-370 7.9632156 

CTM 4 7.1286254e-40 3.7426175e-314 7.9329018 

ASM 4 1.4220098e-33 3.6783273e-263 7.8247620 

NBM 4 3.7317121e-125 0.0 9.8812164 

NBM1 4 1.8366324e-95 5.3992020e-759 7.9967565 

𝒇𝟒 0.9 NM 5 1.9230803e-29 1.8170046e-58 1.9999999 

WFM 4 1.8175039e-31 2.0473423e-93 2.9999130 

TM 3 1.8803857e-36 9.27421034e-181 4.7726412 

LWM 3 5.4674051e-82 5.2221645e-653 7.8238898 

BM8 3 3.6612034e-118 1.13663377e-945 7.8148441 

BM8-2 3 5.0785010e-89 2.4383002e-710 7.8705503 

CTM 3 2.4828066e-72 1.1379207e-575 7.9379761 

ASM 3 6.8395375e-89 6.3437628e-709 7.8293396 

NBM 3 1.2206835e-145 0.0 9.8772847 

NBM1 3 5.1313716e-89 2.6481682e-710 7.8706139 

𝒇𝟓 2.0 NM 5 1.7664965e-20 1.4787271e-40 1.9999997 

WFM 4 6.9218142e-35 8.2109603e-104 2.9999649 

TM 3 1.1448151e-27 1.1529071e-135 4.9292808 

LWM 3 1.0543348e-69 4.6254912e-553 7.9618721 

BM8 3 1.8860406e-80 2.8462341e-640 7.9718217 

BM8-2 3 7.4215447e-80 1.8459664e-635 7.9733717 
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CTM 3 1.0683158e-75 1.0583247e-601 7.9677030 

ASM 3 8.5875488e-73 4.0972561e-578 7.9630357 

NBM 3 5.6305868e-131 4.0e-1000 9.9793032 

NBM1 3 1.5961638e-100 7.9898120e-803 7.9512710 

𝒇𝟔 0.3 NM 5 2.3916069e-19 1.6107744e-38 2.00000910 

WFM 4 1.5267255e-25 7.2841117e-76 2.9997002 

TM 3 7.0798766e-27 8.7741676e-134 5.05203810 

LWM 3 1.3240055e-59 5.6416104e-474 7.9104307 

BM8 3 6.1558807e-77 2.0560733e-614 7.9112957 

BM8-2 3 6.6289185e-66 5.7572363e-525 7.9018207 

CTM 3 5.3278165e-61 1.9435254e-485 7.9366747 

ASM 3 5.0701651e-72 9.5018919e-575 7.9343293 

NBM 3 3.5116305e-108 3.0e-1000 9.9351292 

NBM1 3 1.1274703e-65 4.7650905e-523 7.8942633 

𝒇𝟕 1.5 NM 5 4.4131593e-19 3.7884542e-37 2.0000007 

WFM 4 1.8211104e-31 9.8628863e-93 2.9999346 

TM 3 9.9397361e-26 5.1884889e-125 4.9257651 

LWM 3 2.3530759e-66 3.5837479e-525 7.9648201 

BM8 3 1.8248762e-74 5.5373256e-591 7.9724181 

BM8-2 3 6.3807720e-77 6.2926145e-611 7.9760834 

CTM 3 3.8163135e-72 3.6529135e-572 7.9717647 

ASM 3 5.14822910e-69 9.8364499e-547 7.9641333 

NBM 3 6.4745225e-122 0.0 9.9818428 

NBM1 3 2.2780807e-86 1.8964177e-687 7.9659951 
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Figure 1: Log of residuals of problem 1 

 

Figure 2: Log of residuals of problem 2 
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Figure 4: Log of residuals of problem 4 

Figure 3: Log of residuals of problem 3 

23problem 2 
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Figure 6: Log of residuals of problem 6 

Figure 5: Log of residuals of problem 5 
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Figure 8: Comparison between methods and efficiency indices 

 

 

 

 

 

 

Figure 7: Log of residuals of problem 7 
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5. Conclusions 

In this research,  new predictor-corrector iterative methods have been proposed for 

solving nonlinear equations denoted by (NBM) and (NBM1), respectively. Our new iterative 

methods have the advantage of evaluating only the first derivative of 𝑓(𝑥). Numerical results 

that we got show the convergence order of (NBM) and (NBM1) methods is ten and eight 

respectively, which is higher than many existing methods. Also, the number of iterations of 

(NBM) and (NBM1) methods is better than the classical Newton's method, S. Weerakoon et al. 

method and equal with other existing methods. The efficiency index of both new iterative 

methods is much better from the classical Newton's method, S. Weerakoon et al. method and 

(BM8) method and the efficiency index of (NBM1) method is equal with all the existing 

methods but, the efficiency index of (NBM) method is less. However, the drawback in the 

efficiency index of (NBM) method is compensated by increase in accuracy. Moreover, the 

proposed (NBM) and (NBM1) methods have large computational order of convergence (COC) 

than all the existing methods which sign that our newly proposed iterative methods are well-

matched to inspect the roots.  
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