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Abstract: In this paper we will deal with the study of the statistical properties of variable selection method which is called the
Group Lasso estimator in high-dimensional data with quantile regression model. The most characteristic of quantile regression
is that it allows us to identify all the conditional distribution by estimating many different conditional quantities, with the use
of an effective method to reduce sufficient dimension is the method of MAVE.  Our proposed method is GLQMAVE,  it is new
method similar to methodology of many approaches that are interested in estimation and select the informative covariates
simultaneously.
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ORIGINAL ARTICLE

1. Introduction
As a result of the scientific development that led to

an increase in the volume of data, especially in the
medical field, and as a result of technological
development in the process of collecting high-
dimensional data, this led to obtaining estimates of high
contrast and biased, due to the presence of a number
of problems, and therefore, we cannot use standard
regression methods, but rather resorting to alternative
methods [Saini and Kumar (2019)]. Quantile regression
(QR) method is distinguished by its ability to provide a
comprehensive and accurate description of the
relationship between the explanatory variables iX ' s
and the response variable (y) by modeling the conditional

distribution 1 py / x x ,...x     in various quantities,

studies that focus on theoretical properties indicate that
the QR is insensitive to heteroskedasticity and outliers
and thus is able to accommodate errors (residues) that
are not normally distributed in many applications

[Koenker and Bassett (1978)]. The QR has been applied
in many different fields such as econometrics and
finance (financial markets) and medical and agricultural
studies [Hashem et al.  (2016), Dikheel and
Abdalriadha (2020)]. However, one of the
disadvantages of Quantile regression is that it does not
give us a unique solution, so we resort to the penalized
methods. Penalized methods, researchers Donoho and
Johnstone  (1994) first developed the idea and then
Tibshirani (1996) developed it, among its advantages
compared to traditional  methods is that it is more stable
than traditional methods., among these methods,  among
these methods, we mention Lasso Adaptive Lasso,
SCAD , Elastic net and Group Lasso, as these methods
impose a penalty on the size of the parameters, which
makes it possible to estimate the regression coefficients
with a large number of variables and a relatively small
number of observations (i.e. P > n), which can improve
the predictive error of the model by reducing the
variance in the estimations of the regression coefficients



2396 Rihab Ahmed and Waleed Rodeen

by reducing the estimations towards zero. The beginning
of the use of penalty methods with quantile regression
was to develop a quantile regression method with L1-
regularization in order to reduce the individual effects
of common values, and there are many who have
combined Quantile regression with the penalized
methods [Hashem et al. (2016), Al-kenani and Malik
(2019)]. As mentioned above when the number of
explanatory variables (P) is large, greater than the
number of observations (n) i.e. (P > n), we will face a
problem in regression analysis, and in order to get rid
of this problem, we have to reduce the dimensions of
(P) the vector of explanatory variables (X) without
losing the regression information and without re-
diagnosing the model or distribution error, we can
achieve this through the Sufficient Dimension Reduction
(SDR) method suggested by Cook (1998), assuming

the response variable (Y),  1
T

Px x , ,x  is 1 P , the

vector of predictive variables, and the reduction of
sufficient dimension (SDR) transforms the matrix

 B d P  where TY   X / X B the symbol  

indicates the independence, Dimension reduction
subspace (DRS) is the column space with extension
(B). The dimensional intersections of the dimension
reduction subspaces (DRS) are denoted by the symbol

y / xS  where y / xS  contains all the regression
information for (y / x). A number of methods have been

proposed to obtain  y / xS  including SIR, SAVE as well

as PHD method, whereas if the mean function was of
interest [Cook and Li (2002)], introduce the Central

Mean Subspace (CMS)  E y / xS and for the sake of

estimating  E y / xS  (CMS), a number of methods have

been proposed, including the iterative Hessian
transformation(IHD) [Cook and Li (2002)], as well as
the MAVE method [Xia et al. (2002)]. As previously
mentioned, SDR provides a method for finding sufficient
dimension without the need to re-diagnose the model
or distribution error. These methods give us linear
combinations of the original variables with less
dimensions, and here we have a problem with
interpreting the results, and to solve this problem we
combine the qunatile regression method with the
penalized method with an effective and efficient method
of sufficient dimension reduction (SDR), which is a

method of estimating the minimum average variance
estimator (MAVE) to obtain accurate and dispersed
solutions. The parts of this paper are as follows. The
first part is the introduction, the second part is review
of the MAVE method and our proposed method
GLQMAVE. In the third part we will review the
algorithm of the GLQMAVE method. The fourth part
is the practical part, and simulation studies are carried
out. In the fifth part the conclusion is given.
2.   MAVE and GLQMAVE

In this section we will highlight the MAVE method
and our proposed GLQMAVE method. Suppose we
have the following model:

 1 2 PY f X ,X ,..,X ε,                                (1)

where,    1 2 Pf X ,X ,..,X E Y|X ,   0E Y|X  , Y is

the response variable ,  X is   1P  Vector of predictive
variables and   is the error term. The sufficient
dimension reduction (SDR) seeks to find a subspace
S  such that

  sY E Y | X | P X ,                                        (2)

  where this symbol gives an indication of
independence and P(.) it is mean of projection operator
when subspaces  achieve constraint (2) are called mean
dimension reduction subspaces [Cook and Li  (2002)] .

So, if   d dim s and  1 2 dB , , ,     is a basis for

S  then we can replace the predictors X  by linear

combinations 1 2
T T T

dX , X , , X , d p     and without
losing information of the conditional mean function

 E Y | X [Cook and Li (2002)] explain that the central
mean subspace is the intersections of all subspaces that
satisfy condition (2). Explanation of the details of the

MAVE method for estimating  E Y|XS (CMS) was

proposed by Xia et al. (2009) as follows.
Let we have orthogonal matrix

 E P dB 

 1 2 dB  β ,β , , β   is a solution to

  2Tmin
E Y E Y | X B

B
     

                          (3)
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where,

T
dB B I is shorthand condition

and the conditional variance TX B is

     2
2 T T T
Bσ X B E Y E Y | X B / X B    

   (4)

So,

    2 2T T
B

min min
E Y E Y | X B   E σ X B ,

B B
      (5)

For any given 0X ,  2 T
Bσ  X B can be locally

approximated as follows:

    22
0 0

1

n
T

B i i i i
i

σ X B Y E Y | X B W


 

Table 1: Comparison between GLQMAVE and LQMAVE
based on Mean Squared Error (MSE) criterion of
Example 4.1.

Model 1

MSE (Lasso) MSE( Group Lasso)

0 25. 
3  0.0119989 0.0118216
6  0.0120073 0.0119839
0 50. 
3  0.0116006 0.0106343
6  0.0120004 0.0116096
0 75. 
3  0.0116122 0.0109507
6  0.0120004 0.0116096

Table 2: Comparison between GLQMAVE and LQMAVE
based on Mean Squared Error (MSE) criterion of
Example 4.1.

Model 2

MSE (Lasso) MSE( Group Lasso)

0 25. 
3  0.0155101 0.0128913
6  0.0157434 0.0137147
0 50. 
3  0.0117469 0.0105042
6  0.0120004 0.0116096
0 75. 
3  0.0150804 0.0117484
6  0.0154182 0.0118903

   2

0 0 0 0
1

n
T

i i i
i

Y a X X Bb W


      

and surely , 0iW  is a function that measures the distance

between iX  and 0X . 0iW  are the Kernel weights

centered at 0
TX B with 01

1n
ii W


 . So the problem

of finding the matrix P dB   is equivalent to that of
solving the following optimization:

   2

1 1

n n T
i j i j j ijT

j i

min
Y a X X Bb W

B B B I  

           
   (6)

Hashem et al. (2016) suggested QMAVE and was
combined with  Lasso penalty function, as below:

  
1 1

n n T
τ i j i j j

j i
ρ Y a X X B b

 

     
 

                  1
p

ij kkw λ  β


                           (7)

1m , ,d  where the dimension d  is known and
estimated by modified BIC.

Tibshirani (1996)  presented the Lasso technique,
which works simultaneously to estimate parameters
and select variables. Often we observe categorical of
explanatory variables in the high-dimensional data, and
that Lasso imposes a penalty on each variable, which
in doing so strengthens individual discrimination, while
it prefers to structure the predictive variables
collectively, that is, collective sparse is preferred over
individual sparse, in this case Lasso fails to deal with
this data.

Yuan and Lin (2006) introduced Group Lasso by
generalizing the penalty function Lasso, when the
predictive variables are grouped together, the selection
of the variable on the group level becomes necessary,
i.e. necessary, while Lasso ignores the group structure,
so Lasso is not suitable for the group structure. Among
those who paid attention to group structure and variable
selection at the group level [Yuan and Lin (2006), Meier
et al. (2008)]. One of the most important issues
addressed by the Group Lasso method is in the medical
field, for example, genetic data and genetic engineering,
where these data are always in the form of groups
according to the common characteristic and thus form
many different genetic paths. Later on, several studies



Table 3: Comparison between GLQMAVE and LQMAVE
based on Mean Squared Error (MSE) criterion of
Example 4.1.

Model 3

MSE (Lasso) MSE( Group Lasso)

0 25. 
3  0.0211262 0.0204661
6  0.0237273 0.0205179
0 50. 
3  0.0188405 0.0186187
6  0.0189902 0.0187383
0 75. 
3  0.0189316 0.0187486
6  0.0190208 0.0188349

Table 4: Comparison between GLQMAVE and LQMAVE
based on the number of zero coefficient (Av0,s)  of
Example 4.1.

                 Model 1

(Av0,s)  (Lasso) (Av0,s) ( Group Lasso)

0 25. 
3  8.33 12.67
6  7.00 12.50
0 50. 
3  10.00 17.00
6  7.00 13.00
0 75. 
3  13.00 16.23
6  9.00 11.00

were presented on Group Lasso. Subsequently, several
studies were presented on Group Lasso so several
dirctions appeared among them Sparse GLasso,
hierarchical Lasso and standard GLasso.

In this paper,  and for the reason which mentioned
above our suggestion is to combine the group lasso
penalty function with the QMAVE estimation method,
so we get a new method

  
1 1

n n T
τ i j i j j

j i
ρ Y a X X B b

 

     
 

                  1
G

ij g g    gw λ  β S


  ��                (8)

3.   Algorithm of GLQMAVE
In this section, the GLQMAVE method is proposed

in order to obtain sufficient dimension reduction (SDR)
under quantile regression settings to reach a simple

interpretation of the resulting estimators. The following
algorithm is suggested for GLQMAVE:

1. Let 1m   and 0B β  i.e. an arbitrary vector

1P .
2. B is a known vector, we find the solution vector

 j ja ,b where j = 1, ..., n in the following

        
1 1 1

n n

τ i j i
j j , ,n j i

m in
ρ Y a X

a ,b    
 

 

                  T
j j ij

T
X b B W   

                      (9)

3. The estimated solution vector j j(a , b̂ˆ ) , j = 1,

..., n, we find the solution of GLτmβ from the
following

Table 5: Comparison between GLQMAVE and LQMAVE
based on the number of zero coefficient (Av0,s)  of
Example 4.1.

        Model 2

(Av0,s)  (Lasso) (Av0,s) ( Group Lasso)

0 25. 
3  9.00 13.50
6  7.00 13.00
0 50. 
3  11.54 12.75
6  9.00 12.00
0 75. 
3  11.00 13.53
6  4.00 13.50

Table 6: Comparison between GLQMAVE and LQMAVE
based on the number of zero coefficient (Av0,s)  of
Example 4.1.

              Model 3

(Av0,s)  (Lasso) (Av0,s) ( Group Lasso)

0 25. 
3  5.50 13.00
6  9.00 13.50
0 50. 
3  10.00 13.50
6  12.00 13.00
0 75. 
3  10.00 13.50
6  8.50 12.00
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Table 7: Comparison between GLQMAVE and LQMAVE
based on Mean Squared Error (MSE) criterion for
Example 4.2 when the sample size is n = 60.

Model (1)

n = 60 MSE (Lasso) MSE( Group Lasso)

0 25. 
MSE 22.05157 22.05034

0 50. 
MSE 26.9286 26.64045

0 75. 
MSE 25.75343 25.65207

Table 8: Comparison between GLQMAVE and LQMAVE
based on mean squared error (MSE) criterion for
Example 4.2 when the sample size is n=120.

Model 2

n = 120 MSE (Lasso) MSE( Group Lasso)

0 25. 
MSE 0.1858737 0.1857578

0 50. 
MSE 0.2121364 0.2120953

0 75. 
MSE 0.1932994 0.1931527

      
1 1

n n

τ i j i jT
j i

ˆ
min

ρ Y a X X
B : B B I  

 



 

  1 2 1
1

GTT
j , m m ij n g g

g

ˆ ˆ ˆ ˆ ˆb β  β , , β , β w λ β S


 
   (10)

4. Now we put GLτmβ̂  in the mth of the column
in B, and continue with step 2 to 3 until we
reach convergence.

5. We update B with 1 2GL, GL
ˆ ,β  β ,ˆ  0GLτmβ , β̂ˆ

and let m be equal to m + 1.
6. If m < d, repeat steps 2 through 5 until m = d

4. Simulation
On the other hand, we will clarify and show the

efficiency of our proposed method GLQMAVE by
comparing with the LQMAVE method [Hashem et al.
(2016)] to show the efficiency of GLQMAVE and its
ability to produce accurate and sparse solutions. We
will take the following example:
Example 4.1: R = 100 sets of data are created of size
n =100 observations of the model

 
 

1

2
2

0 2
0 5 1 5

T

T

X
y .

. X .


  
    
 

where,  1 10
TX X ,...,X ,iX and  are independent

and have the same distributed form of N(0,1), with

 2E( y / x )S span B .  This means, the model is

 
  

1
2

2

0 2
0 5 1 5

X
y .

. X .
  

   and we have the three

models as follows.

Model 1:    1 1 0 0 1 0 0 0 0 0 0 2 0 0 0 0 1 0 0 1 0 0, , , , , , , , , , , , , , , , , , ,    

Model 2:    1 111 2 2 2 0 0 0 0 2 0 0 0 0 2 2 2 111, , , , , , , , , , , , , , , , , ,,  

Model  3:    1 111 2 2 2 0 0 0 0 2 0 0 0 0 2 2 2 1 1 1, , , , , , , , , , , , , , , , , ,,        

The simulation was done for the number of iterations
(100) and considering three groups with variables
related to each other and assuming 3 6, .   

Example 4.2: R = 100 datasets were generated from

linear model Ty X     with sample size (60 , 120) ,

we have  1 24
TX X , ,X   where iX  are

independent and identically distributed from normal

distribution N(0,1)  111 2 2 2 0 0 T, , , , , , , , 
  with  E y / xS

 1span B . So the model is

1 2 3 4 5 62 2 2y X X X X X X ,       

Correlation for the first group variables is 0.95 and
for the variables of the second group, the correlation
value is 0.90.

We have relied on two criteria to interpret the
results, namely the mean squares error (MSE) and the
number of zeroed coefficients (Ave0,s). The MSE
Tables 1, 2, 3, 7, 8  have been organized for both methods
GLQMAVE and LQMAVE in order to compare which
two methods give us accurate predictive solutions. While
the Tables 4, 5, 6, 9, 10 (Ave0,s), which represent the
number of coefficients that are zeroed for the two
methods in order to show which of the two methods
gives us more sparse solutions. The process of obtaining
a single result took 5 days, as more than one high-
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Table 9: Comparison between GLQMAVE and LQMAVE
based on the criterion of number of zeroed
coeffcients (Av0,s)  for Example 4.2  when the sample
size in n = 60.

Model 1

n = 60 (Av0,s)  (Lasso) (Av0,s)( Group Lasso)

0 25. 
MSE 0.1858737 0.1857578

0 50. 
MSE 0.2121364 0.2120953

0 75. 
MSE 0.1932994 0.1931527

Table 10: Comparison between GLQMAVE and LQMAVE
based on the criterion of number of zeroed
coeffcients (Av0,s) for Example 4.2, when the
sample size in n = 120.

Model 2

n = 120 (Av0,s)  (Lasso) (Av0,s)( Group Lasso)

0 25. 
MSE 20.01 23.25

0 50. 
MSE 19.02 21.17

0 75. 
MSE 19.11 21.32

efficiency computer was used to shorten the time to
carry out more than one operation simultaneously.

Interpretation of the simulation results will be based
on two criteria to assess the accuracy of the estimate.
By Tables 1, 2 and 3 for the Example 4.1, and Tables 7
and 8 for Example 4.2 we can summarize the result. It
is clear that the performance of the LQMAVE method
is less efficient than the proposed method GLQMAVE.
We can deduce this clearly for all Models 1, 2 and 3
and for all quantile regression levels and at different 
values for Example 4.1, and for models 1 and 2, for
Example 4.2 at the number of observations (n = 60,
120) and for all levels of quantile regression, where we
notice that our proposed method (GLQMAVE) has
given (MSE) less than (LQMAVE) method, and this
seems clear from Tables 1, 2 and 3, for the Example
4.1, and Tables 7 and 8 for Example 4.2.. As for the
second comparison criterion (Av0,s), we notice that the
(GLQMAVE) method has given more sparse
coefficients than the (LQMAVE) method, and this
seems clear from Tables 4,5 and 6, for the Example
4.1, and Tables 9 and 10 for Example 4.2.

5. Conclusion
Through the results obtained, it is clear that the

proposed method GLQMAVE is the best in obtaining
sparse and accurate solutions. The proposed method is
a combination of Group Lasso (GL), Quantile regression
and MAVE method. Since GL is one of the penalized
methods that encourages the selection of variables
collectively, where in some cases the predictive
variables have a structure that encourages group
selection, as is the case with categorical data. As for
QR, quantile  regression provides us with a clearer and
more comprehensive picture of the conditional

distribution  y / x ,  as for MAVE, it is one of the
efficient ways to find (SDR) where it estimates (CMS)
(Central mean subspace). GLQMAVE has been proven
to be a good and efficient method for getting accurate
and dispersed results.
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