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1. Introduction
The concept of weighted (k,n)-arcs was originally established by Tallini-Scafati [10] in 1971. In
order nine Galois plane, Wilson [11] in 1986 mentioned that there is a (88,14, f )-arc of class
(11,14). In addition, a (10,7, f )-arc of type (4,7) in PG(2,3) was proved by Wilson. In 1989,
Hameed [4] studied the existence and non-existence of weighted (k,n)-arcs in PG(2,9) as well as
he proved that there exist a (81,12, f )-arc of type (9,12) and a (85,13, f )-arc of type (10,13). Hill
and Love [6] in 2003 discussed the (22,4)-arcs in PG(2,7). They discussed the optimal linear
codes and arcs in projective geometries. In 2012, Hamilton [5] constructed a new maximal arcs
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in PG(2,2h), h ≥ 5, h odd. In 1999, Marcugini, Milani and Pambianco [8] were able to compute
the maximum size of (n,3)-arcs in PG(2,11). A detailed work of (k,3)-arcs in PG(2, q), with
q ≤ 13 was investigated by Coolsaet and Sticker [1] in 2012.

To facilitate the idea of the weighted (k,n)-arcs, we list in the preliminaries section some
significant definitions and corollaries. Furthermore, important theorems and related lemmas
with their proofs are given in the same section. Finally, a new maximal arc in a projective plane
of order q is provided and proved.

2. Preliminaries
Definition 2.1 ([7]). Let GF(p)=Z/pZ, where p is a prime number, and suppose that f (x) is a
polynomial of degree σ over GF(p), and f (x) is irreducible, then

GF(q)=GF(pσ)=GF(p)[x]/ f (x)= {a0 +a1t+·· ·+aσ−1tσ−1 : ai in GF(P), f (t)= 0} .

Definition 2.2 ([7]). A projective plane over GF(q) is a projective space that is two-dimensional
and denoted by PG(2, q) or π which contains q2 + q+1 lines, every line contains q+1 points
that satisfy the following axioms:

(i) Any two distinct points determine a unique line;

(ii) Any two distinct lines intersect in exactly one point;

(iii) There exist four distinct points such that no three of them are on a same line.

Definition 2.3 ([4]). A tn-arc can be defined as a set of tn points such that there is no three
points are lying on the same line.

Lemma 2.4 ([4]). Let t(p) represents the number of all tangents through p of tn-arc, and suppose
that Ti represents the number of all i-secants of tn in PG(2, q), then

(i) t(p)= q+2− tn ;

(ii) T2 = (tn(tn −1))/2 ;

(iii) T1 = tnt, t = q+2− tn ;

(iv) T0 = q(q−1)/2+ t(t−1)/2 ;

(v) T0 +T1 +T2 = q2 + q+1.

Definition 2.5 ([4]). The set of tn lines such that no three are concurrent is called a dual of
tn-arc.

Lemma 2.6. Let t(l) be the number of points lies on l and let Si be the number of points which
pass through it i2-secant, then

(i) t(l)= q+2− tn ;

(ii) S2 = (tn(tn −1))/2 ;

(iii) S1 = tnt, t = q+2− tn ;

(iv) S0 = q(q−1)/2+ t(t−1)/2 ;

(v) S0 +S1 +S2 = q2 + q+1 .
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Definition 2.7 ([7]). A (h,m)-arc H is a set of h points such that there are m but no m+1 of
them are collinear.

Lemma 2.8 ([7]). For the (h,m)-arc H, the following equations are hold:

(i)
m∑

i=0
τi = q2 + q+1 ;

(ii)
m∑

i=1
iτi = h(q+1) ;

(iii)
m∑

i=2

i(i−1)
2 τi = h(h−1)

2 ,

where τi represents the number of all i-secants of (h,m)-arc such that H∩τ= i.

Definition 2.9 ([2]). A point P of PG(2, q) is called a point of index 0 if it is not lying on the
(h,m)-arc H and not on any m-secants of H.

Theorem 2.10 ([4]). For 2= m = q+1,

(i) the maximum size zm(2, q)≤ (m−1)q+m.

(ii) if m ≤ q and equality took a place in (i), then m is a factor of q.

Definition 2.11 ([2]). Suppose that π is a projective plane of order q. The sets of lines and
points of π are denoted by R and p, respectively. Also, suppose that a function f : P → N , where
N is the set of the positive integers and zero, then f (p) and the weight of pεP are called the
non-zero weighted points set of the plane. A function F : R −→ Z+ can be defined by using the
function f such that for any r ∈ R, F(r)= ∑

pεr
f (p).F(r) is called the weight of the line r.

Definition 2.12 ([2]). A (k,n; f )-arc of the plane π is a subset K of the points of the plane such
that

(i) K is the support of f ;

(ii) k = |K | ;

(iii) n =max{F(r) : r ∈ R}.

Denote ω=max
p∈P

f (p), V j
i to the number of the lines that have weight of i through a point that

has weight of j, and W =
ω∑

j=0
H j = ∑

p∈P
f (p). For a (k,n; f )-arc, we have the following important

Lemma:

Lemma 2.13 ([3]). For the weighted (k,n)-arcs in PG(2, q), the following statements are holds:

(i) ω= q ;

(ii) If p is any point of the plane, then
∑

r∈[p]
F(r)=W + qf (p), where [p] denote the set of lines

through p ;

(iii) The weight W of a weighted (k,n)−arc satisfies (n− q)(q+1)≤W ≤ (n−ω)q+n ;

(iv) Let K be a weighted (k,n)-arc of type (n− q,n), n− q > 0 and let p be a point that has

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 361–368, 2019



364 Weighted (k,n)-arcs of Type (n− q,n) and Maximum Size of (h,m)-arcs in PG(2, q): M. T. Yaseen et al.

weight of s, then V s
m and V s

n can determine p and can be given as:

V s
n−q =

q(n− s)−W +n
q

and

V s
n = q(s−n+ q)+W −n+ q

q
;

(v) q ≡ 0 mod(q) ;

(vi) k =
2∑

j=1
l j ;

(vii) The characters of a weighted (k,n)-arcs K of type (n− q,n) are given by

tn−q =
[

q+1
q

][
n(q2 + q+1)

q+1
−W

]
and

tn =
[

q+1
q

][
W − (n− q)(q2 + q+1)

q+1

]
.

Corollary 2.14 ([3]). If W = (n − q)(q + 1), then a weighted (k,n)-arc is minimal and if
W = (n−ω)+n, then a weighted (k,n)-arc is maximal.

Definition 2.15 ([9]). A (k,n; f )-arc is a monoidal when Im f = {0,1,m} and lm = 1, with m ≥ 2.

Principle of Duality 2.16 ([7]). For any space S = PG(n, q), there is a dual space S∗, whose
points and primes are respectively primes and points of S. For any theorem true in S, there is
an equivalent theorem true in S∗.

Lemma 2.17. The existence of a (k,n; f )-arcs of type (n− q,n), in PG(2, q) with q+1< n < 2q+2
requires q ≡ 0 mod (q).

Proof. Directly, from Lemma 2.13(v).

Lemma 2.18 ([2]). The existence of a (k,n; f )-arcs of type (n− q,n), in PG(2, q) with q+1< n <
2q+2 requires l i = 0, i = 3.

We used Lemma 2.13(iii) to get

(n− q)(q+1)≤W ≤ (n− q)(q+1)+ q

Lemma 2.19. For a (k,n; f )-arcs of type (n−q,n), in PG(2, q) with W minimal (W = (q+1)(n−q)),
we have

V 0
n−q =

q(q+1)
q

, V 1
n−q =

q2

q
, V 2

n−q =
q(q−1)

q
,

V 0
n = 0, V 1

n = q
q

, V 2
n = 2q

q
.

Proof. From Lemma 2.13(iv).
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Corollary 2.20. There is no point of weight 0 on n-weighting lines of (k,n; f )-arcs of type
(n− q,n).

For the case l0 > 0, l1 > 0, l2 > 0, l i = 0, where 3≤ i ≤ q, we have the weight of the points of
the (k,n; f )-arc is ω= 2, and by using the minimal case (W = (n− q)(q+1)) and by counting the
number of lines of PG(2, q), we find the following:

tn + tn−q = q2 + q+1 .

By counting the number of n-weighting lines (tn) and (n−q)-weighting lines (tn−q), and counting
the total incidence, it follows that

ntn + (n− q) tn−q =W (q+1)= (n− q)(q+1)2 .

Consequently, we get

tn = (n− q) , (2.1)

tn−q = (q2 +2q−n+1) . (2.2)

Lemma 2.21. The n-weighting lines of (k,n; f )-arcs of type (n− q,n) form a dual of tn-arc in
PG(2, q).

Proof. From Lemma 2.19, we have V 2
n = 2, this means that there are no three n-weighting lines

are concurrent. Then the number of n-weighting lines tn form a dual of tn-arc.

On n-weighting lines, assume that there are α points and β points of weight one and weight
two respectively. Then be calculation all the points in the n-weighting lines, it follows that:

α+β= q+1

and calculation the weight of points on the n-weighting lines, we have

α+2β= n .

Solving these two equations, we obtain

α= 2(q+1) , (2.3)

β= n− (q+1) , (2.4)

counting the incidences between the points of weight two and n-weighting lines, we get

l2V 2
n = tnβ .

Making use of Lemma 2.19, equation (2.1) and equation (2.4) we obtain

l2 = (n− q)(n− q−1)
2

. (2.5)

Similarly, calculating the incidences between the points that have weight one and n-weighting
lines, we have

l1V 1
n = tnα .

Hence, by using Lemma 2.19, equation (2.2) and equation (2.3), we get

l1 = (n− q)(2q+2−n) . (2.6)
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From equations (2.5) and (2.6), calculating the points in the plane, we have

l0 + l1 + l2 = q2 + q+1 , (2.7)

l0 = q2 + q+1− (n− q)(2q+2−n)− (n− q)(n− q−1)
2

. (2.8)

Hence

l0 = 5q2 + (5−4n)q+n2 −3n+2
2

. (2.9)

Suppose that l be (n− q)-weighting lines and suppose that these lines have µ points, δ points,
and γ points on it of weight 2, weight 1, and weight 0, respectively. Then, counting points on l
gives

µ+δ+γ= q+1 (2.10)

and calculating the summation of the weights of points on l gives

2µ+δ= n− q , (2.11)

where n = 2q−u, u =−1,0,1,2, . . . , q−2. Hence the maximum values of µ and γ are q−u
2 and

q+u+2
2 , respectively.

3. Weighted (k,n)-arcs of Type (n−q,n) and Maximum Size of
(h,m)-arcs in PG(2, q)

Lemma 3.1. There exists a maximum size
( q(q−1)

2 +1, q+1
2

)
-arc in projective plane of order q.

Proof. Put n = 2q, from equation (2.9) we get l0 = q(q−1)
2 .

Let l be a line of weighting (n− q). Suppose that there are µ points of weight two, δ points of
weight one and γ points of weight zero, we have

µ+δ+γ= q+1 , (3.1)

2µ+δ= q . (3.2)

The only non-negative integers solutions are given in Table 1.

Table 1

µ δ γ

q−1
2 1 q+1

2

q−3
2 3 q−1

2
...

...
...

0 q 1

From the solutions above we get that the points of weight zero form a
( q(q−1)

2 +1, q+1
2

)
-arc of

type
(
τ q+1

2
= q(q+1)

2 ,τ q−1
2

= q(q−1)
2 ,τ1 = 2q−n+1,τ0 = n− q

)
.

Lemma 3.2. There exist a maximum size ((q−1)2, q−1)-arc in projective plane of order q.
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Proof. Put n = q+3, from equation (2.9), we get l0 = (q−1)2.
Let l be a line of weighting (n− q). Suppose that there are µ points of weight two, δ points of
weight one and γ points of weight zero, we have

µ+δ+γ= q+1 ,

2µ+δ= 3 .

The only non-negative integers solutions are given in Table 2.

Table 2

µ δ γ

1 1 q−1

0 3 q−2

From the solutions above we get that the points of weight zero form a ((q−1)2, q−1)-arc of
type (τq−1 = 3(q−1), τq−2 = (q−1)2, τ0 = n− q).

Lemma 3.3. There exist a maximum size (q(q−1), q)-arc in projective plane of order q.

Proof. Put n = q+2, from equation (2.9), we get l0 = q(q−1).
Let l be a line of weighting (n− q). Suppose that there are µ points of weight two, δ points

of weight one and γ points of weight zero, we have

µ+δ+γ= q+1 ,

2µ+δ= 2 .

The only non-negative integers solutions are given in Table 3.

Table 3

µ δ γ

1 0 q

0 2 q−1

From the solutions above we get that the points of weight zero form a (q(q−1), q)-arc of type
(τq = q−1,τq−1 = q2,τ0 = n− q).

Since k =
2∑

j=1
l j and n = 2q−u, where u =−1,0,1, . . . , q−2.

Hence we deduce the following theorem.

Theorem 3.4. There exist a
( (q−u)(q+u+3)

2 ,2q−u; f
)
-arc of type (q−u,2q−u) in PG(2, q) with the

Im f = {0,1,2} and the points of weight zero are q(q−1)
2 +1, (q−1)2 and q(q−1).

4. Conclusion
In this paper, we showed that the order of weighted (k,n)-arcs can be generalized into any order
of a prime number, and this study has not been done before. In fact, all the previous studies
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that mentioned in our paper were about specific orders such as PG(2,3), PG(2,7), PG(2,9) and
so on. In addition, we were able to find a maximal (h,m)-arcs in PG(2, q). Finally, we proved
that a

( q(q−1)
2 +1, q+1

2

)
-arc is a maximal arc in PG(2, q).
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