## Research Article

# Weighted ( $k, n$ )-arcs of Type ( $n-q, n$ ) and Maximum Size of $(h, m)$-arcs in PG( $2, q$ ) 

Mustafa T. Yaseen ${ }^{1}$, Ali Hasan $\mathrm{Ali}^{2, *}$ and Ibrahim A. Shanan ${ }^{3}$<br>${ }^{1}$ Department of Business Administration, Shatt Al-Arab University College, Basrah, Iraq<br>${ }^{2}$ Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq<br>${ }^{3}$ Business Management Techniques Department, Management Technical College, Southern Technical University, Basrah, Iraq<br>*Corresponding author: aliaha1@yahoo.com


#### Abstract

In this paper, we introduce a generalized weighted ( $k, n$ )-arc of two types in the projective plane of order $q$, where $q$ is an odd prime number. The sided result of this work is finding the largest size of a complete $(h, m)$-arcs in $\operatorname{PG}(2, q)$, where $h$ represents a point of weight zero of a weighted $(k, n)$-arc. Also, we prove that a $\left(\frac{q(q-1)}{2}+1, \frac{q+1}{2}\right)$-arc is a maximal arc in $\operatorname{PG}(2, q)$.


Keywords. ( $k, n$ )-arcs; Weighted $(k, n)$-arc; $\operatorname{PG}(2, q)$; PG(2, prime); Projective plane; Galois plane; Algebraic geometry

MSC. 51E21; 14N99; 51A05
Received: July 15, 2019
Accepted: September 13, 2019
Copyright © 2019 Mustafa T. Yaseen, Ali Hasan Ali and Ibrahim A. Shanan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1. Introduction

The concept of weighted ( $k, n$ )-arcs was originally established by Tallini-Scafati [10] in 1971. In order nine Galois plane, Wilson [11] in 1986 mentioned that there is a $(88,14, f)$-arc of class $(11,14)$. In addition, a $(10,7, f)$-arc of type $(4,7)$ in $\mathrm{PG}(2,3)$ was proved by Wilson. In 1989, Hameed [4] studied the existence and non-existence of weighted ( $k, n$ )-arcs in $\operatorname{PG}(2,9)$ as well as he proved that there exist a $(81,12, f)$-arc of type $(9,12)$ and a $(85,13, f)$-arc of type $(10,13)$. Hill and Love [6] in 2003 discussed the $(22,4)$-arcs in $\operatorname{PG}(2,7)$. They discussed the optimal linear codes and arcs in projective geometries. In 2012, Hamilton [5] constructed a new maximal arcs
in $\operatorname{PG}\left(2,2^{h}\right), h \geq 5, h$ odd. In 1999, Marcugini, Milani and Pambianco [8] were able to compute the maximum size of ( $n, 3$ )-arcs in $\operatorname{PG}(2,11)$. A detailed work of $(k, 3)$-arcs in $\operatorname{PG}(2, q)$, with $q \leq 13$ was investigated by Coolsaet and Sticker [1] in 2012.

To facilitate the idea of the weighted ( $k, n$ )-arcs, we list in the preliminaries section some significant definitions and corollaries. Furthermore, important theorems and related lemmas with their proofs are given in the same section. Finally, a new maximal arc in a projective plane of order $q$ is provided and proved.

## 2. Preliminaries

Definition 2.1 ([]]]). Let $\operatorname{GF}(p)=\mathbb{Z} / p \mathbb{Z}$, where $p$ is a prime number, and suppose that $f(x)$ is a polynomial of degree $\sigma$ over $\operatorname{GF}(p)$, and $f(x)$ is irreducible, then

$$
\operatorname{GF}(q)=\operatorname{GF}\left(p^{\sigma}\right)=\operatorname{GF}(p)[x] / f(x)=\left\{a_{0}+a_{1} t+\cdots+a_{\sigma-1} t^{\sigma-1}: a_{i} \text { in } \operatorname{GF}(P), f(t)=0\right\}
$$

Definition 2.2 ([7]). A projective plane over $\mathrm{GF}(q)$ is a projective space that is two-dimensional and denoted by $\operatorname{PG}(2, q)$ or $\pi$ which contains $q^{2}+q+1$ lines, every line contains $q+1$ points that satisfy the following axioms:
(i) Any two distinct points determine a unique line;
(ii) Any two distinct lines intersect in exactly one point;
(iii) There exist four distinct points such that no three of them are on a same line.

Definition 2.3 ([4]). A $t_{n}$-arc can be defined as a set of $t_{n}$ points such that there is no three points are lying on the same line.

Lemma 2.4 ([4]). Let $t(p)$ represents the number of all tangents through $p$ of $t_{n}$-arc, and suppose that $T_{i}$ represents the number of all $i$-secants of $t_{n}$ in $\operatorname{PG}(2, q)$, then
(i) $t(p)=q+2-t_{n}$;
(ii) $T_{2}=\left(t_{n}\left(t_{n}-1\right)\right) / 2$;
(iii) $T_{1}=t_{n} t, t=q+2-t_{n}$;
(iv) $T_{0}=q(q-1) / 2+t(t-1) / 2$;
(v) $T_{0}+T_{1}+T_{2}=q^{2}+q+1$.

Definition $2.5([4])$. The set of $t_{n}$ lines such that no three are concurrent is called a dual of $t_{n}$-arc.

Lemma 2.6. Let $t(l)$ be the number of points lies on $l$ and let $S_{i}$ be the number of points which pass through it i2-secant, then
(i) $t(l)=q+2-t_{n}$;
(ii) $S_{2}=\left(t_{n}\left(t_{n}-1\right)\right) / 2$;
(iii) $S_{1}=t_{n} t, t=q+2-t_{n}$;
(iv) $S_{0}=q(q-1) / 2+t(t-1) / 2$;
(v) $S_{0}+S_{1}+S_{2}=q^{2}+q+1$.

Definition 2.7 ([7]). A $(h, m)-\operatorname{arc} \mathcal{H}$ is a set of $h$ points such that there are $m$ but no $m+1$ of them are collinear.

Lemma 2.8 ([7]). For the $(h, m)$-arc $\mathcal{H}$, the following equations are hold:
(i) $\sum_{i=0}^{m} \tau_{i}=q^{2}+q+1$;
(ii) $\sum_{i=1}^{m} i \tau_{i}=h(q+1)$;
(iii) $\sum_{i=2}^{m} \frac{i(i-1)}{2} \tau_{i}=\frac{h(h-1)}{2}$,
where $\tau_{i}$ represents the number of all $i$-secants of $(h, m)$-arc such that $\mathcal{H} \cap \tau=i$.
Definition 2.9 ([2]). A point $P$ of $\operatorname{PG}(2, q)$ is called a point of index 0 if it is not lying on the $(h, m)-\operatorname{arc} \mathcal{H}$ and not on any $m$-secants of $\mathcal{H}$.

Theorem 2.10 ([4]). For $2=m=q+1$,
(i) the maximum size $z_{m}(2, q) \leq(m-1) q+m$.
(ii) if $m \leq q$ and equality took a place in (i), then $m$ is a factor of $q$.

Definition 2.11 ([2]). Suppose that $\pi$ is a projective plane of order $q$. The sets of lines and points of $\pi$ are denoted by $R$ and $p$, respectively. Also, suppose that a function $f: P \rightarrow N$, where $N$ is the set of the positive integers and zero, then $f(p)$ and the weight of $p \epsilon P$ are called the non-zero weighted points set of the plane. A function $F: R \longrightarrow Z^{+}$can be defined by using the function $f$ such that for any $r \in R, F(r)=\sum_{p \in r} f(p) . F(r)$ is called the weight of the line $r$.

Definition $2.12([2])$. A $(k, n ; f)$-arc of the plane $\pi$ is a subset $K$ of the points of the plane such that
(i) $K$ is the support of $f$;
(ii) $k=|K|$;
(iii) $n=\max \{F(r): r \in R\}$.

Denote $\omega=\max _{p \in P} f(p), V_{i}^{j}$ to the number of the lines that have weight of $i$ through a point that has weight of $j$, and $W=\sum_{j=0}^{\omega} \mathcal{H}_{j}=\sum_{p \in P} f(p)$. For a ( $k, n ; f$ )-arc, we have the following important Lemma:

Lemma 2.13 ([]]|). For the weighted $(k, n)$-arcs in $\operatorname{PG}(2, q)$, the following statements are holds:
(i) $\omega=q$;
(ii) If $p$ is any point of the plane, then $\sum_{r \in[p]} F(r)=W+q f(p)$, where $[p]$ denote the set of lines through p;
(iii) The weight $W$ of a weighted $(k, n)$-arc satisfies $(n-q)(q+1) \leq W \leq(n-\omega) q+n$;
(iv) Let $K$ be a weighted ( $k, n$ )-arc of type $(n-q, n), n-q>0$ and let $p$ be a point that has
weight of $s$, then $V_{m}^{s}$ and $V_{n}^{s}$ can determine $p$ and can be given as:

$$
V_{n-q}^{s}=\frac{q(n-s)-W+n}{q}
$$

and

$$
V_{n}^{s}=\frac{q(s-n+q)+W-n+q}{q} ;
$$

(v) $q \equiv 0 \bmod (q)$;
(vi) $k=\sum_{j=1}^{2} l_{j}$;
(vii) The characters of a weighted ( $k, n$ )-arcs $K$ of type $(n-q, n)$ are given by

$$
t_{n-q}=\left[\frac{q+1}{q}\right]\left[\frac{n\left(q^{2}+q+1\right)}{q+1}-W\right]
$$

and

$$
t_{n}=\left[\frac{q+1}{q}\right]\left[W-\frac{(n-q)\left(q^{2}+q+1\right)}{q+1}\right] .
$$

Corollary 2.14 ([3]). If $W=(n-q)(q+1)$, then a weighted $(k, n)$-arc is minimal and if $W=(n-\omega)+n$, then a weighted $(k, n)$-arc is maximal.

Definition $2.15([9])$ A $(k, n ; f)$-arc is a monoidal when $\operatorname{Im} f=\{0,1, m\}$ and $l_{m}=1$, with $m \geq 2$.
Principle of Duality 2.16 ([7]). For any space $S=\operatorname{PG}(n, q)$, there is a dual space $S^{*}$, whose points and primes are respectively primes and points of $S$. For any theorem true in $S$, there is an equivalent theorem true in $S^{*}$.

Lemma 2.17. The existence of a ( $k, n ; f$ )-arcs of type ( $n-q, n$ ), in $\mathrm{PG}(2, q)$ with $q+1<n<2 q+2$ requires $q \equiv 0 \bmod (q)$.

Proof. Directly, from Lemma 2.13(v).
Lemma 2.18 ([|2]). The existence of a $(k, n ; f)$-arcs of type $(n-q, n)$, in $\operatorname{PG}(2, q)$ with $q+1<n<$ $2 q+2$ requires $l_{i}=0, i=3$.

We used Lemma 2.13(iii) to get

$$
(n-q)(q+1) \leq W \leq(n-q)(q+1)+q
$$

Lemma 2.19. For $a(k, n ; f)$-arcs of type $(n-q, n)$, in $\operatorname{PG}(2, q)$ with $W$ minimal $(W=(q+1)(n-q))$, we have

$$
\begin{array}{ll}
V_{n-q}^{0}=\frac{q(q+1)}{q}, & V_{n-q}^{1}=\frac{q^{2}}{q}, \\
V_{n-q}^{0}=0, & V_{n}^{1}=\frac{q}{q}, \quad V_{n}^{2}=\frac{q q}{q} .
\end{array}
$$

Proof. From Lemma 2.13(iv).

Corollary 2.20. There is no point of weight 0 on $n$-weighting lines of ( $k, n ; f$ )-arcs of type ( $n-q, n$ ).

For the case $l_{0}>0, l_{1}>0, l_{2}>0, l_{i}=0$, where $3 \leq i \leq q$, we have the weight of the points of the ( $k, n ; f$ )-arc is $\omega=2$, and by using the minimal case $(W=(n-q)(q+1)$ ) and by counting the number of lines of $\operatorname{PG}(2, q)$, we find the following:

$$
t_{n}+t_{n-q}=q^{2}+q+1
$$

By counting the number of $n$-weighting lines $\left(t_{n}\right)$ and ( $n-q$ )-weighting lines $\left(t_{n-q}\right)$, and counting the total incidence, it follows that

$$
n t_{n}+(n-q) t_{n-q}=W(q+1)=(n-q)(q+1)^{2} .
$$

Consequently, we get

$$
\begin{align*}
& t_{n}=(n-q)  \tag{2.1}\\
& t_{n-q}=\left(q^{2}+2 q-n+1\right) \tag{2.2}
\end{align*}
$$

Lemma 2.21. The $n$-weighting lines of $(k, n ; f)$-arcs of type $(n-q, n)$ form a dual of $t_{n}$-arc in PG( $2, q$ ).

Proof. From Lemma 2.19, we have $V_{n}^{2}=2$, this means that there are no three $n$-weighting lines are concurrent. Then the number of $n$-weighting lines $t_{n}$ form a dual of $t_{n}$-arc.

On $n$-weighting lines, assume that there are $\alpha$ points and $\beta$ points of weight one and weight two respectively. Then be calculation all the points in the $n$-weighting lines, it follows that:
$\alpha+\beta=q+1$
and calculation the weight of points on the $n$-weighting lines, we have

$$
\alpha+2 \beta=n .
$$

Solving these two equations, we obtain

$$
\begin{align*}
& \alpha=2(q+1),  \tag{2.3}\\
& \beta=n-(q+1), \tag{2.4}
\end{align*}
$$

counting the incidences between the points of weight two and $n$-weighting lines, we get

$$
l_{2} V_{n}^{2}=t_{n} \beta .
$$

Making use of Lemma 2.19, equation (2.1) and equation (2.4) we obtain

$$
\begin{equation*}
l_{2}=\frac{(n-q)(n-q-1)}{2} . \tag{2.5}
\end{equation*}
$$

Similarly, calculating the incidences between the points that have weight one and $n$-weighting lines, we have

$$
l_{1} V_{n}^{1}=t_{n} \alpha .
$$

Hence, by using Lemma 2.19, equation (2.2) and equation (2.3), we get

$$
\begin{equation*}
l_{1}=(n-q)(2 q+2-n) . \tag{2.6}
\end{equation*}
$$

From equations (2.5) and (2.6), calculating the points in the plane, we have

$$
\begin{align*}
& l_{0}+l_{1}+l_{2}=q^{2}+q+1  \tag{2.7}\\
& l_{0}=q^{2}+q+1-(n-q)(2 q+2-n)-\frac{(n-q)(n-q-1)}{2} \tag{2.8}
\end{align*}
$$

Hence

$$
\begin{equation*}
l_{0}=\frac{5 q^{2}+(5-4 n) q+n^{2}-3 n+2}{2} \tag{2.9}
\end{equation*}
$$

Suppose that $l$ be $(n-q)$-weighting lines and suppose that these lines have $\mu$ points, $\delta$ points, and $\gamma$ points on it of weight 2 , weight 1 , and weight 0 , respectively. Then, counting points on $l$ gives

$$
\begin{equation*}
\mu+\delta+\gamma=q+1 \tag{2.10}
\end{equation*}
$$

and calculating the summation of the weights of points on $l$ gives

$$
\begin{equation*}
2 \mu+\delta=n-q, \tag{2.11}
\end{equation*}
$$

where $n=2 q-u, u=-1,0,1,2, \ldots, q-2$. Hence the maximum values of $\mu$ and $\gamma$ are $\frac{q-u}{2}$ and $\frac{q+u+2}{2}$, respectively.

## 3. Weighted ( $k, n$ )-arcs of Type ( $n-\boldsymbol{q}, \boldsymbol{n}$ ) and Maximum Size of $(h, m)$-arcs in PG(2,q)

Lemma 3.1. There exists a maximum size $\left(\frac{q(q-1)}{2}+1, \frac{q+1}{2}\right)$-arc in projective plane of order $q$.
Proof. Put $n=2 q$, from equation (2.9) we get $l_{0}=\frac{q(q-1)}{2}$.
Let $l$ be a line of weighting $(n-q)$. Suppose that there are $\mu$ points of weight two, $\delta$ points of weight one and $\gamma$ points of weight zero, we have

$$
\begin{align*}
& \mu+\delta+\gamma=q+1  \tag{3.1}\\
& 2 \mu+\delta=q \tag{3.2}
\end{align*}
$$

The only non-negative integers solutions are given in Table 1 .
Table 1

| $\mu$ | $\delta$ | $\gamma$ |
| :---: | :---: | :---: |
| $\frac{q-1}{2}$ | 1 | $\frac{q+1}{2}$ |
| $\frac{q-3}{2}$ | 3 | $\frac{q-1}{2}$ |
| $\vdots$ | $\vdots$ | $\vdots$ |
| 0 | $q$ | 1 |

From the solutions above we get that the points of weight zero form a $\left(\frac{q(q-1)}{2}+1, \frac{q+1}{2}\right)$-arc of type $\left(\tau_{\frac{q+1}{2}}=\frac{q(q+1)}{2}, \tau_{\frac{q-1}{2}}=\frac{q(q-1)}{2}, \tau_{1}=2 q-n+1, \tau_{0}=n-q\right)$.
Lemma 3.2. There exist a maximum size $\left((q-1)^{2}, q-1\right)$-arc in projective plane of order $q$.

Proof. Put $n=q+3$, from equation (2.9), we get $l_{0}=(q-1)^{2}$.
Let $l$ be a line of weighting $(n-q)$. Suppose that there are $\mu$ points of weight two, $\delta$ points of weight one and $\gamma$ points of weight zero, we have

$$
\begin{aligned}
& \mu+\delta+\gamma=q+1 \\
& 2 \mu+\delta=3
\end{aligned}
$$

The only non-negative integers solutions are given in Table 2 .
Table 2

| $\mu$ | $\delta$ | $\gamma$ |
| :---: | :---: | :---: |
| 1 | 1 | $q-1$ |
| 0 | 3 | $q-2$ |

From the solutions above we get that the points of weight zero form a $\left((q-1)^{2}, q-1\right)$-arc of type $\left(\tau_{q-1}=3(q-1)\right.$, $\left.\tau_{q-2}=(q-1)^{2}, \tau_{0}=n-q\right)$.

Lemma 3.3. There exist a maximum size $(q(q-1), q)$-arc in projective plane of order $q$.
Proof. Put $n=q+2$, from equation (2.9), we get $l_{0}=q(q-1)$.
Let $l$ be a line of weighting $(n-q)$. Suppose that there are $\mu$ points of weight two, $\delta$ points of weight one and $\gamma$ points of weight zero, we have

$$
\begin{aligned}
& \mu+\delta+\gamma=q+1 \\
& 2 \mu+\delta=2
\end{aligned}
$$

The only non-negative integers solutions are given in Table 3 .
Table 3

| $\mu$ | $\delta$ | $\gamma$ |
| :---: | :---: | :---: |
| 1 | 0 | $q$ |
| 0 | 2 | $q-1$ |

From the solutions above we get that the points of weight zero form a $(q(q-1), q)$-arc of type $\left(\tau_{q}=q-1, \tau_{q-1}=q^{2}, \tau_{0}=n-q\right)$.

Since $k=\sum_{j=1}^{2} l_{j}$ and $n=2 q-u$, where $u=-1,0,1, \ldots, q-2$.
Hence we deduce the following theorem.
Theorem 3.4. There exist $a\left(\frac{(q-u)(q+u+3)}{2}, 2 q-u ; f\right)$-arc of type $(q-u, 2 q-u)$ in $\operatorname{PG}(2, q)$ with the $\operatorname{Im} f=\{0,1,2\}$ and the points of weight zero are $\frac{q(q-1)}{2}+1,(q-1)^{2}$ and $q(q-1)$.

## 4. Conclusion

In this paper, we showed that the order of weighted $(k, n)$-arcs can be generalized into any order of a prime number, and this study has not been done before. In fact, all the previous studies
that mentioned in our paper were about specific orders such as $\operatorname{PG}(2,3), \operatorname{PG}(2,7), \operatorname{PG}(2,9)$ and so on. In addition, we were able to find a maximal $(h, m)-\operatorname{arcs}$ in $\operatorname{PG}(2, q)$. Finally, we proved that a $\left(\frac{q(q-1)}{2}+1, \frac{q+1}{2}\right)$-arc is a maximal arc in $\operatorname{PG}(2, q)$.

## Competing Interests

The authors declare that they have no competing interests.

## Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

## References

[1] K. Coolsaet and H. Sticker, The complete ( $k, 3$ )-arcs of $\mathrm{PG}(2, q), q \leq 13$, J. Combin. Designs 20 (2012), 89-111, DOI: 10.1002/jcd.20293.
[2] E. D'Agostini, Alcune osservazioni sui ( $k, n ; f$ )-archi di un piano finite, Atti Accad. Sec. 1st. Bologna Rend 6 (1979), 211-218, https://scholar.google.com/scholar?hl=en\&as_sdt= $0 \% 2$ C5\&sciodt=0\%2C5\&cites=6038520516372108545\&scipsc=\&q=Alcune+osservazioni+sui+ $\% 28 \mathrm{k} \% 2 \mathrm{C}+\mathrm{n} \% 3 \mathrm{~B}+\mathrm{f}+\% 29+\% \mathrm{E} 2 \% 80 \% 93+$ archi+di+un+piano+finite+\&btnG=
[3] E. D'Agostini, Sulla caratterizzazione delle ( $k, n ; f$ )-calotte di tipo ( $n-2, n$ ), Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 263-275, https://www.researchgate.net/publication/264911447_ Sulla_caratterizzazione_delle_knf-calotte_di_tipo_n-2n.
[4] F. K. Hameed, Weighted ( $k, n$ )-arcs in the projective plane of order nine, Ph.D Thesis, University of London, UK (1989), https://repository.royalholloway.ac.uk/items/ 9fab6d72-03d7-40b8-871f-5745b9fe167a/1/.
[5] N. Hamilton, Degree 8 maximal arcs in PG(2,2h), $h$ odd, Journal of Combinatorial Theory, Series A 100(2002), 265-276, DOI: 10.1006/jcta.2002.3297.
[6] R. Hill and C. P. Love, On the (22,4)-arcs in PG(2,7) and related codes, Discrete Mathematics 266 (1-3) (2003), 253-261, DOI: 10.1016/S0012-365X(02)00812-9.
[7] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Clarendon Press Oxford (1998), https://books.google.iq/books?id=RL7GbrBQwd8C
[8] S. Marcugini, A. Milani and F. Pambianco, Maximal ( $n, 3$ )-arcs in PG(2,11), Discrete Mathematics 208-209(1999), 421-426, DOI: 10.1016/S0012-365X(99)00202-2.
[9] G. Raguso and L. Rella, Sui ( $k, n ; f$ )-archi tipo ( $1, n$ ) di un piano proiettivo finite, Note di Matematica III (1983), 307-320, DOI: 10.1285/i15900932v3n2p307.
[10] M. Tallini Scafati, Graphic curves on a galois plane, Atti del convegno di Geometria combinatoria e sue Applicazioni, Perugia, (1971), 413-419, https://scholar.google.com/scholar?q=Tallini\% 20Scafatti\%2C\%20M.\%3A\%20Graphic\%20curves\%20on\%20a\%20Galois\%20plane. $\% 20 \mathrm{Atti} \%$ 20del\%20Convegno\%20di\%20Geometria\%20Combinatoria\%20e\%20sua\%20Applicazioni\%20\% 28Univ. \%20de\%2OPerugia\%2C\%201970\%29\%20Universita\%20de\%2OPerugia\%20\%281971\%29\%2C\% 20413\% E2\% $80 \%$ 93419.
[11] B. J. Wilson, ( $k, n ; f$ )-arcs and caps in finite projective spaces, Annals of Discrete Mathematics 30 (1986), 355-362, DOI: 10.1016/S0304-0208(08)73155-4

