
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgnh20

Geomatics, Natural Hazards and Risk

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgnh20

Assessing gully erosion susceptibility using
topographic derived attributes, multi-criteria
decision-making, and machine learning classifiers

Ahmed J. Al-Bawi, Alaa M. Al-Abadi, Biswajeet Pradhan & Abdullah M. Alamri

To cite this article: Ahmed J. Al-Bawi, Alaa M. Al-Abadi, Biswajeet Pradhan & Abdullah M. Alamri
(2021) Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria
decision-making, and machine learning classifiers, Geomatics, Natural Hazards and Risk, 12:1,
3035-3062, DOI: 10.1080/19475705.2021.1994024

To link to this article:  https://doi.org/10.1080/19475705.2021.1994024

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 25 Oct 2021.

Submit your article to this journal 

Article views: 9

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgnh20
https://www.tandfonline.com/loi/tgnh20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475705.2021.1994024
https://doi.org/10.1080/19475705.2021.1994024
https://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19475705.2021.1994024
https://www.tandfonline.com/doi/mlt/10.1080/19475705.2021.1994024
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2021.1994024&domain=pdf&date_stamp=2021-10-25
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2021.1994024&domain=pdf&date_stamp=2021-10-25


Assessing gully erosion susceptibility using topographic
derived attributes, multi-criteria decision-making, and
machine learning classifiers

Ahmed J. Al-Bawia, Alaa M. Al-Abadia, Biswajeet Pradhanb,c,d and
Abdullah M. Alamrie

aDepartment of Geology, College of Science, University of Basrah, Basrah, Iraq; bThe Centre for
Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University
of Technology Sydney, NSW, Australia; cDepartment of Energy and Mineral Resources Engineering,
Sejong University, Gwangjin-gu, Seoul, Korea; dEarth Observation Center, Institute of Climate
Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; eDepartment of Geology and
Geophysics, College of Science, King Saud University, Riyadh, Saudi Arabia

ABSTRACT
Gully erosion is an erosive process that contributes considerably
to the shape of the earth’s surface and is a major contributor to
land degradation and soil loss. This study applied a methodology
for mapping gully erosion susceptibility using only topographic
related attributes derived from a medium-resolution digital eleva-
tion model (DEM) and a hybrid analytical hierarchy process (AHP)
and the technique for an order of preference by similarity to ideal
solutions (TOPSIS) and compare the results with naïve Bayes (NB)
and support vector machine learning (SVM) algorithms. A trans-
boundary sub-basin in an arid area of southern Iraq was selected
as a case study. The performance of the developed models was
compared using the receiver operating characteristic curve (ROC).
Results showed that the areas under the ROC were 0.933, 0.936,
and 0.955 for AHP-TOPSIS, NB, and SVM with radial basis function,
respectively, which indicated that the performance of simply
derived AHP-TOPSIS model is similar to sophisticated NB and SVM
models. Findings indicated that a medium resolution DEM and
AHP-TOPSIS are a promising tool for mapping of gully erosion
susceptibility.
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1. Introduction

Gully erosion is a major source of soil deterioration in many regions of the world.
Gully erosion is now generally recognized as a global indication of desertification and
land degradation, as it is viewed as a potentially destructive process that poses a
threat to life and property. The evaluation of this process and the elements that
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contribute to it are becoming increasingly essential. Gully formation is a complicated
natural process that is influenced by a variety of factors, including topography, soil,
land use/land cover (LULC), and climate. The growing interest in gully erosion
research stems from a desire to better understand its impacts and, as a result, try to
mitigate their negative consequences (Al-Abadi and Al-Ali 2018). To control and
avoid the negative impacts of gully erosion, the spatial modeling of the gullies, as well
as the variables that influence their development, should be assessed. Studying gully
erosion susceptibility using conventional methods is a difficult task that requires a lot
of money and effort. With the advancement of geographic information systems (GIS),
remote sensing, and the evolution of computational and intelligent solution algo-
rithms, geospatial modeling has rendered the process of studying susceptibility to
gully erosion simpler. The developed techniques enabled the researchers to study the
gully erosion susceptibility at large scale and draw maps to indicate which areas are
more vulnerable to erosion to protect them in the future. In this context, statistical
bivariate, multivariate, and the machine learning model proved to be very efficient to
predict the gully erosion susceptibility (Dube et al. 2014; Angileri et al. 2016;
Conoscenti et al. 2017; Al-Abadi and Al-Ali 2018).

In general, the related primary and secondary topographic attributes, lithology, soil
properties, land use/land cover, and parameters related to climatic conditions are
used to build the gully erosion susceptibility models (G�omez-Guti�errez et al. 2015).
Topography is well known to play the most important role in the development of
gullies, as it controls the overland flow’s erosive intensity. It is well known that top-
ography plays the most important role in developing gullies, as it determines the

Table 1. Topography related attributes and their importance in gully erosion process.
Topographic factor Importance

Elevation Effect potential energy, vegetation, and climate (Moore et al. 1991).
Elevation has been identified as one of the important factors in gully
erosion susceptibility. The gully occurrence and development
mechanism is closely related to the different elevation of the terrain
(Zabihi et al. 2018)

Slope Controls velocity of overland flow and runoff generation. It is also
considered as one of the important factors in the gully erosion process
( Luc�a et al. 2011). The gentle slope is expected to be more exposure
to gully development as a result of surface runoff (Agnesi et al. 2011)

Aspect Controls solar insolation, rainfall intensity, soil moisture,
evapotranspiration, flora and fauna distribution and abundance and
thus has an indirect effect on the gully erosion process (Carrara et al.
1991; Moore et al. 1991; Conforti et al. 2011)

Profile curvature Plays an important role in controlling flow acceleration, rates of erosion
and deposition (Shary et al. 2002; Jiang et al. 2021)

Plan Curvature Effects the terrain instability because it controls converging/diverging flow,
soil water content and soil characteristics (Moore et al. 1991; Luc�a et al.
2011; Sujatha & Sridhar 2019)

TWI Effects the location and size of saturated source areas of runoff generation
(Luc�a et al. 2011) and thus plays a major role in control gully initiation
and development (Arabameri et al. 2019).

SPI Reflects the erosive power of water flow based on the assumption that
flow rate is proportional to specific catchment area (Moore et al. 1991;
Pourghasemi et al. 2013)

LS Is a factor that was used to quantify soil erosion rate using the RUSLE
equation and basically reflects the effect of topography on erosion
(Renard et al. 1997; Arabameri et al. 2019).
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erosive power of the overland flow. The topography is also closely related to other
variables that affect gully development, such as lithology, climate, and vegetation
cover (Table 1). In addition, the availability of data with sufficient resolution in many
cases, especially in transboundary basins, is limited to topography. Therefore, the
development of a model for mapping gully erosion with only topographic features is
of great importance in gully susceptibility studies (G�omez-Guti�errez et al. 2015).

One of the disadvantages of statistical and machine learning models is their need
for training samples to detect patterns in the input data. Such training samples are
sometimes not available, few, or insufficient to train models. Therefore, the use of
expert knowledge-based models such as multi-criteria decision-making (MCDM) is
preferred. The MCDM is a sub-discipline of operations research that explicitly evalu-
ates multiple conflicting criteria in decision-making problems. The MCDM is a
prominent decision-making method as it strengthens decision-makers’ ability to take
the decision by simultaneously evaluating all the criteria and objectives (Al-Abadi et
al. 2018). Despite their use in many scientific, engineering, social and economic fields,
the use of MCDM in mapping gully erosion is still limited (Kheir et al. 2007).

The northeast Maysan Governorate, bordering Iran, is often heavily affected by
water erosion that caused many issues including the losses of rich soil that sustains
the agricultural activities, the issuance of high costs, reduced agricultural potential,
and migration of people in the villages of this region. Although there are many solu-
tions to mitigate the effects of this erosion and loss of soils, they are not relevant in
all areas vulnerable to erosion due to limited human and financial resources.
Therefore, identification of the area most vulnerable to erosion is often given a
top priority.

The aim of this research is to investigate the possibility of mapping gully erosion
susceptibility with adequate precision using only topographical attributes derived
from a digital elevation model, knowledge-based MCDM, and Machine learning mod-
els in the framework of GIS platform. Although this study used the same modeling
techniques (MCDM and machine learning models) that have been used before in
many published studies (Arabameri et al. 2019), the novelty of this manuscript is not
in the using of these models in the gully erosion susceptibility but the possibility of
using only the topographical related factors derived from the medium resolution
DEM for accurate modeling of gully erosion susceptibility and compare the outcomes
of MCDM with advanced machine learning classifiers. The second difference between
this study and other similar studies is the process of representing gullies in geo-
graphic information system (GIS), where most of the previous studies use the “point
feature” to represent individual gully and create “gully inventory map” regardless of
the size and length of these gullies. Due to the fact that most of the recognized gullies
in the study area are longitudinal and extend to long distances, the area effected by
gullies is represented in a more realistic way by choosing a large number of points to
create the “inventory map” and this representation approach is used for the first time
in gully erosion susceptibility as many previous studies represent single gully by a
point regardless of the size of this gully and with other gullies the “gully inventory
map” is created.
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To attain this objective, an MCDM model was developed through the hybridiza-
tion of analytical hierarchy process and the technique for an order of preference by
similarity to ideal solutions (AHP-TOPSIS) to map gully erosion susceptibility using
only topographic factors. The AHP-TOPSIS model’s reliability was compared with
two highly efficient machine-learning classifiers: support vector machine (SVM) and
Naïve Bayes (NB) to demonstrate the efficacy of APH-TOPSIS in mapping gully ero-
sion susceptibility. We selected SVM and NB here, because these techniques are mas-
ter machine learning algorithms and known to be accurate and easy to implement,
especially when the training data is sufficient. The major advantages of these techni-
ques include easy to design and build, do not require iterative parameter estimation,
robust to noise data, can handle different types of data (numeric, nominal, category,
etc.), have good generalization capabilities which prevent it from over-fitting, and
relatively memory efficient (Fiesler & Beale 2020).

The results of this study contribute to providing useful insights into ways to pro-
tect soil and establish land-use projects, which contribute to avoiding soil loss and
ensuring agricultural production.

2. Material and methods

2.1. Study area

A sub-watershed situated in the northeastern part of the Maysan Governorate, Iraq
(Figure 1) was regarded as the area of case study. The sub-watershed is 205 km2 in
area and has elevation ranges varying from 8 to 272m. In the territories of Iraq, the
largest part of the study area is situated, while a small portion is expanded to the
land of Iran. Most of the study region is flat and without features except small hills
on the eastern border between Iraq and Iran. The climate of the area is dry and hot
in summer and relatively cold and wet during winter. Precipitation (most of them are
rainfall) dominates during winter, spring, and autumn. Temperature over 50 �C com-
monly occurs in summer, whereas the temperature below 0 �C is rarely recorded. The
Quaternary sediments cover the whole of the study area (Figure 2a). The main litho-
logical units are Quaternary alluvium and alluvial fan deposits. These sediments com-
prise mainly gravel, sand, and silty sand. In terms of the tectonic framework, the
majority of considered sub-watershed is situated in the Mesopotamian zone (Tigris
subzone). The Mesopotamia zone is situated on the eastern side of the stable shelf,
and the Hamrin-Makhul area is restricted to the east (Jassim and Goff 2006). Two
types of soils found in the basin: aridisols and inceptisols (Figure 2b) which cover
163 km2 (79%) and 17 km2 (17%) area, respectively excluding the area outside of the
Iraqi territory (25 km2, 12%). Two major types of land covers can be recognized in
the sub-basin through the analysis of remote sensing data using maximum likelihood
supervised classification supported by ground truths. The recognized classes are
shrubland distributes over an area of 35 km2 (32%) and bare land covers 73 km2

(68%) (Figure 2c).

3038 A. J. AL-BAWI ET AL.



2.2. Methodology

The adopted methodology in this study consists of five steps (Figure 3): (1) prepar-
ation of the gully inventory map; (2) generation of topographical attributes from
DEM; (3) carry out feature selection for identifying the relevance of the factors in the
building the susceptibility model; (4) application of models and mapping gully ero-
sion susceptible zones; and (5) validation model results and compares the performan-
ces of MCDM and ML to choose which one the best for modelling gully erosion in
the study area. A detail description of these steps is given as follows.

Figure 1. Location of the study area in Iraq.
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Figure 2. Layers of (a) geology (b) soil, and (c) land cover.
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2.2.1. Gullies inventory map
The gully inventory map was prepared through comprehensive analyses of Google
Earth images, verified by extensive field survey. A total of 10 gullies were identified
(Figure 4). The gullies in the region were found to have linear plan shape with a

Figure 3. Flow chart showing the steps used for the implementation of the gully erosion suscepti-
bility model.
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length range from a few meters to hundreds of meters (Al-Abadi and Ali 2018). The
gullies depth ranges from 0.5m to over 2m. The width of the gullies ranges
1.25� 20m. Most of the gullies have Type U cross sections, but often V-shaped gul-
lies have also been found. Concentrated runoff created the majority of the gullies in
the study region. Gully head cuts are most common on slopes of 15–30%, where sur-
face runoff accumulates. In most cases, gullies are linked to the drainage lines net-
work, allowing material eroded from upland regions to be evacuated more easily.
Almost all gullies are formed on slopes underlain by alluvial fan sediments having a
considerable amount of clay. Sometimes gullies appear close to the paved roads and
industrial places, especially the sand and gravel quarries.

2.2.2. Preparation of topographic related factors
Recently, obtaining digital elevation model (DEM) with appropriate spatial resolution
has become easy, especially after providing easy access to DEM data at free of charge
by many governmental organizations and international agencies. The use of high-
resolution DEM files does not necessarily produce better results (G�omez-Guti�errez et
al. 2015). In general, high-resolution data requires more time and cost for processing.
Besides, the high-resolution DEM is not available for free of charge for the whole
world. For these reasons, a DEM of SRTM (Shuttle Radar Topography Mission) was
used in the study. The choice of this type of DEM is due to several reasons: (1) it has
a fairly high resolution (1 arc-second or around 30m); (2) it has a near-global cover-
age (from 56�S to 60�N); and (3) it is available in the public domain. After pre-proc-
essing of SRTM tiles (mosaic tiles, re-projection, and fill voids), the DEM was used to
generate a number of primary and secondary topographic factors including: elevation,
slope percent, slope aspect, profile and plan curvatures, topographic wetness index
(TWI), stream power index (SPI), and slope-length (LS). From a review of the exist-
ing references on the mapping of gully erosion susceptibility, which are in the tens, it
can be said that there is no study that does not use these factors in the development
of gully erosion maps and almost in all types of terrain. For this reason, these factors
are relied upon here to map the gully erosion of the study area. The elevation was
derived from pre-processed DEM and was categorized into 10 classes (Figure 5a).
Slope layer was also directly derived from DEM and classified into five classes: <2%,

Figure 4. Photos showing the gully features in the study area.
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2–8%, 8–15%, 15–30%, and >30% (de Winner 2007) (Figure 5b). The profile and
plan curvatures were represented by three classes: concave, flat, and convex (Figure
5c, d). Aspect was classified into nine classes (Figure 5e). The TWI was calculated as:

TWI ¼ ln As=tanbð Þ (1)

where, As is the specific catchment area and b is the slope in degree. The SPI was
computed using the following equation (Moore et al. 1991):

SPI ¼ Astanb (2)

Finally, the LS factor was calcualted using the equation developed by Moore and
Burch(1986):

LS ¼ fa� rastercellsize=22:13ð Þ0:4 � sinb=22:13ð Þ1:3 (3)

where, fa is flow accumulation (Sujatha & Sridhar 2018).

Figure 5. Topographic related factors: (a) Elevation, (b) Slope percentage, (c) Profile curvature, (d)
Plan curvature, (e) Aspect, (f) TWI, (g) SPI, and (h) LS.
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The TWI, SPI, and LS factors were classified into five classes (Figure 5f–h). The
raster map of each factor was prepared with 590 columns and 1245 rows, and thus,
the total number of cells was 734,550.

2.2.3. Preparation of data for the development of models
The gully erosion susceptibility maps in this study were prepared using different
paradigms, and therefore, the pre-processing of data was important in order to com-
pare the results. The difference between this study and other similar studies is the
process of representing gullies in geographic information system (GIS), where most
of the previous studies use the “point feature” to represent individual gully and create
“gully inventory map” regardless of the size and length of these gullies. In this study,
most of the recognized gullies in the study area are longitudinal and extend to long
distances, the gullies are represented here in a more realistic way by choosing a large
number of points from the polygons that represent the spatial extent of these gullies.
For this reason, the number of points used here is relatively large (1046 points); this
representation approach is used for the first time in gully erosion susceptibility stud-
ies; let’s take an example to explain that. Figure 6 shows a part of the study area with
a longitudinal gully with different map scale. It is clear from Figure 1, it is impossible

Figure 5. (Continued).
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to represent this gully by only one-point feature in the GIS to refer to the area
affected by this gully. Therefore, we developed gully inventory map to create a large
number of points that refer to the areas affected by gullies instead of representing
each individual gully with only one point and this is the only time this representation
method used in gully susceptibility analysis.

Numerous points were created to cover the gullies in the entire area (1046 points).
The same number of non-gully points was also created to represent areas not affected
by gully erosion. Hence, the total number of created points was 2092. Using the ran-
dom sampling process available in caret package of R statistical software, the dataset
was divided with a ratio of 70/30. 70% of data (1466 points) was used for building
and training the ML models (the MCDM model do not need sample training data).
The remaining data 30% (626 points) were retained for testing the models using the
relative operating characteristic (ROC) technique. For the 626 points, all the instances
are not affected by gullies (313 points) were removed and the remaining points (gul-
lies) were kept to compare the performance of the MCDM and ML models.

Figure 5. (Continued).
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2.2.4. Modeling techniques
2.2.4.1 Feature selection. Feature selection is a process of selecting a subset of rele-
vant features for the construction of a predictive model. The process helps in (1) sim-
plifying the predictive models so that they can be easily developed and interpreted; (2)
shorten the time of model training; and (3) enhance generalization by reducing model
over-fitting (James et al. 2014). In general, there are three types of feature selection
approaches, namely, filter, wrapper, and embedded. Each of these methods has advan-
tages and disadvantages. In the present study, a wrapper algorithm, namely the Boruta
Algorithm (BA) was used to investigate the features and order their importance in pre-
dicting gully erosion. BA is built based on random forest algorithm and has a capabil-
ity to capture all the important features that are uncorrelated and non-redundant in a
dataset with respect to an outcome (dependent) variable. A detail description of this
algorithm can be found in Kursa and Rudnicki (2010).

2.2.4.2 Ahp and TOPSIS. AHP is an MCDA technique pioneered by Saaty (1980). In
this technique, weights are allocated in a process of pair-wise relative comparison
according to expert opinions (Bathrellos et al. 2017). In AHP, the problem being

Figure 5. (Continued).
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question is formulated as a hierarchical model. The AHP model in a simple form
consists of three levels: goal, criteria, and alternative. The pair-wise comparison is
implemented at each level of the hierarchy to obtain the judgmental matrix using
Saaty’s nine-point scale (Saaty 2008). Essentially, the pair-wise comparison contributes
to evaluating each factor’s contribution independently (Rezaei-Moghaddam and
Karami 2008). The eigenvector of the judgmental matrix yields the weights of the ele-
ments in the hierarchy.

If C ¼ Cjjj ¼ 1, 2, :::, n
� �

be the set of criteria, the decision matrix A resulting
from pair-wise comparison can be written as:

Figure 6. Individual gully in different map scale: (a) 1: 5,000, (b) 1:10,000, and (c) 1:25,000.
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A ¼
a11 a12 ::: a1n
a21 a22 ::: a2n
::: ::: ::: :::
an1 an2 ::: ann

2
664

3
775, (4)

where, aij is the pairwise comparison between i and j of a level with the upper level.
The eigenvalue method was used to assign matrix elements weights involved in the
analysis. The vector of weights is calculated by taking the principal eigenvector (w)
on matrix A.

Aw ¼ kmaxw: (5)

The decision matrix is said to be consistent if the following rule is satisfied

aij ¼ aik � akj; 8i, j, k: (6)

To assess the consistency judgment, Saaty (1980) used the consistency ratio CI:

CI ¼ kmax�n
n� 1

: (7)

The TOPSIS is another MCDM method (Hwang & Yoon 1981), which was devel-
oped based on the concept that the chosen alternative should have the shortest geo-
metric distance from the positive ideal solution (PIS) and the longest geometric
distance from the negative ideal solution (NIS). The PIS is a solution that maximizes
the benefit criteria and minimizes the cost criteria, while the NIS do the reverse
(maximizes the cost criteria and minimizes the benefit criteria) (Assari et al. 2012).
The steps used to implement TOPSIS begin with normalization of the decision matrix
(Hwang and Yoon 1981):

rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1xij

q (8)

where, i¼ 1, 2, … , m; j¼ 1, 2, … , n; xij and rij are the original and normalized
scores of the decision matrix, respectively.

The weighted normalized decision matrix is estimated by multiply weights wi of
the criteria by rij obtained using eq. (8):

vij ¼ wirij: (9)

The PIS and NIS are calculated as:

PIS ¼ max vijjj 2 J
� �

, min vijjj 2 ’J
� �

NIS ¼ min vijjj 2 J
� �

, max vijjj 2 ’J
� �

(10)
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where, vij is the weighted and normalized xij, and J and ’J are the benefit and cost
criteria, respectively. The separations of each alternative from the PIS and NIS are
calculated as:

Sþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

vij � vþi
� �2s

j = 1, 2, ..., n

S�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vij � v�ið Þ2
q

j¼ 1, 2, … , n (11)

The relative closeness coefficient to the ideal solution of each alternative is com-
puted as:

Cj ¼
S�j

Sþj þ S�j
j = 1, 2, ..., n (12)

By comparing the Cj, the ranking of alternatives is determined.

2.2.4.3 Support vector machine (SVM). SVM is a ML technique designed to solve
both classification and regression problems. It seeks to find a hyperplane that best
divides a dataset into distinguished classes. A hyperplane is a line that linearly sepa-
rates a dataset. Support vectors, on the other hand, are the data points located close
to the hyperplane. They are critical elements of the SVM as removing these points
dramatically changing the position of the dividing hyperplane. The margin is the dis-
tance between the hyperplane and the support vectors (Figure 7a). The SVM algo-
rithm chooses a hyperplane with the greatest possible margin between the
hyperplane and any point within the training dataset, and thus, the new data could
be classified correctly. In case of difficulty to define a clear hyperplane, the two-
dimensional data is converted to a three-dimension through kernelling concept
(Figure 7b) and the hyperplane turns into a plane. The dataset is continually mapped
into higher and higher dimensions until a hyperplane can be formed for optimal
segregation.

Given a set of training examples xnf gNn¼1 x 2 R
Lð Þ and its corresponding output

ynf gNn¼1
with yn 2 �1, 1f g, the linear separating hyper-plane can be described as:

w:xi þ b ¼ 0 (13)

where, w is a weight vector that defines the orientation of the hyperplane in the fea-
ture space, and b is the offset of the hyperplane from the origin (Cortes & Vapnik
1995). Using the Lagrangian multipliers, the following optimization problem is solved
to get the optimal hyperplane:

Minimize
Xn
i¼1

ai � 1
2

Xn
i¼1

Xn
j¼1

aiajyiyj xixjð Þ (14)
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Subject to
Xn
i¼1

aiyj ¼ 0, 0 � ai � C, (15)

where, ai are lagrange multipliers and C is the cost of the penalty.
When the data can’t be separated linearly, SVM introduces kernel function (Wilk-

Kolodziejczyk et al. 2016) which maps the original data space into a high-dimension
feature space. The idea is that when the data are transformed into a higher dimen-
sion, it can be easily separated (Nanda et al. 2018).

The classification decision function is then presented as,

g xð Þ ¼ sign
Xn
i�1

yiajK xi, xjð Þ þ b

 !
, (16)

where, K xi, xjð Þ is the kernel function. The successful application of SVM depends on
the right choice of kernel type and its parameters (Damâseviĉius 2010).

2.2.4.4 Naïve bayes (NB). The NB is a family of simple probabilistic algorithms based
on Baye’s theorem with strong independence assumptions between the features
(Shmueli et al. 2018). NB has many advantageous including easy to design and build,
does not require complex iterative parameter estimation, and robust to irrelevant fea-
ture and noise Soria et al. (2011).

Figure 7. The basic of SVM: (a) the soft margin – separating hyperplane; (b) the kernel function
(modified after Yao et al. (2008)).
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Given a class variable y and dependent feature vector x x1, x2, :::, xnð Þ, Baye’s
theorem states the following relationship (Zhang & Su 2004):

P yjx1, x2, :::, xn
� � ¼ P yð ÞP x1, x2, :::, xnjy

� �
P x1, x2, :::, xnð Þ (17)

With naïve conditional independence assumption, eq. (13) turns into

P xijy, x1, :::, xi�1, xiþ1, :::, xn
� � ¼ P xijy

� �
(18)

For all i, eq. (14) can be simplified as,

P yj x1, x2, :::, xn
� � ¼ P yð Þ

Qn
i¼1 P xijy

� �
P x1, x2, :::, xnð Þ (18)

As P x1, x2, :::, xnð Þ is constant to the given input, the following classification rules
can be used:

P yjx1, x2, :::, xn
� � / P yð Þ

Yn

i¼1
P xijy
� �

+

ŷ ¼ arg max
y

P yð Þ
Yn

i¼1
P xijy
� �

(19)

The main weakness of NB lies in the assumption that the factors involved in
model construction must be independent of each other; however, if there are factors
dependent on each other, a large number of incorrect classifications may occur.

Figure 8. Result of feature selection analysis (Boruta package).
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2.2.4.5 Performance evaluation metrics. To investigate the performance capability of
the ML models, five statistical based confusion matrix measures were calculated:
accuracy, sensitivity, specificity, precision, and F1 score. A more detail how these
measures calculate and how they are used for measuring the model predictive ability
is found in Appendix I.

In this analysis, the ROC curve was used to compare the performance of a hybrid
MCDM model built and to select the best machine learning models. The ROC is a
graphical plot which clarifies a predictive model ability when its threshold for dis-
crimination is varied. It is created by plotting the true positive rate (sensitivity)
against the false positive rate (1 – specificity) for various threshold settings. The area
under the ROC (AUC) detects the quality of a classifier by explaining the model’s
ability to forecast correctly the occurrence and non-occurrence of pre-defined events
(Mason & Graham 2002). The AUC value ranges from 0.5 (random prediction repre-
sented by a diagonal straight line) to 1 (perfect prediction).

2.2.4.6 Software used and the procedure adapted. Different software were used in this
study for mapping the gully erosion susceptibility. The online version of AHP calculator
(https://bpmsg.com/ahp/ahp-calc.php) was used for applying AHP technique and deter-
mine the weights of topographic related factors used in this analysis. To run the TOPSIS
algorithm, the “topsis” package (https://cran.r-project.org/web/packages/topsis/index.
html) in R statistical software was used. The weights derived using AHP were passed to
the algorithm and the cost type normalization technique (larger the better) was used to
normalize all eight factors. This type of normalization was used after studying the rela-
tionship between gully locations and the topographic factors affecting their develop-
ment. The caret (Kuhn 2008) and e1071 (https://cran.r-project.org/web/packages/
e1071/index.html) packages of R statistical software were used to develop the SVM and
NB machine learning models. A k-fold cross validation procedure was used to train the
models. This approach is a re-sampling technique used to evaluate the performance of
predictive models through randomly partitioning the original data set into k groups
(folds) of approximately equal size (James et al. 2014). One sub-sample is used in the
verification test, and the remaining sub-samples are used for model training. The re-
sampling process is repeated k times (the folds) and the results from the folds averaged
to produce a single estimate (Chen et al. 2018). For SVM models, four kernel functions
were used: linear, radial, polynomial, and sigmoid. The raw data was pre-processed
using centre-scaling function and the parameters of each kernel were tuned using the
grid-search approach. The grid-search works by looking for the combination of parame-
ters in a given region’s length and then emitting the best parameters through the min-
imum classification error to construct the classifier (Nanda et al. 2018). The tuned SVM
models were implemented using the optimized parameters, and the result were com-
pared using the six statistical errors to choose the best one. The NB model was devel-
oped in two stages using e1071 and caret packages. In the first stage, the train data was
pre-proceed using the Box Cox method (normalization), standardized using centre-scal-
ing, and reduction via principal component procedure (PCA). After pre-processing, NB
classifier was trained with 10-fold cross validation without tuning the hyper-parameters
of the classifier. In the next stage, the hyper-parameters of the NB model were tuned
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using grid-search approach. Finally, the ROC curves were produced by IDRISI
Selva software.

3. Results

3.1. Feature selection

The results obtained using BA for the selection of features were summarized in
Figure 8. All topographical related factors significantly contribute to gully erosion in
the sub-basin (average merit > 0). The most important factor was elevation, followed
by TWI, LS, SPI, profile curvature, slope, plane curvature, and aspect. Therefore, all
the factors were included in the modelling of gully erosion susceptibility.

3.2. Application of AHP-TOPSIS model

The weights of the factors according to their importance in mapping gully erosion
were calculated using the AHP method and depending on the feature selection results
(Section 3.1), where the highest weight was assigned to the elevation and the lowest
weight was assigned to the profile curvature. The pair-wise comparison and the con-
sistency ratio were used to judge the consistency (Table 2). It can be concluded from
Table 2 that the judgment was consistent (the consistency ratio was smaller than 0.1
(0.029)). The highest weight was given to elevation (33.1%), followed by LS (23.1%),
TWI (15.7%), SPI (10.6), aspect (7.1%), slope (4.8%), plan curvature (3.3%), and pro-
file curvature (2.4%).

The ranked values obtained using TOPSIS were mapped using ArcGIS 10.2 and
classified using quantile classification scheme into three categories: very low – low,
moderate, high – very high (Figure 9a). Areas occupied by each category are given in
Table 3. Moderate and high – very high susceptibility zones were found to occupy
61% of the study area (about 124 km2), while very low – low susceptibility zones were
found to encompass the remaining part of the sub-basin (39%; 81 km2). The high sus-
ceptibility zones were distributed in the upper part of the sub-basin and in some
areas in the centre. The moderate zone covers the central part of the study area and
the low susceptible zone was found to cover the lower parts of the basin beside some
parts in the centre. Validation of this model using ROC curves (Figure 10) revealed a
value of AUC equal to 0.933, which indicates an excellent prediction by the APH-
TOPSIS model.

3.3. Application of SVM and NB models

Table 4 shows the results of SVM models using the optimized hyperparameters. In
terms of accuracy, all the SVM models performed well. The best SVM model was

Table 2 Results obtained using AHP technique.
Factor Elevation LS TWI SPI Aspect Slope Plan curvature Profile curvature

Priority 33.1% 23.1% 15.7% 10.6 7.1 4.8% 3.3% 2.4%
Rank 1 2 3 4 5 6 7 8

Consistency ratio ¼ 2.9%
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found for the RBF kernel (Accuracy ¼ 87.6%). In terms of sensitivity, the best SVM
model for classifying the gullies was also SVM with RBF function (Sensitivity ¼
90.4%), followed by SVM with polynomial kernel type (Sensitivity ¼ 70.5%). On the

Figure 9. Gully erosion susceptibility maps obtained using: (a) hybrid AHP-TOPSIS; and (b) SVM-
Radial, (c) Naïve Bayes.

Table 3. Areas covered by different categories of gully erosion susceptibility.

Model

Gully hazard zones

very low – low Moderate high – very high

AHP-TOPSIS 39% (81 km2) 22% (44 km2) 39% (80 km2)
SVM – Radial 38% (79 km2) 22% (44 km2) 40% (82 km2)
Naïve Bayes 37% (75 km2) 22% (44 km2) 42% (86 km2)

Figure 10. Validation of the models using ROC curve.
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other hand, the best model for classifying non-gullies cases was SVM with polynomial
kernel (Specificity ¼ 91.6%), followed by SVM with linear, RBF and Sigmoid kernel
(Specificity ¼ 88.1%, 84.7%, and 78.9%, respectively). With respect to the “Precision”
in measurement, the SVM with RBF kernel performed the best (84.7%), followed by
SVM with a linear kernel (80.8%), SVM with polynomial kernel (84.7%) and SVM
with Sigmoid kernel (77.4%). Examining the predictive capability of the SVM model
using the F1 score revealed that the SVM with the RBF was the best model
(F1¼ 87.2%), followed by SVM with polynomial kernel (84.3%), SVM with linear ker-
nel (84.2%) and SVM with sigmoid kernel (78%). Based on these results, the best
SVM model was SVM with RBF kernel. This model was then chosen to map gully
erosion susceptibility to compare the results of AHP-TOPSIS. The probability values
of the SVM with RBF were interpolated using the ordinary kriging interpolation tech-
nique in ArcGIS 10.3. The interpolated values were categorized into five gully erosion
susceptibility zones using quantile classification scheme (Figure 9b): very low, low,
moderate, high, and very high. Areas occupied by these zones are presented in Table
3. The values were found to be closely similar to that derived using the AHP-TOPSIS
model. Examining the SVM model performance using the ROC curve for the testing
data revealed a value of AUC equal to 0.955 (excellent model). The gully erosion haz-
ard zones were found distributed in the study area in the same manner as that gener-
ated by AHP-TOPSIS model. In general, the very-high zones were found to
encompass the northern parts, a moderate zone in the central part, whereas very low
– low zones were found to cover the southern part.

The high susceptibility zones were found to distribute in the upper part of the
sub-basin and in some areas in the central part, while the moderate zone was found
mainly concentrated in the central part and the low erosion susceptible zone was
found to cover the lower parts of the area beside some parts in the centre. Validation
of the model using ROC curves (Figure 10) revealed a value of AUC equal to 0.955,
which indicates an excellent performance model.

Results of the NB model for the first stage (without tuning the algorithm hyper-
parameters) are presented in Table 5. The overall accuracy of the model in this stage
was 0.83. The predictive capability of the NB model was improved after tuning the
hyper-parameters (stage two). The accuracy of the NB model in the second stage
(tuning the hyperparameters) was 86.4% (Table 5). The probability of the tuned NB
model was exported to the ArcGIS 10.3 and interpolated to reveal the levels of gully
erosion susceptibility in the study area. The probability values were found in the
range 0.02–1.00. The values were classified using a quantile classification scheme into
five zones in a similar fashion adopted for other models (AHP-TOPSIS and SVM-

Table 4. The evaluation statistical error measures for the SVM with different kernel functions.

Evaluation measure

Kernel type (10-fold cross validation training mode)

Linear Polynomial RBF Sigmoid

Accuracy 0.848 0.852 0.876 0.782
Sensitivity 0.695 0.705 0.904 0.563
Specificity 0.881 0.916 0.847 0.789
Precision 0.808 0.789 0.847 0.774
F1 score 0.842 0.843 0.872 0.780
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RBF). Table 3 summarizes the areas covered by those five zones. Examination of the
performance of the model for the test data using the ROC curve showed 0.936 AUC
value, which was slightly better value than AHP-TOPSIS model (Figure 10).

The locations of three distinct gullies that were not utilized in the training
and validation test were overlaid over the gully erosion map produced by AHP-
TOPSIS to further evaluate the susceptibility of the gully erosion map produced
by AHP-TOPSIS, Figure 11. Most of these gullies are found to be distribute in
the moderate, high, and very high susceptibility zones. This is convincing evi-
dence that the maps generated here may be used to determine where heavy soil
erosion is likely to occur, and so make a major contribution to soil protection
and land use management.

Table 5. Performance of NB model in term of statistical measures.
Evaluation measure Without tuning process With tuning and preprocess

Accuracy 0.839 0.864
Sensitivity 0.864 0.877
Specificity 0.800 0.830
Precision 0.801 0.829
F1 score 0.833 0.844

Figure 11. Ground truth check and field validation of the gully erosion susceptibility map.
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4. Discussion

Gully erosion is a complicated geomorphic hazard that results in significant eco-
nomic losses as well as substantial infrastructural and natural environment degrad-
ation. However, modelling of soil erosion susceptibility with high accuracy is still
difficult to predict, especially in the region where the available data is poor
(Arabameri et al. 2019). Topography is widely recognized for playing a key part in
the formation of gullies, since it influences the erosive strength of the overland flow.
Other factors that influence gully development, including as lithology, climate, and
plant cover, are all influenced by topography. As a result, in gully susceptibility
research, developing a model for mapping gully erosion using just topographic char-
acteristics is critical. For this regard, in this study, a methodology is presented to
develop gully erosion susceptibility map using a hybrid AHP-TOPSIS using only
topographic related factors derive from a medium resolution DEM. The topographic
factors used in the study include elevation, slope, profile and plan curvatures, aspect,
TWI, SPI, and LS. The benefit of adopting this model is that it is an expert know-
ledge-driven model that may be constructed without the need for a training sample
dataset. Such training samples (the locations of gullies or areas affected by a specific
gully) are sometimes not available, few or insufficient to complete the training phase
of the data-driven models, such as statistical and machine learning models. The find-
ings of AHP-TOPSIS are compared to those of two well-known accurate machine
learning classifiers, SVM and NB, to demonstrate the benefits of employing such a
simple model.

The contribution of factors used in the analysis of gully erosion models is of con-
siderable interest, and it has received a lot of attention in the literature. The import-
ance of these factors in a specific region, is depended on the nature of the study area;
i.e., the soil type, LULC, exposed lithological units, geomorphology, and meteoro-
logical conditions, and thus a factor that has a high contribution in a specific area
may have a lower contribution to other areas with different conditions. The other
important things affect the contribution of these factors are the modelling techniques
used and evaluation metric employed (Arabameri et al. 2019). The finding of this
research confirm that the elevation, TWI, SPI, and LS are the most contribution fac-
tors in developing soil erosion. The less contribution factors are Profile curvature,
Slope, Plane curvature, and Aspect. The northern section of the research region, as
well as the slope of the hills into Iraqi territory to the southeast, are dominated by
higher elevation. The combination of heavy rains on Iranian soil and the rough ter-
rain generally results in a high concentration of runoff. The concentrated runoff
leads to soil erosion and transports soil material deep into the sub-watershed under
investigation. As a result, the gully head cuts are generally in high places, which, in
addition to surface runoff and slope, contributes to produce these gullies, as does
the composition of the soil and Quaternary sediments, which primarily consist of
sand, gravel, silt, and clay that is simple to carry. This may explain why the eleva-
tion is the most important factors in the developing gullies in the study area. TWI
and SPI also had a substantial impact on gully head erosion, which aids in the iden-
tification of locations with higher soil moisture content, water accumulation con-
tent, and erosive power (Zabihi et al. 2018). The LS, on the other hand, is a
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sediment transport capacity index that is used to calculate the impact of surfaces
runoff velocity on erosion. Gully erosion becomes more common when the LS,
TWI, and SPI rise (Rong et al. 2019).

The performance of the hybrid knowledge-driven AHP-TOPSIS and data-driven
SVM and NB machine learning classifiers to map gully erosion susceptibility zone on
the study area were evaluated and compared. Validation of the results using the ROC
indicated that the SVM (AUC ¼ 0.955) with radial kernel function outperformed NB
(AUC ¼ 0.936) and AHP-TOPSIS (AUC ¼ 0.933) models. Although AHP-TOPSIS
did not outperform ML models, it is simple to build and does not require training
data, which are both advantages of simple models. The convergence of the results of
the hybrid AHP-TOPSIS model with advantageous ML classifiers (SVM and NB) is
probably due the fact that the derivation of weights for this model by AHP method
did not depend on the opinions of experts which are usually misleading and bear a
lot of uncertainty. Instead, the AHP weights were built based on the feature selection
by Boruta package, which depends on the random forest algorithm known to be very
accurate in discovering a pattern in input data. Arabameri et al. (2019) found similar
findings when they compared the COPRAS MCDM model ensembles to three
machine learning models: logistic regression, boosted regression tree, and random
forest algorithms. They found that combining MCDM with ML methods to produce
factor weights, which are required to apply MCDM models, significantly improves
the model. It is almost the only study with which the results of this study can be
compared, despite the difference in the method used and the factors used in the gully
erosion modelling.

Mapping of gully erosion susceptibility in the study area using the three models
used revealed three hazards: very low-low, moderate, high-very high. The areas
occupy by these zones are approximately the same for the three models and distribute
as 78, 45, and 83 km2 for the very low-low, moderate, high-very high, respectively.
The high-very high zones mainly encompass the northern parts of the study area and
correlate with the high elevation range, high slope, north–northwest, east, and west
aspects, and high values of TWI, SPI, and LS. The moderate and very low–low zones
mainly occupy the middle and south of the considered area and without speci-
fied pattern.

5. Concluding remarks

This study contributes to a systematic comparison and evaluation of two machine
learning models and a hybrid MCDM model for modelling gully erosion susceptibil-
ity and using only derived topographic factors from a medium resolution DEM. The
main conclusions of this study are: (i) the most effective factors controlling the gully
erosion development in the study area are elevation, TWI, SPI, and LS. (ii) The per-
formance of the hybrid AHP-TOPSIS model is substantially improved and approaches
the performance of the advanced machine learning models when the feature selection
that depend on random forest algorithm contribute to assign weights using AHP and
rank the important factors instead of using expert opinions having a lot of uncer-
tainty. (iii) The SVM (AUC ¼ 0.955) with radial kernel function beat the NB (AUC
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¼ 0.936) and AHP-TOPSIS (AUC ¼ 0.933) models in terms of ROC validation.
Although AHP-TOPSIS did not beat ML models, it is easy to construct and does not
require training data, both of which are benefits of simple models. (v) Modelling of
gully erosion susceptibility in the considered area indicated that high susceptibility
zones mostly cover the northern parts of the study area and is associated with a high
elevation range, steep slope, north–northwest, east, and west aspect, and high TWI,
SPI, and LS values. The low and moderately susceptibility zones are mostly found in
the centre and south of the study region, with no discernible pattern. (vi) Using just
topographical data generated from the medium resolution DEM, the susceptibility to
gully erosion may be modelled with high accuracy using a hybrid AHP-TOPSIS
model supported by the Boruta package to rank the relevance of factors and calculate
suitable factor weights.
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Appendix 1

Confusion matrix evaluation measures used in this study
In this appendix, the definition and mathematical formulas use for ML performance evalu-

ation are summarized.
Accuracy is the proportion of instances (gullies and non-gullies) that are predicted correctly

by the model. It is calculated via the following formula: Accuracy ¼ TPþTN
TPþTNþFPþFN ; where TP

is the number of cases that predicted correctly as gullies, FN is the number of instances that
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predicted incorrectly as gullies, TN is the number of instances that predicted correctly as non-
gullies, and FP is the number of instances that predicted incorrectly as non-gullies. Sensitivity
(named as Recall too) is the proportion of positive instances that are predicted correctly and is
calculated as: Sensitivity ¼ TP

TPþFN : Specificity is the proportion of negative instances that are
predicted correctly: Specificity ¼ TN

TNþFP : Precision is defined as the ratio of correctly predicted
instances to the total predicted positive instances: Precision ¼ TP

TPþFP : Finally, the F1 score is
the weighted average of Precision and Sensitivity and is computed as: F1 score ¼
2� Sensitivity�Precisionð Þ

SensitivityþPrecision : For all the above evaluation measures, the model is considered performed
well when the value is near to unity.
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