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Diabetic retinopathy (DR) is an eye complication associated with diabetes, resulting in blurred vision or 

blindness. The early diagnosis and treatment of DR can decrease the risk of vision loss dramatically. 

However, such diagnosis is a tedious and complicated task due to the variability of retinal changes across 

the stages of the diseases, and due to the high number of undiagnosed and untreated DR cases. In this 

paper, we develop a computationally efficient and scalable deep learning model using convolutional 

neural networks (CNN), for diagnosing DR automatically. Various preprocessing algorithms are utilized 

to improve accuracy, and a transfer learning strategy is adopted to speed up the process. Our experiment 

used the fundus image set available on online Kaggle datasets. As an ultimate conclusion of applicable 

performance metrics, our computational simulation achieved a relatively-high F1 score of 93.2% for 

stage-based DR classification. 

Povzetek: Opisana je metoda globokih nevronskih mrež za diagnozo težav vida zaradi sladkorne bolezni. 

1 Introduction 
Diabetic retinopathy (DR) is a disease that affects the eye 

as a complication of diabetes, causing impaired vision as 

a result of damage to the retina, the light-sensitive tissues 

at the bottom of the eye that are required for vision [1-2]. 

Diabetes harms blood vessels in the retina. The longer a 

person gets diabetes, the more likely such person is to 

develop DR. According to the World Health Organization 

(WHO), the global population of DR patients is expected 

to increase to 592 million by 2025 [1]. Diabetic 

retinopathy (DR) develops through many stages with 

increasing severity, which could if left untreated, lead to 

blindness [3]. DR is mainly classified into no proliferative 

(NPDR) and proliferative (PDR). Furthermore, NPDR can 

be classified as mild, moderate, or severe. Figure 1 shows 

examples of different stages. DR stages are as follows [3-

5]: a) No DR: The eye is healthy. b) Mild NPDR: Small 

swellings appear in retina blood vessels. c) Moderate 

NPDR: As the disease progresses, some retina blood 

vessels become blocked. d) Severe NPDR: More blood 

vessels are blocked, depriving the retina of oxygen and 

nutrients. e) PDR: In this stage, the growth of new blood 

vessels is stimulated proliferative. However, such new 

blood vessels have an abnormal appearance and very thin 

and fragile walls. When these vessels bleed, they can 

cause severe vision loss and even blindness. 

The early detection of the disease helps avoid 

complications and improves chances of recovery. More 

than 90% of patients can avoid vision loss by early 

detection and treatment [3]. Typically; an ophthalmologist 

diagnoses DR by manually interpreting and analyzing 

fundus photographs. However, DR diagnosis is a tedious 

and complicated task due to the variability of retinal 

changes across the stages of the diseases, and due to the 

high number of undiagnosed and untreated DR cases. 

Human competency is prone to error and novel 

computational techniques are being pursued in an attempt 

to overcome this problem. 

Diagnosis can be more reliable if it is based on 

extracted highly discriminative features and resistant to 

specific conditions, such as lighting changes. Deep 

learning and CNN are the most current methods for 

extracting features. CNN's extracted features have a high 

discriminative capacity [6]. 

The previous methods, which depended on a deep 

CNN for DR diagnosis using a very deep CNN model, 

GoogLeNet, VggNet, and ResNet, achieved good 

 
Figure 1: Examples of fundus images for DR stages 

according to disease severity. 
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accuracy rates. However, it is still possible to further 

optimize outputs by making some improvements to the 

models as follows:  

a) We proposed an efficient CNN model that is based 

on ResNet-34 for transfer learning for DR diagnosis with 

higher accuracy.  

b) The current APTOS 2019 and IDRID datasets are 

being analyzed to evaluate the performance of the 

proposed ResNet-34/DR model.  

c) Transfer learning with pre-trained deep CNNs and 

hyperparameter tuning are critical components of the 

training process and have been highly beneficial in 

medical image analysis. We use weights from the 

ImageNet dataset to initialize the weights instead of 

initializing the weights randomly.  

d) By comparison with the accuracy rates of the 

modified GoogLeNet and VggNet models, ResNet-34/DR 

yielded better classification performance. 

This paper is structured into several sections as 

follows. Section 2 provides an overview of deep learning, 

CNN for image classification, and the need for Transfer 

Learning (TL) in our task. The methodology used in this 

paper will be described in detail in Section 3. Section 4 

explains preprocessing for the dataset, the training process 

with hyper_parameters for all experiments. The final 

results of the experiments are summarized in Section 5. In 

Section 6, the performance of our work is discussed 

against previous studies. Finally, section 7 concludes this 

paper with the baseline for the future. 

2 Background 
Numerous previous studies employed a variety of methods 

to handle the problem of diagnosing  DR. We will 

highlight them in this section. Table 1 summarizes the 

previous studies discussed in this section. 

2.1 Deep learning methods 

Recent developments in artificial intelligence (AI) have 

paved the road for big advances in the field of automatic 

diagnosis in various medical fields as compared with 

manual methods. Computer-Aided Diagnosis (CAD) 

systems could provide features, such as the reduction of 

human error, supporting medical decisions, and improved 

patient care, as the diagnosis of DR is essentially made in 

reliance on image processing techniques, using the latest 

AI technologies, particularly, machine learning (ML) and 

deep learning (DL), whereas DL is a special type of ML, 

involving a deeper level of data analysis, and hence, 

deeper learning [7]. DL has quickly established itself as a 

valuable technique for the analysis and classification of 

medical images [3-5]. 

Previous studies that relied on machine learning 

methods and feature extraction have produced excellent 

work for the diagnosis of DR, as characterized by solid 

secretions, red lesions, micro aneurysms, and blood 

vessels [8]. The classifiers that are used to accomplish the 

task include neural networks, random forest, sparse 

representation classifiers, linear discriminant analysis 

(LDA), support vector machine (SVM), K-nearest 

neighbors (KNN) algorithm [3][9]. Such techniques 

assemble healthy and infected eye fundus images for the 

analysis thereof. 

DL methods for DR diagnosis were being used with a 

possibility to variate the features which the corresponding 

architecture deems to constitute diagnostic indicators, 

which help identify the most significant areas in the 

images by researchers [10], by the addition of a global 

average pooling layer to the CNN instead of a fully-

connected layer. Convolutional neural networks (CNNs) 

are being discussed in the next section as a new inspiring 

DL method for providing a more accurate and more 

detailed, and hence, more useful, diagnosis of DR. 

2.2 CNN overview 

The major limitations of the majority of the 

aforementioned techniques are that: a) they merely give a 

binary result, yielding: “DR” or “no DR”, becoming, 

practically, a mere detection rather than a full-scale 

classification. b) Most models have been trained by 

researchers on small samples, limiting the generalizability 

of their findings. Therefore, such automatic diagnosis 

systems are limited [11]. The development of CNN layers 

has provided a greater ability to classify images and detect 

patterns, objects, and other distinguishing features in a 

picture [12]. These are multiple computational layers that 

involve the application of image analysis filters in the 

form of convolutions. [13]. By convoluting multiple filters 

over an image within a layer, a feature map is generated to 

be used, as an input, to the next layer, enabling the 

processing of images as pixels for such input in order to 

generate the required classification (in our case, 

diagnosis), as an output. Such a classification approach 

within a single classifier replaces multiple steps of the 

previous methods of image analysis [14], and thus, 

enabling a faster and more efficient image interpretation 

process.  

CNNs have been used a lot in the fields of computer 

vision, in general, and medical imaging, in particular, 

thanks to their great ability to handle and process images. 

They have become a state-of-art technique in various 

medical fields. CNNs generally consist of three types of 

layers [15]: i) Convolutional layers, where a number of 

filters are applied to identify a certain feature or pattern in 

the inputted image. A stack of filters is used in order to 

extract various features. The values of such filters are 

tuned by training to be consistent with the extraction of the 

attributes that are associated with the disease (disease 

indicators). ii) Pooling layers to reduce the feature map 

extracted by the filters in order to reduce the necessary 

calculations while retaining the best values of the 

attributes resulting from the convolutional layers. iii) 

Fully-connected (FC) layers, where the final classification 

process takes place, as every neuron is associated with the 

neurons of the preceding layer. In addition to such layers, 

an activation function is employed. The number and 

sequence of layers vary depending on the complexity of 

the corresponding problem. 

Since 2015, researchers have relied on CNNs as a 

powerful tool in the field of computer-aided diagnosis. For 
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example [16], CNN was utilized for the diagnostic of DR 

in fundus images as one of two classes: normal and 

abnormal, as such proposed architecture relied on linking 

three stacks of convolutional filters in parallel, whereby 

the output is an outcome of global max pooling. The RGB 

layers of an image were being isolated in order to use the 

green layer only, as it is the layer that demonstrates the 

attributes of the disease in the clearest and most 

distinguishable manner. This architecture has helped 

reduce the number of parameters and avoid overfitting, 

yielding a final accuracy of 81% when experimented on 

12,000 images. 

In another work [12], a methodology was proposed 

for the further classification of the image database (Aptos 

2019) into three stages: a) No DR. b) Moderate DR. c) 

Severe DR. Architecture was built to consist of 18 

convolutional layers and 3 fully-connected layers, in 

addition to max pooling and the use of the preprocessing 

image techniques of image resizing and data 

augmentation. This architecture yielded an accuracy of 

88%. DL methods for DR diagnosis were being used with 

a possibility to variate the features which the 

corresponding architecture deems to constitute diagnostic 

indicators, which help identify the most significant area in 

the images by researchers [8], by the addition of a global 

average pooling layer to the CNN instead of a fully-

connected layer.  

2.3 The need for Transfer Learning 

As implied hereinbefore, DL requires a huge quantity of 

data for the efficient training of a CNN. This is not usually 

possible in the field of ophthalmology, as the available real 

data are relatively limited and unbalanced. Therefore, 

researchers are intensively relying on transfer learning 

(TL) to overcome the obstacles of computational time and 

the need for ongoing training. TL is a method of 

overcoming the limitedness of data by leveraging 

knowledge from another domain [15]. 

CNNs and TL are the main two methods of automatic 

DR diagnosis using DL techniques [9], [12], [14]. TL has 

proven itself as a very effective technique, especially 

when handling domains of limited data [16]. Instead of 

completely training a blank network from scratch, a feed 

forward approach can be used to fix weights in the lower 

levels that have already been optimized in order to identify 

the structures that can be generally detected in images, and 

retain the weights of the upper levels with 

backpropagation, enabling the model to identify the  

 unique features of a given set of images, such as 

fundus images, with much less time, training examples, 

and computational power [14][19]. Data are analyzed in 

different methods based on the complexity of the problem 

and the similarity to, or difference from, the data on which 

the neural network has been trained. Figure 2 presents the 

relationship between data similarity, data size, and 

required tuning.  

TL methods include feature extraction, copying the 

architecture of a pre-trans model, and freezing some layers 

while training the others. An experiment was conducted 

on three TL models [20], being namely, (Vgg-16, Vgg-19, 

InceptionV3) in addition to the techniques of data 

augmentation and local average coloring for the removal 

of camera noise. Data are classified binarily once and then 

quinarily once again. Such an experiment demonstrated 

that increasing data accuracy is directly associated with 

the number of convolution and pooling layers in the 

model. Vgg-19 achieved an accuracy of up to 80% and 

76.9% in binary and quinary classification, respectively.  

Architecture [21] has been deployed for DR diagnosis 

using Messidor-1 datasets and GoogLeNet, AlexNet pre-

trained architecture. GoogLeNet achieved the highest 

accuracy of 66% on the said dataset. In continuation of 

such efforts, we have sought herein to devise an effective 

transfer learning algorithm for processing fundus images 

for providing a faster and more accurate identification of 

the distinguishing pathological features of every eye 

image.  

2.4 ResNet-34 

As neural networks are inspired by the human brain and 

how it thinks, it is quite natural that the solution of 

complex problems that require deeper thinking is, thus, 

simulated by deeper networks for the solution of such 

problems. The main problem that is facing deep networks 

is the problem of vanishing gradients [22]. ResNet 

 
Figure 2: The relationship between data similarity, data 

size, and network tuning. 

Research Year DR-stages Method Accuracy 

[21] 2018 
Four-stage 

 

TL with GoogLeNet with used adam optimizer and 

dropout regulation technique; CLAHE filtering used 

for preprocessing.  

66% 

[16] 2019 
Binary 

(normal/abnormal) 

CNN architecture with three stack convolutional filters 

in parallel in Conv layer and GMP layer. With several 

preprocessing steps. 

81% 

[20] 2019 
Binary; and 

Five-stage 

TL  models Vgg-16, Vgg-19, InceptionV3 

with data augmentation and local average color. 

80% 

76.9% 

[12] 2020 
Three-stage 

(normal/moderate/severe) 

CNN  with 18 Conv layer and 3 FC layer 

with preprocessing and data augmentation techniques. 
88% 

Table 1: A summary of previous research on the diagnosis of DR using various methods. 
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(residual network) [23] is a type of neural network that 

alleviates this problem of training deep learning networks 

by using skip-connections to “skip” a number of 

convolutional layers in every basic block in the network, 

a thing which provides alternative paths for original and 

derived data, rendering training faster and more possible. 

Such skip connections add the outputs of the prior blocks 

to the following ones, as expressed by the following 

equation:  

y = F(x) + x (1) 

Where x is input, y is output, and F is the residual 

function). Each basic block consists of 2 convolution 

layers and a pooling layer (3x3 size), following by a 

(ReLU) activation function and batch normalization (BN). 

Figure 3 shows a learning block of residual learning. 

Using ResNet has greatly improved the performance of 

neural networks, where such networks are stacked with 

more layers for the creation of a deeper architecture, and 

hence, deeper learning, in contrast with shallower 

learning. 

ResNet-34 [23] (ResNet with 34 layers) consists of 33 

convolution layers and a max-pooling layer (3x3 size) and 

an average pooling layer, followed by a fully connected 

layer. Table 2 shows the architecture of ResNet-34. 

3 Methodology  
In order to develop the best model of optimum 

performance, we have used pre-trained CNN models that 

were trained and tested on the ImageNet dataset. Based on 

our dataset, each VggNet (Vgg-19), GoogLeNet 

(Xception), and ResNet (ResNet-34) has been trained and 

tested with a number of refinements for each model. The 

hyper parameter has been tuned to enhance the networks’ 

ability to capture complex patterns in DR images. Several 

preprocessing and data augmentation techniques were 

applied on the dataset fundus images uniformly for all 

experiments in order to obtain comparable results.  

3.1 Relevant approaches 

Vgg-19    The Visual Geometry Group (VGG) model 

presented in [24], consisting of 19 weighted layers, 

divided into 5 blocks, was the first one that was trained. 

Each block consists of 2-4 convolution layers (Conv 

layers), followed by a pooling layer for the reduction of 

dimensions. The top of the architecture includes 3 fully 

connected layers (FC layers). Figure 4 shows a proposed 

modified Vgg-19 model. The FC  layers were omitted 

from the original architecture and replaced with our 

custom classifier. Global average pooling (GAP) was 

added to convert the output from the convolutional layers 

(n x n x d) into a 1-dimension vector (1 x 1 x d) as an input 

to the required FC layers. Dropout (0.25) regularization 

technique was used to reduce overfitting. ReLU (y = max 

(0, x)) was used as activation function in the FC layer. The 

prediction layer is being used with 4 nodes and a Softmax 

activation function for predicting the four stages of DR: 

F(𝑥𝑖) = 
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=0

 (2) 

 Xception Model    

The next model used is the Xception model [25], which is 

a CNN architecture that relies on depth-wise separable 

convolutions that contribute effectively to reducing 

computational cost and required memory size. This CNN 

model uses depth-wise separable convolution, which is an 

independent spatial convolution for each channel, 

followed by a pointwise convolution (1 x 1) across the 

channels. This can be thought of as looking firstly for 

correlations in a 2D space, and then looking for 

correlations in a 1D space. This 2D + 1D mapping appears 

to be easier to learn than a complete 3D mapping. This 

model, as shown in Figure 5, mainly consists of 36 Conv 

layers, distributed within 14 units, including linear 

residual connection. It was also used as the feature 

extraction, while a fully connected layer replaced the top 

of the architecture. GAP was added to receive the output 

of the Conv layers, and dropout was used as a 

regularization technique. FC Layer with (nod= 4) Is being 

used instead of (node = 1000) in the original architecture. 

The activation function is Softmax.  

Cascaded CNN Model 

Various CNN sub-models discover nonlinear discriminant 

features and semantic image descriptions from images at 

multiple levels of analysis [26]. In result, a cascaded CNN 

model will be extraordinarily generalized and helpful. In 

order to take advantage of CNN networks and their ability 

to extract features, the two aforementioned architectures 

(Vgg-19, Xception) have been concatenated as two 

different sources of knowledge in order to extract 

characteristics from an image in two different ways to 

enable models to achieve maximum learning of features 

from a given dataset. Thereafter, the outputs of each model 

are passed through GAP to reduce diminution. A merging 

Layer 

Name 

Output 

Size 
34-Layer 

Conv1 112 x 112 
7 x 7, 64, stride 2 
3 x 3 max pool, stride 

2 

Conv2-x 56 x 56 [
3 × 3, 64
3 × 3, 64

]  × 3 

Conv3-x 28 x 28 [
3 × 3, 128
3 × 3, 128

]  × 4 

Conv4-x 14 x 14 [
3 × 3, 256
3 × 3, 256

]  × 6 

Conv5-x 7 x 7 [
3 × 3, 512
3 × 3, 512

]  × 3 

 1 x 1 
Average pool,1000 

fc, Softmax 

Table 2: ResNet-34 architecture. 

 
Figure 3: A learning block of residual learning. 
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layer is added to the top of each branch to combine the 

features that were deduced from various branches. Each 

branch’s features are then concatenated and reformed into 

a vector: 

𝑥𝑚𝑟𝑔 = 𝑀𝑒𝑟𝑔𝑒(𝑥1, 𝑥2) (3) 

Where 𝑥1 , 𝑥2 represent the outputs of the first and 

second branches, respectively. 

The merged vector passes through four FC layers that 

are then added on the top of the merging layer with batch 

normalization and dropout in order to speed up processing 

and overcome the overfitting being greatly impaired by 

this network. The activation function used in FC layers is 

LeakyReLU. The topmost FC layer uses a Softmax 

activation function for prediction. Figure 6 illustrates a 

cascaded CNN model. 

3.2 ResNet-34/DR 

Architecture The proposed architecture is illustrated in 

Figure 7, where it can be divided into two parts: a features 

extraction part and a classifier part. ResNet-34 relied on 

the first part with the ability to handle trainable 

parameters. ResNet-34/DR consists of 16 basic units, with 

each unit consisting of 2 Conv layers (16 x 2 = 32 Conv 

layers in these blocks). ResNet-34/DR is composed of five 

convolutional groups in each group, where one or more 

Conv layer output passes through the BN layer and ReLU 

as a sequence (Conv→ BN→ ReLU) as demonstrated in 

section 2.4.  

The first layer in ResNet-34/DR is a Conv layer with 

a (7 x 7) filter size that is flowed by a MaxPooling layer 

with (3 x 3) filters and a stride value of 2. Multiple 

identical residual units are Conv2-x, Conv3-x, Conv4-x, 

and Conv5-x, respectively, in the second to the fifth 

groups. ImageNet weights are used to initialize the first 33 

layers (1+16 x 2 = 33 Conv layers in ResNet-34/DR. Then, 

the classifier part is being represented by the FC layer, 

followed by a Softmax activation function that is added to 

the ResNet-34/DR to conform to the DR Dataset’s 

category label. 

3.3 Selected Datasets 

Our research has relied on APTOS 2019 blindness 

detection and the Indian Diabetic Retinopathy Image 

 
 

Figure 4: A proposed 

modified Vgg-19 model. 

Figure 5: A proposed 

modified Xception model. 

 
Figure 6: A Cascaded CNN Model. 

 

 
Figure 7: Proposed ResNet-34/DR architecture. 
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Dataset (IDRID) that is available in the Kaggle dataset and 

used extensively by researchers. APTOS 2019, organized 

by the Asia Pacific Tele-Ophthalmology Society [18] 

provided a high-quality fundus image dataset (3662 

images) taken by various cameras with various effects, 

such as camera flashing, low contrast, out of focus, etc. 

IDRID, being a part of a DR grading challenge [19], 

includes 512 fundus images. We have only used the 

training part of this dataset (413 images) because it 

contains the labels (the DR stage) we need for the 

classification process. All images have a resolution of 

4288 x 2848 pixels. 

Both datasets were combined in order to increase the 

volume of available data for training and because the 

categorized distribution of data was extremely 

unbalanced, as demonstrated in Figure 8. Both datasets 

contain fundus images accompanied by labels indicating 

one of the five different DR stages: (none (class-0), mild 

(class-1), moderate (class-2), severe (class-3), or 

proliferative (class4)). 

The distribution of images among the classes is being 

shown in Table 3. As class-1 is almost healthy and its 

images are almost indistinguishable from those of class-0, 

and based on accustomed medical practice, the images of 

class-1 will be merged along with those of class-0 in the 

upcoming proceedings of our experiment in this paper. 

4 Implementation 
Preprocessing was carried out on a Python 3.7.9 

environment. Deep-learning CNN models were trained on 

Google Colab [19], which provides a free GPU Jupiter 

environment for implementation via the cloud, with the 

use of Keras and PyTorch deep learning frameworks and 

Scikit_learn, NumPy, Pandas, and MatPlotLib Python 

packages.  

4.1 Image preprocessing 

Numerous preprocessing steps have been used in our 

experiments to enhance and highlight disease-related 

features in fundus images and to configure the data for DL 

tasks, as follows: 

Image Filtering 

The images are raw data and they have been taken by 

different camera resolutions with different sizes, 

containing many effects. These observations were taken 

into account when dealing with the images to remove 

noises and increase robustness in our model. Specifically, 

we adopted the following preprocessing steps: 

I) Gaussian blurring, II) add weight,  

III) Masking, and IV) cropping & resizing. Firstly, the 

fundus images are blurred using the Gaussian function: 

G(x, y) =  
1

2πσ2 e
− 

x2+y2

 2σ2  
(4) 

Where σ indicates the distribution standard deviation. 

In our experiment, σ equals 30. This processing method 

was inspired and modified from Ben Graham’s approach 

[30]. It is similar to medium filtering, but it employs a 

different kernel to generate a Gaussian (bell-shaped) 

hump. This is done to eliminate noise from such images. 

In the next step, the output image from the previous 

step was combined with the original image using the 

equation: 

𝐼𝑐 = 𝛼𝐼 + 𝛽𝐺(𝑝) ∗ 𝐼 +  𝛾 (5) 

Where * denotes convolution, 𝐼 denotes input images, 

G (𝑝) denotes a Gaussian filter with a standard deviation, 

while α, β, γ are predefined parameters. Then, we took 

care to distinguish the fundus area from the background. 

We enriched the images with circle masks and a dark 

background. The last step was that about 10% of the 

image’s outer borders on both sides are cut off, which does 

not include any helpful information. This sequence of 

preprocessing steps transformed every image in our 

dataset from a differently-sized image into a square-

shaped image with a similar background and then resized 

Class 

Index 

(Type) 

DR Stage 

APTOS 

2019 

Dataset 

IDRID 

Dataset 

Our 

Dataset 

0 No DR 1805 134 1939 

1 Mild 370 20 390 

2 Moderate 999 136 1135 

3 Severe 193 74 267 

4 Proliferative 295 49 344 

Table 3: The distribution of images among classes 

within various datasets. 

 

Figure 8: The unbalanced distribution of data within 

the categories, with the majority of data belonging to 

the (Normal) class. 

 

 

Original 
Image 

Gaussian 
Blurring 

Adding 
Weight 

Image 
Masking 

Image 
Cropping 

Figure 9: Preprocessing an eye fundus image 

(filtering). 
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it to 500 x 500. After preprocessing a dataset, 10% of the 

data was being isolated for the testing set. The remaining 

data were randomly divided at a ratio of 75:25 for the 

training validation sets, including 2487, 829, and 368 

images for training, validation, and testing phases, 

respectively. Figure 9 shows the preprocessing steps of an 

eye fundus image within the filtering stage. 

Image Normalization    This step is crucial in DL 

because it accelerates the convergence process on the 

gradient descent algorithm, thereby increasing the model’s 

efficiency. A straightforward and effective method was 

used, which involved dividing each pixel in the image by 

225. 

Data Augmentation   We used the data augmentation 

technique to expand the training dataset artificially. 

Training deep learning models on additional data can 

result in more skilled models. Augmentation techniques 

can generate image variations that can improve the fit 

models’ ability to generalize their learning to new images 

and avoid overfitting.  Image augmentation generates 

artificial training images through various processing 

methods or combinations of multiple processing methods, 

such as random rotation, resizing, mirroring, shearing, and 

flipping. 

As depicted in Figure 10, several augmentation 

techniques are being applied to the training set, including 

zooming (10 degrees), horizontal flip, and random 

rotations between [-45, +45] degrees. 

4.2 Training 

After dividing the dataset during the training phase into 

training and validation sets (75:25), the validation set 

evaluates model performance improvement over time and 

selects the best parameter. Instead of generating random 

initial weights for all models, the advantages of transfer 

learning were relied upon, and the ImageNet pre trained 

weights were used as initial weights. This has significantly 

Related Parameters 
Models 

Vgg-19 Xception Cascaded CNN ResNet-34/DR 

Input Image Size 224 x 224 299 x 299 300 x 300 224 x 224 
Batch Size 32 32 32 32 

Learning Rate 1 × 10−5 5 × 10−5 1 × 10−5 5 × 10−5 

Epochs 30 50 50 30 

Table 4: Hyper-parameter values. 

  
Original 

Image 

45-degree 

Rotation 

Image 

Zooming 

Horizontal 

Flip 

Figure 10: Our data augmentation techniques. 

 
(a)Vgg19 

 
(b) Xception 

 
(a) Cascaded CNN 

Figure 11: Experimented CNN models’ performance 

during the training phase. 

(a)Training Accuracy   (b) Training Loss  

Figure 12: ResNet-34/DR learning curves during a 

training phase (epoch 30). 
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contributed to speeding up the training process because 

the imported models have sufficient knowledge of images. 

The image size entered for each model was resized to 

reduce training time and avoid depleting resources and 

fitting to the input layer in each model. All models used 

Adam optimizer [31] to update the initial weights 

iteratively using a training set so that the model can adapt 

to the current problem area (classification DR). The error 

was calculated using categorical cross-entropy. An early 

stopping strategy has been used to stop training if training 

accuracy has not improved for ten consecutive cycles or 

worse performance in the validation set. This strategy also 

aids in reducing model overfitting. The optimal weights 

are saved in case training is halted prematurely and the 

validation error does not improve. The preprocessing 

parameters α, β, γ, p was sequentially set to -4, 30, 4, 128. 

Each model was trained with a different number of epochs, 

batch sizes, and learning rates during the training process 

to achieve the optimal result. The final hyper-parameters 

of our experiments are being presented in Table 4. 

5 Results 

5.1 Validation analysis 

Several experiments were carried out in order to determine 

the solution with the best performance and to gain a better 

understanding of the performance of various networks. 

Plotting training curves for both training and validation 

data has enabled us to monitor the performance of the 

various networks during the training phase. Figure 11 

clearly demonstrates the accuracy and loss performance of 

the three models (Vgg-19, Xception, cascaded CNN) 

when trained on the training and validation datasets. Our 

deep models were prone to overfitting, resulting in good 

training but poor validation performance. Over several 

epochs, models have reached their maximum degree of 

generalization, and validation loss has increased. In 

comparison, training loss continues to decrease over time. 

Vgg-19 networks required an excessive amount of 

time to train, limiting the number of training epochs. 

Xception was faster to implement than its competitors. 

Our experiments with various networks are described in 

detail below. As previously stated, all models have high 

loss value, and neither model can detect and learn valuable 

patterns. The cascaded model was the most prone to 

overfitting, and attempts were made to mitigate it using 

batch normalization and dropout. However, we observed 

that increasing the complexity of the model did not 

produce a satisfactory result. Xception and cascaded  

CNN models suffer from an overfitting problem in 

which the network’s complexity is insufficient to capture 

the critical features of the landmarks.  

The performance of the ResNet-34/DR model, which 

relies on the ResNet-34 architecture for feature extraction, 

was superior to that of the previous experiments as shown 

in Table 5 and Figure 12. As a result of the residual neural 

network’s advantage, the architecture improved the model 

by providing a deeper network depth with a lower error 

rate, which contributed to the network's ability to extract 

more accurate patterns. Obviously, the best results were 

obtained using. Therefore, we have selected it as our final 

model for the testing phase. 

5.2 Testing & evaluation 

After obtaining the best model with the highest accuracy, 

ResNet-34/DR performance is being evaluated on the 

testing set (unseen data, constituting 10% of the entire 

dataset being used for this experiment) based on accuracy, 

sensitivity, specificity, precision, and F1 score as 

performance metrics (PMs). However, for a given number 

of true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN), the following formulas 

represent performance metrics mathematically: 

Accuracy =
TP + TN

TP + TN + FP + FN
 

(6) 

Specificity =
TN

TN + FP
 

(7) 

Models Accuracy Loss 

Vgg-19 83% 0.44 

Xception 83% 0.43 

Cascaded CNN 85% 0.45 

ResNet-34/DR 95% 0.1 

Table 5: Models’ performance comparison, with the best 

results, to be used for the testing phase, is being shown 

in bold format. 

 
Figure 13: The confusion matrix of ResNet-34/DR 

testing phase. 

 
 

Class 

(Type) 

Specificity 

(%) 
Precision 

(%) 

Sensitivity 

(%) 

F1Score
 

(%) 

Class 0 96.9 97 99.6 98 

Class 2 100 100 88 93.6 

Class 3 97.5 76.2 97 85.3 

Class 4 99 95.2 95.2 95.2 

Average 98.5 92.0 95.0 93.2 

Table 6: ResNet-34/DR classification performance 

metrics. 
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Precision =
TP

TP + FP
 

(8) 

Sensitivity =
TP

TP + FN
 

(9) 

F1Score = 2 ×
Precision ×  Sensitivity 

Precision +  Sensitivity
 

(10) 

We know that our data is unbalanced, as shown in 

Figure 8. Therefore, accuracy could be deceptive and does 

not necessarily reflect the model’s quality, as it already 

represents the correct evaluation of the total number of 

examples. In this case, precision, recall (i.e., sensitivity), 

and F1 score were chosen as the performance criteria for 

the model due to the high cost of false negatives and 

positives in medical diagnosis. F1 score is a combinational 

harmonic of the precision and recall metrics, describing 

the model’s capability to detect class defects [32]. Thus, 

both precision and recall metrics contribute equally to the 

generation of the F1 score. Based on the calculations 

performed using equations (7), (8), (9), and (10) above, 

the confusion matrix, which summarizes our testing 

results, is being shown in Figure 13. Sensitivity (equation 

9) indicates the proportion of fundus images with diabetic 

retinopathy which the model has identified as infected. 

Our model’s average sensitivity rate was 0.95. This means 

that the model has correctly identified around 95% percent 

of infections in the testing data. Precision (equation 8) 

indicates the percentage of images identified as containing 

effects that include infected cases. For example, the value 

of 0.92 indicates that more than 92% of the images 

classified as infected are really infected. Finally, overall 

accuracy (equation 6) is 0.949, indicating that the model 

correctly recognizes more than 94% of all images 

(infected and uninfected). As shown in Table 6, ResNet-

34/DR has achieved average accuracy, sensitivity; 

precision, specificity, and F1 score rates of 94.9%, 95.0%, 

92.0%, 98.5%, and 93.2%, respectively. 

6 Discussion 
In this paper, the suitability and efficacy of our proposed 

work for the diagnosis of DR using fundus images were 

demonstrated. In comparison to other published research 

[12],[16],[20],[21] summarized in Table 1, our proposed 

model ResNet-34/DR achieved the highest accuracy 95%.  

Our proposed work emphasized diagnosing DR at 

multiple stages, which is critical for detecting DR early 

and avoiding progression and vision loss. Early stages 

diagnosis contributes to reducing the limitations of human 

error and allows monitoring the development of the 

disease, which helps doctors improve medical treatment. 

In contrast, previous studies [16] and [20] relied solely on 

DR diagnosis to be normal or abnormal. 

In addition to both studies in  [12], [16] are 

constructed the CNN architecture from scratch. In 

contrast, our developed model relied on pre-trained TL 

models, which are more efficient and allow for the 

comparison of the performance of different networks to 

determine the best architecture for our problem. The 

author [21] paid little attention to data pre-processing, 

which could improve image quality and thus diagnostic 

accuracy, whereas our work evaluated these steps. 

7 Conclusion  
This paper has proposed the new ResNet-34/DR 

architecture, based on a deep CNN with the utilization of 

transfer learning, which can effectively classify Diabetic 

Retinopathy into four classes from publicly available 

Kaggle datasets (APTOS 2019, IDRID).  

As initial attempts, two well-known architectures 

(Vgg-19 and Xception) were employed to classify DR 

stages. They suffered of high loss values due to 

overfitting, despite several attempts to reduce overfitting 

by adding dropout and batch normalization techniques and 

augmenting data. We believe the primary reason for this 

is that the data is highly skewed, with the vast majority of 

images falling within the healthy category. That is a 

significant impediment to networks extracting features, 

especially when the classes are few.  

Transfer learning and fine-tuning on the pre-trained 

ResNet-34 network have proven to be extremely effective 

for our color fundus image dataset, yielding optimal 

performance metrics. Preprocessing provided a significant 

improvement to the color contrast of the input image. Data 

augmentation aided in increasing the training samples, 

especially for lower classes. The training technique 

employed by us in this paper has achieved a relative 

advancement in DR classification results. 

As future work, we would look forward to compiling 

a dataset of our authentic images from Iraqi 

ophthalmologists. Additionally, we would like to build a 

new deep learning model from scratch and experiment it 

with modified pre-trained models. Finally, we might 

consider the utilization of different preprocessing 

techniques based on a semantic segmentation output that 

highlights the details of DR features and investigates how 

these changes affect the classification of DR stages, 

particularly, the early stages. 
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