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When modeling complex systems, we usually encounter the following difficulties: partiality, large amount of data, and uncertainty
of conclusions. It can be said that none of the known approaches solves these difficulties perfectly, especially in cases where we
expect emergences in the complex system. *e most common is the physical approach, sometimes reinforced by statistical
procedures. *e physical approach to modeling leads to a complicated description of phenomena associated with a relatively
simple geometry. If we assume emergences in the complex system, the physical approach is not appropriate at all. In this article, we
apply the approach of structural invariants, which has the opposite properties: a simple description of phenomena associated with
a more complicated geometry (in our case pregeometry). It does not require as much data and the calculations are simple. *e
price paid for the apparent simplicity is a qualitative interpretation of the results, which carries a special type of uncertainty.
Attention is mainly focused (in this article) on the invariant matroid and bases of matroid (M, BM) in combination with the
Ramsey graph theory. In addition, this article introduces a calculus that describes the emergent phenomenon using two
quantities—the power of the emergent phenomenon and the complexity of the structure that is associated with this phenomenon.
*e developed method is used in the paper for modeling and detecting emergent situations in cases of water floods, traffic jams,
and phase transition in chemistry.

1. Introduction

*e field of complex systems is proving to be a much needed
field of research. In this article, we focus mainly on modeling
complex systems and processing emergent situations.

Many approaches have been used for modeling complex
systems until now and here we introduce some of them:

Multi-agent and cellular automata approach [1, 2]
Physical approach [3]
Probability and statistical approach [4]
State approach [5, 6]
Complexity and entropy approach [7–9]
Structural invariant approach [10]
Simulation approach [11, 12]

Each of the introduced approaches has advantages and
disadvantages and could be characterized by many pages.

In this article, we concentrate especially on emergent be-
havior and emergent situations in complex networks of
transport and hydrological systems and on systems of
material physics and chemistry.

*is article has been inspired, among other sources, by
the book, “A Different Universe (Reinventing Physics from
the bottom down), by Robert B. Laughlin (Nobel Prize
winner)” [13]. Laughlin introduces “emergence as an orga-
nization principle” and from this point of view explores a
wide field of physics. *e whole book leads to the following
opinion: “If we accept the world with emergence, we also
announce the end of reductionism. (*at is—the end of the
time when we thought that everything essential in the world
could be calculated.)” *is means that when studying such
systems, there is always a certain part of the events that we
cannot calculate.

In this article, we try to estimate (qualitatively) how big
this part of the story is, which we cannot calculate. As will
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be discussed below, complex systems with emergences
have problems with causality. At the level of a main
process, we cannot sometimes determine the cause of
events.

As a last note to the concept of emergence, we in-
troduce here an unfortunate concurrence with the term
“emergency.”

In Section 2, we introduce references that deal with
similar issues as our article. In Section 3, we briefly explain
some theoretical concepts related to complex systems and
emergences. Section 4 is devoted to a brief characterization
of the physical approach for the modeling of complex
systems. Section 5 deals especially with the conceptual
background for structural invariants. In Section 6, the
Emergent Situations (EMSs) analysis method is presented
using a structural invariant (Matroid, Matroid Bases) (M,
MB)) and a simple detection scheme (with (M, MB)) is
introduced. *e application of the developed method is
illustrated in Section 7. Section 8 is devoted to the discussion
of results. *e method of tuning the quotient (u/c) is in-
troduced in Appendix A.

2. Related Work

In the next small overview, some works that could serve as
an information as to how we approach the modeling of
complex systems is introduced. *ese are main sources
related to the topic of the article and ordered according to
expert fields referred in the article.

2.1. Complex Systems and Emergent Situations. *e basic
concept of a complex system does not differ from the
concept of the system—set of elements, bonds between them,
and mutual interactions. However, a deeper analysis of
complex systems discovers some peculiar properties that are
very substantial for their identification and control (quasi-
stability of state changes, nonlinear characteristics, self-or-
ganizing processes, etc.). *e theory of complex systems is
introduced in [3, 4, 8, 15] and modeling of complex systems
is introduced in [1, 3, 11, 12]. Literature sources [16–19]
point out one approach of computational chemistry, which
is helpful in understanding complex systems. Some fields of
quantum physics, e.g., supergravity and supersymmetry,
presently feature as problems of complex systems [20–22],
especially problems of violation of supersymmetry in the
role of the structural invariant. We cite from [21]: “*e
supersymmetry break cannot be done permanently by the
particles of MSSM (Minimal Supersymmetric Standard
Model) as they currently appear. *is means that there is a
new sector of the theory that is responsible for the breaking.
*e only constraint of this new sector is that it must break
supersymmetry permanently and must give superparticles
TeV scale masses.”

2.2. Emergent Situations, -eir Analysis, and Detection.
Today’s materialistic understanding of emergent phenom-
ena continues to slip into the idea of a multilayered world in
which we see only the upper layer. We fail to see what

happens in the lower planes, and if the consequences of the
phenomena from the lower planes penetrate to an upper
layer, they seem inexplicable and emergent ones in the upper
plane.

Without touching the relationship of causality and
synchronicity (e.g., in the investigations of Jung, C. G., in the
years 1913–1930, [23]), we value his opinion that the
emergence is a creative process that is impossible to realize
without the influence of a certain spiritual force [23, 24].*e
problem is that these spiritual factors are hard to measure
and outside the realm of physics. However, the concept of
synchronicity has been investigated, e.g., as the collective
behavior in the works of Herbert Haken [25], and lately in
many works exploring the synchronization phenomena of
large groups of living elements (fish in the ocean [26], birds
in long way travels, and spontaneous light impulses of fire
flies). And here, we are not sure if “collective behavior” leads
to the synchronization phenomenon or if some other factor
leads to the emergent phenomenon, “collective behavior.”
*en, the substance of emergence is not in a setup of “some
inputs” but in synchronizing some events (processes). *e
synchronisation is possible to consider as an interaction
between the local and global context in the complex system
[27].

Besides Laughlin’s examples of emergent phenomena in
physics [13] (e.g., generation of particles as a consequence of
breaking symmetry—Goldstone’s theorem), there are
known common examples which are very instructive and
illustrate the nature of emergence phenomena, e.g., Kauff-
man’s avalanche [28].

Very near to the original understanding of emergence is
the approach of Reid [26] that is focused on emergent
phenomena in biology. Reid collected a great amount of
approaches and theories of emergence; however, they are
oriented especially to emergent evolution.*e importance of
experiment in case of emergence is understood not only
from a general point of view but also as a means for veri-
fication of the emergence result (not by the simulation). (*e
relation between emergence phenomena and simulation
methods will be discussed in Section 3.) In recent years,
works that use the concept of emergence in the solution of
engineering problems were presented [11, 12]. *ese works
are associated with the possibility of simulation of the so-
called actual emergent situations (EMSA).

Note 1. *e true emergent situations (EMST) are impossible
to simulate. *is fact contributes to the understanding of the
analysis of emergent situations (resp., the detection of
emergent situations). It will be discussed in detail in Section
3.1.

Besides, the introduced approaches include a large
number of sources referring methods of artificial intelligence
in connection with complex systems, especially with
emergence phenomena in creative activities and problem-
solving. From this field we quote only one source [29] in
which are another references of the research linemanaged by
John Gero. In last position we introduce our research of the
analysis and the detection of emergent situations in complex
systems [5, 10, 15, 30–32].
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2.3. Complex Systems as a Tool for Modeling of Evolution.
For our proposed paper, is a very relevant works [14] (with
clear thesis—“Emergence: half a quantum jump)”—and
[33, 34] that attack the essence of causality and its contri-
bution to predicting system development. *e emergence is
discussed in work [14] as a basic evolutionary operation (not
as a preface for some disaster). It is associated with the
concept of causality. In this article [33], the authors have
investigated a large area of resources based on Granger’s
concept of causality and the concept of causality in dynamic
systems. Finally, they focus on the analysis of paleontological
time series and more specifically refer to three approaches:

Stochastic differential equations (SDEs)
Convergent cross mapping (CCM)
Transfer of entropy (TE)

In works [33, 34] is seen the effort not to go beyond the
field of classical mathematics including the assumption
about ordering and enumerating emergent phenomena.*is
assumption does not hold in our approach and therefore the
mathematical tools used in our presented article is different
from formal means used in [33, 34].

*e mathematical background needed for our article is
covered in [10, 32, 35–37]. *e most important knowledge
from these sources is a conceptual part of the theory of
matroids combined with essential knowledge from Ramsey
theory of graph.

3. Complex Systems and Emergent Situations

Complex systems have certain properties that differentiate
them from other systems.*e following features are examples
of such properties that have already been classified, e.g., in
[3, 4]. (Another list of properties is introduced in [15])

Many elements in mutual interactions
Nondecomposability (irreducibility) into functional
parts
Multidimensionality
Quasi-stability in state changes
Nonlinear characteristics
Self-organizing processes
Emergent behavior
Motion at the border of chaos
Nonstochastic future

*ree most important features from the list above for the
purposes of this article are as follows: elements in active
interactions, self-organization, and emergent behavior (or
emergent situations). In the next text, we remind certain
conceptual background of emergent phenomena and of
appearance of emergent situations (EMSs) (more examples
in [10, 11, 15, 26, 28, 32, 38]).

Note 2. *e large number of interacting elements is not a
necessary property for the appearance of an emergent sit-
uation. Only in cases where we investigate a complex system

with coincident events (e.g., inmonitoring of many airplanes
above the airport) we find them to be an essential condition.
However, in many other cases, the emergent situation is
because of other reasons.

A well-known and common example of the emergent
situation brings the case of Kauffman’s avalanche [28]: Put a
pile of sand on the table. We observe the rolling of sand
grains at the top of the cone. Suddenly, an avalanche breaks
and slides to the base of the cone.

We do not know the reason of such an event or the time
of further avalanche.

Of course, there are other types of emergent situations.
Some of them appear suddenly, some of them for the first
time, and some of them may appear only once.

Before we describe three types of EMSs, we try to em-
phasize few important circumstances that hold for all of them:

(A) Even if we know the causes of situations that can be
simulated, there may be something that has not yet
occurred and looks like emergence. *is can be in
generative systems.*iswill be referred to as theActual
Emergency Situation (EMSA). For a True Emergent
Situation (EMST), we do not know the causes.

(B) Emergence has no goal. If we do not know the goal
of a phenomenon, it cannot be simulated. (It would
be hard to check if the simulation has reached the
correct goal.)

(C) True emergent situations are unpredictable ones.
(D) Describing emergence, we are still moving in an

explicate order [39]. It means that we do not catch
the true side of emergence (as it could be achieved
using Implicate Order) and we are denied the true
substance of emergence by the used semiotic factors
and—above all—by the used language.

(E) Since some EMSs are seen (theoretically) for the first
time and are unprepared, we cannot use the pre-
prepared observational and symbolical tools as we
know them from physics.
In this process, we must distinguish between the
behavioral side and the symbolical side of the
emergent phenomenon. (For example, we see the
soliton in the water canal and we had not seen
anything similar before. We capture its behavior
(e.g., by a photograph) as a reflection of the natural
phenomenon. *en, at home, we can find what
solitons are (in books or in the Internet) and we use
for their description corresponding equations.)

(F) In further text, we will distinguish two global levels
of the EMS description.

Here, we denote the lowest phenomenological side of EMS
as NATand the symbolical side of the process as a level SYMB.
We will further refine these descriptive levels in next sections.

3.1. Emergent Situations of Type A—Weak Emergent
Situations. *e causes of these situations and their output
forms (outputs, shapes) are known. *ey can be recognized
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and their appearance can be predicted. Examples of pro-
cesses and systems that generate such situations are: the
Belousov–Zhabotinsky reaction, environments for initiating
solitons, the oregonator, and the brusselator. *ey all belong
also to the field of synergetics.

3.2. Emergent Situations of Class B

(b1) *e causes of these situations are not known (in
NAT), but their output forms are known.
(b2) *e situation appears suddenly without an explicit
association with situations in the previous relevant
“time-space” context of the system.
(b3) In the mind of a human observer, the situation
appears as a meaningful image situated in NAT, e.g., as
a behavior (behavior of a group of termites), as a
process (tsunami, traffic jam on the highway), and as a
property (super conductivity).
(b4) It does not matter whether the EMS has been
induced by the coincidence of events or by a sudden
change in the complex system structure (in NAT) or by
something else (SE). In all such cases, the EMS can be
detected as a change of structure in the level of SYMB
(e.g., the violation of structural invariant). However, it
may be registered only as a “Possible Appearance of
Emergent Situation (PAES).”
(b5) *e detailed reasons and the internal causes of the
appearance of EMST are not known (in NAT).
*erefore, it is impossible to propose a complete
prediction model of emergent situation but only a
detection model for PAES (using structural invariant
approach).

Situations belonging to this class include: a change in
behavior strategy in a swarm colony; the appearance of
floods (EMSA and EMST); the appearance of rough waves in
the ocean (EMST); and the appearance of traffic jams on the
highway (EMSA and EMST).

Note 3. Bifurcations of dynamic systems (sometimes also
called phase transitions) are very close to the emergent
situations of class B. Probably not all bifurcations (phase
transitions), but cases of some attractors, e.g., the bifurca-
tions of the Lorenz system, where the jumps between sin-
gular points show the characteristics of deteministic chaos,
coincide with the understanding of emergent behavior and
the global notion of structural invariant violation.

3.3. Emergent Situations of Class C. Such situations have the
same properties as the situations from class B, except item
b1. Instead of it, we formulate condition c1.

c1. *e causes of these situations are not known, and
their output forms are also not known. No model of a
situation of this kind is available before it first operates.

Situations that belong to this class include: potential
instabilities in ecosystems (EMST); the appearance of arti-
facts in nano-structures (EMST); and the violation of su-
persymmetries in quantum mechanics (EMST).

For situations (B) and (C), we note that complex systems
with emergences have the property of “weak causality” for
some events. It is not possible to determine what is the result
of what, and a logical consequence of such properties of
(EMST) of types (B) and (C) is “If we do not know causes of
situations it is impossible to simulate them.”

Note 4. In order to distinguish between the simulation of
processes and the analysis (detection) of emergent situations
by a structural invariant approach, we introduce the fol-
lowing example: traffic jam on a highway.

For the simulation of this case using the physical ap-
proach, it is necessary to know causes (which we in-
troduce in the simulation model as inputs or
parameters). For example, someone “stepped on the
brake,” someone came unexpectedly from the left,
someone installed a transport restriction, and some-
where the surface of the road has fallen down. And, it is
necessary to simulate the unexpected situation, e.g., if
we are 3 km in front of the place of such a change we
encounter an unexplained stop. (*is is a typical
EMSA.) It is like with bifurcations. *e physical de-
scription is causal, but there remains a part of the
process that we cannot calculate (and simulate). It is
not clear whether we have already calculated the traffic
jam by adding some stochastic influence or not. In
addition, there are certain causal activities that are
needed to be done before adding a stochastic param-
eter. *e problem is to decide on which variable “to
hang” the noise on. In any case, we will only improve
the causal model, which we must prove by experiment.
*e approach by structural invariant is another one:
We quantify the performance of emergent phenome-
non, i.e., the traffic jam. We calculate drivers, i.e., base
and matroid, which are associated with the process on
the highway. We do not know the causes of traffic jam,
but we represent their associated portion by their
“model,” i.e., by adding traffic elements.

*e situation will be investigated in more detail in the
following section.

4. A Physical Approach to Modeling of
Complex Systems

*e physical approach is a result of fragmentation of the
complex system as it corresponds to the explicate order [39].
Similarly, the description of the complex system is presented
as a set of various relations between selected variables. *e
variables represent usually measurable quantities and the
relations are formed into a closed system (enabling calcu-
lation of values of each variable by means of quantities of
remaining variables). Such a description of a complex system
has its background in physics. We recapitulate the essential
properties of the physical description of a system:

Relations must be verifiable (usually through results
and comparison with the experiment)
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Relations must be reproducible (they must be valid for
reuse)
Relations must show causality (it must be clear what is
causing what)

In physics and chemistry, these properties are included
in a completely normal description—with the exception of
emergent behavior. It is not clear for the systems we describe
as macrostructures. Let us look at the example of the traffic
jam in Figure 1.

Figure 1 is introduced here as a response to a natural
question, “If the results from physical model are comparable
with the results obtained by calculus for emergent situations.”

*e results of the physical model can only be compared
with results from the calculation of emergent situations by
converting physical model drivers to drivers of calculation of
emergent situations. (Drivers are understood here as action
quantities not men that drive cars.) So, the following de-
scribed situation is rather exceptional: Let us say that we
know only one common driver—the number of transport
elements in interaction with each other, and that this
number appears in the physical model as a parameter. In the
block of calculation of emergent situations, we set the values
of symptoms and calculate the basis of drivers. From the
basis of drivers and from the condition for EMS, we calculate
ΔV(B,B + 1) as the number of drivers (number of transport
elements), which must be added to the current state to
induce a traffic jam. We add this number to the state of
drivers in the physical model (i.e., we change the model
parameters—dotted line) and compare the obtained new
outputs (dotted line) of the physical model with the values of
symptoms entering the block of calculation of emergent
situations.

4.1. Physical Model. Examples of Inputs in the selected
compartment of the highway: (i) “an average velocity of cars
in a controlled segment of the highway,” (ii) “weather
changes (e.g., rain and fog),” (iii) “human influences,” (iv)
“changes in transport restrictions,” and (v) “the quality of
the highway surface (e.g., somewhere the road has
disintegrated).”

Examples of Outputs in the selected compartment of the
highway: (i) “an average number of cars within 1 km,” (ii)
“visibility on the road,” (iii) “number of bottlenecks (e.g.,
places of some repairs where it is allowed to use only one
road strip) in 10 km of the road.”

4.2. Calculation of Emergent Situations. Examples of some
consequences associated with traffic jam in the selected
segment of the highway are as follows:

Symptoms: (a) an average number of cars within 1 km,
(b) “visibility on the road,” and (c) “number of bottlenecks
(e.g., places of some repairs where is allowed to use only one
road strip) in 10 km of the road.”

Examples of Drivers associated with traffic jam are ab-
stract drivers B, (B+ 1), ΔV(B,B + 1), and concrete drivers
in our case—the number of transport elements added to
actual state in the highway.

*e block of calculation for emergent situations is not a
model and it does not represent any causal relation. It is a
“block” of calculation. After the change of parameters of the
physical model (as a consequence of calculation of drivers),
the physical model calculates the state after the emergent
phenomenon—not the emergent phenomenon itself.

*is brings us back to Laughlin’s opinion to emergence
and uncertainty, noting that the physical approach for de-
scribing complex systems does not capture emergent situ-
ations. It holds also for cases of large complex systems
modelled by the physical approach, for example, in work
[40] although supported by robust information technolo-
gies, e.g., in [41].

It probably does not make sense to extract and describe
other individual models that belong to physical approach
modeling or to create some similar others.

5. Structural InvariantApproach toModelingof
Complex Systems

5.1. Level of the Description in SYMB. *e specificity of the
description of complex systems depends on the description
plane of the segment reality which is modelled. In terms of
the general modeling theory, we refer to “local models,”
“compartments,” or to “protomodels.”

Let us consider a set of elements C of a compartment on
a system and the set of bonds S (that interconnect elements)
as the structure. (Bonds can represent interactions.)

Let us consider a set Ω of automorphisms m on the
system 〈C, S〉 for which holds:

∀x1, x2 ∈ C,

∀b ∈ S,

∀m ∈ Ω,

m(x1b x2) � m(x1)bm(x2).

(1)

*e pair〈C, S〉 with a set of automorphisms Ω is the
structural invariant. E.g., in the case of matroid, we have

M �〈X, IND, N1, N2, . . . , Nn 〉

� 〈X,MB〉with the setΩ − is the structural invariant,
(2)

Physical
model of

traffic jam
Outputs

(symptoms)

Drivers
Calculation

of
emergent
situations

Symptoms

Inputs

Figure 1: Comparison of the physical model of traffic jam with the
block of calculation of emergent situations.
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where X is a carrier of matroid; IND is a relation of inde-
pendence; N1, N2, . . . , Nn are independent sets; the MB is a
set of matroid bases; and Ω is the set of matroid auto-
morphisms [38].

Similarly, for structural invariant “Hasse Diagram, Set of
evaluated RULes” (denoted here as HD and RUL, respec-
tively), we consider Ω as a set of lattice automorphisms.

5.2. Examples of Structural Invariants. We have discovered
the following structural invariants. We have tested most of
them, and we list them with the applications for which they
were used. *e introduced structural invariants are mostly
algebraic in nature.

Examples of structural invariants:

Matroid, Bases of Matroid (M, BM). It is used for cases
of floods, traffic jams, violation of the small water cycle,
and desertification on Earth as in [5, 31, 32].
Dulmage–Mendelsohn Decomposition, Set of Evaluated
RULes (DM, RUL). It is used in the detection of unex-
pected faults in thin-walled air space constructions [30].
Hasse Diagram, Set of Evaluated RULes (HD, RUL). It is
used for the detection of emergent situations in the
monitoring system [6].
Degree of Emergence, Interpretation Attractors (DE,
IAT). It is used for the discovery of novel artifacts in the
conceptual design [42].
ALGebra of TRansformationS (ALG TRS). It is used for
the detection of the onset of type 2 diabetes and car-
diovascular diseases by analysis of ECG [43, 44].
Physical and geometrical SYMmetrieS (SYMS). It is used
for the detection of EMS in some chemical processes
[19]. It is known that spontaneous breaking of sym-
metry led to the formulation of the so-called electro-
weak force ((Glashow, Weinberg, Salam, 1967, 1979).
Well-knownGoldstone’s theorem “particles necessarily
emerge in any matter exhibiting spontaneous broken
symmetry” is reminded also by Laughlin [13].
SUper SYsymmetry (SUSY) *e phenomenon “Low-
Scale SUSY Breaking” is described, for example, in [43]
(Essential issues of SUper SYsymmetry have been
discussed, e.g., in [20, 22]).

Violation of SI (in SYMB) is used for the detection of a
Possible Appearance of Emergent Situation (PAES).

*e ways of violation are special for each structural
invariant and their generalization goes beyond the content of
this article.

In the following sections, we will show how EMSs can be
detected by a violation of structural invariant (M, BM).

6. Analysis and Detection of EMSs by Structural
Invariant (M, BM)

6.1. Matroids and Ramsey -eory of Graph. Matroids are
modern remarkable algebraic structures with very wide

applicability. *ey have their typical representations, espe-
cially vector matroids and graph matroids. In terms of
geometrical ideas—matroids belong to the so-called
pregeometries.

From thematroid theory [35], we use the conceptual part
and related concepts, as Independence Relation IND, basis,
number of elements in the bases, etc., and several theorems
that are in textbooks and which are not mentioned here.
(However we implicitly work with them.)

Relations IND (Independence) and DN (Dependence) T
represent not only algebraic relations between real or ab-
stract elements (resp., between sets of elements) but they also
“cover” real complex relations including interactions be-
tween elements.) *e combination of matroid theory with
Ramsey *eory of Graph (RTG) makes these disciplines a
very powerful tool.

First, a few general facts are given.
A matroid is usually introduced [35] as the following

structure:

M �〈X, IND, N1, N2, . . . , Nn 〉 � 〈X,MB〉, (3)

whereX is the ground set of elements (compartment); IND is
a relation of independence; N1, N2, . . . , Nn are independent
sets; and MB is a set of matroid bases. Matroid bases are
maximum (according to cardinality) independent sets. In
practical cases, it is advantageous to use a Dependence re-
lation (DNT). (We consider only binary IND (DNT) rela-
tions in this article.) One of the possible Dependence (DNT)
relations that respects problem factor α is the following one.

Definition 1. Elements x1, x2 ∈ X are Dependent (DNT(x1,
x2|α)) with regard to a given problem factor α if one (or two,
three, or four) of the following conditions holds (hold):

(i) Elements x1, x2 influence in a similar way in the
compartment of a complex system with regard to a
given problem factor α and taking into account
elements from X (expert criterion)

(ii) *ere are changes (variations) of x1 which are as-
sociated with changes (variations) in x2 (or vv), with
regard to a given problem factor α and with regard
to elements from X

(iii) *e application of x1 implies the application of x2 (or
vv), with regard to a given problem factor α and with
regard to elements from X

(iv) *e application of x1 excludes the application of x2
(or vv), with regard to a given problem factor α and
with regard to elements from X

Examples of the problem factor: phenomenon of floods,
fault in the system, and increase of temperature.

Note 5. *ere are of course other relations of Dependence
[35]. A general view to the number of possible Dependence
relations is introduced in [45].

For our conditions, a simple theorem holds.
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Theorem 1

∀x1, x2 ∈ X, not DNT x1, x2|α( ( ( ⇔ IND x1, x2|α( ( .

(4)

Before we formulate an essential rule for the detection of
an emergent situation, we describe the construction of a
matroid and its bases on a set X.

Construction. Matroid is formed in a squared matrix
[(#X) × (#X)]. Matroid is formed by an expert who re-
sponds to the question: “Are elements xi, xj dependent with
respect to problem factor α (according to definition Def.1.)
DNT (x1, x2|α))?” If yes, the corresponding field of matrix is
fulfilled by “1.” If not, by “0.” If the question is nonrelevant,
the field will be “∗ .” According to *eorem 1, a basis of
matroid is represented by elements of X, for which it holds

B⊆X,

#X � n,

B � xi1, . . . , xim |∀ xij, xik DNT xij, xik|α  � 0,

for all j, k � 1, . . . , m.

(5)

Theorem 2

∀Bk, . . . ,Bm ∈ MB, #Bk � . . . , � #Bm. (6)

All bases of the matroid have the same number of
elements.

Now, we may form an essential sentence for the analysis
(detection) of the appearance of an emergent situation:

An extension of a matroid basis by at least one element is
considered (in this article) as a violation of structural in-
variant (M, BM), and it is considered as an internal indicator
of the appearance of an emergent situation.

6.1.1. Extension of Matroid Basis. It is clear that the
extending element must come from outside the original
matroid. In abstract space where is situated considered
matroid it is enough to verify the relation IND. However,
turning back to the reality of the emergent phenomenon this
“abstract” element must be semantically associated with the
real element of the external description. (in detail, Section
6.3 provides description of “normalization”)

*e extension of a basis of the matroid can be done in
two ways:

(m1) From the cardinality of the matroid, we calculate
the minimum number of elements that must be
added to the matroid to have an extending element
among them—discussed in detail in Section 6.3.
*e number “min Δ f(RN)” is a minimal difference
between the next Ramsey number and the current
Ramsey number (Section 6.3, expression (16)).

(m2) We find an extending element, verify the possi-
bility of the extension of some basis (IND), and if it

is necessary we make normalization (explanation
in Section 7.3).

6.1.2. Association with Ramsey -eory of Graph [37].
Speaking about graph matroids, we consider many possible
graphic architectures in [35]. Relations DNT and IND are
considered as binary relations and they are represented by
edges with connected and disconnected nodes in graphs. In
the following text, we work with matroids that are formed on
perfect graphs and the following consequences can be used.

*e bases (MB) will be constructed as perfect subgraphs
in a perfect graph on X. (A perfect graph on X has each node
connected with all other nodes of X.)

*e independent and dependent elements in a perfect
graph Gp � (V, E) are easily constructed by coloring the
edges of the perfect graph by two colors, and the formalism
of Ramsey numbers −R(#B, #Y), B ∈MB is offered for use.
We now introduce a free formulation of the relations on a
perfect graph Gp colored by two colors as a consequence of
the famous Ramsey theorem.

Theorem 3. A perfect graphGp � (V, E) with n nodes, where
each edge belongs to class A or class B, contains a perfect
subgraph with a nodes and edges from class A or a perfect
subgraph with b nodes and edges from class B.

In most cases holds (#B + #Y)≠ n for R(#B, #Y),
B ∈MB. *e reason is that remaining nodes (n − #B − #Y)

belong to class A or class B; however, they do not form
perfect subgraphs.

Number R(a, b)� n that corresponds to numbers “a” and
“b” and is equal to the number of nodes of the perfect graph
Gp is called a Ramsey number.

Note 6 (historical note). Until now, only some Ramsey
numbers (RNs) are known, e.g., R(3, 3)� 6, R(3, 4)� 9, R(3,
5)� 14, R(3, 6)� 18, .., R(3, 15)� [73, 78], . . ., R(4, 4)� 18,
R(4, 11)� [96, 191], . . ., R(6, 10)� [177, 1171], . . ., R(10,
10)� [798, 23 556], . . ., and R(19, 19)≥ 17 885. *e brackets
[., .] denote intervals of integer numbers. (Known quantities
from the table in [37] will be used for computations in
Section 7).

6.1.3. -e “Anonymity” of Ramsey -eorem. Note that
Ramsey theorem responds to the question “how many” (el-
ements) and not “which” (elements). For our case, it means
that we are able to compute how many elements are necessary
to add to the original matroid for the extension of a basis;
however, we do not knowwhich elements are necessary to add.

6.2. Power and Complexity of an Emergent Phenomenon.
*e emergent phenomenon we describe, in our view, by two
variables, the power HP of the emergent phenomenon and
the complexity HCOM of the emergent phenomenon.

Essential relations between the power HP and the
complexity HCOM are expressed by the following two
equations:
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HP(B + 1) � HP(B) +
u

c
 HCOM(B), (7)

HCOM(B + 1) � HCOM(B) + uHP(B), (8)

where B ∈MB is the basis of a matroid and B+ 1 is the basis
B extended by one element. Variables HP(B), HP(B+ 1), and
HCOM(B), HCOM(B+ 1) are power and complexity of the
emergent phenomenon related to bases B and B+ 1.

Symbol u denotes the quotient of self-organization of the
considered complex system (represented by the compart-
ment) and c is the limit of this quotient (the best self-orga-
nization). Quotient (u/c) ∈〈0, 1〉 represents “intelligence”
of the self-organizing process that will execute the emergent
phenomenon. Operating with equation (8), we obtain the
contribution to power released by the emergent phenomenon:

ΔHP(B + 1) �
u

c
 HCOM(B), (9)

where ΔHP(B+ 1) represents the registrable changes in the
system due to EMS and HCOM(B) represents the complexity
of the system of drivers that provide ΔHP(B+ 1).

*e link between ΔHP(B+ 1) and HCOM(B) is provided
by (u/c)—the “intelligence” quotient of the system. *e
quantity of (u/c) is done by rough estimations in and by soft
tuning in Appendix A.

In works [31, 32] were introduced orientation quantities
for quotients (u/c), as given in Table 1.

As will be seen in Section7, the value of (u/c) is very
sensitive and important for the result of the application of
expression (9). *e values introduced in Table 1 are char-
acteristic values for the corresponding classes of complex
systems but not absolutely rigged for computation. For ex-
ample, the value of (u/c) for the first class of complex systems
(“inanimate” natural systems—avalanches, deserts, floods,
earthquake, tsunami) may alternate between 0.06 and 0.15.

-e contribution to the power of the emergent phe-
nomenon ΔHP(B+ 1) that has an intuitive meaning in the
internal level is associated with the external level of the
description with the power ΔHD(B+ 1) (e.g., damage of
houses by floods) measured by quantities of external vari-
ables (symptoms) si, i� 1, . . ., n for emergent (siem) and for
nominal (sinom) situations:

ΔHD(B + 1) � 
i�1,n

ωi

siem
sinom

 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(1\2)

, for i � 1, . . . , n,

(10)

ΔHP(B + 1) � Λ · ΔHD(B + 1), (11)

where ωi are quotients of importance and Λ is a calibration
constant.

Quotients of importance ωi are computed by using the
Saaty method [46].

*e contribution to power of the emergent phenomenon
ΔHD(B+ 1) results in a dimensionless real number expressed
herein as % (e.g., contribution for 20% is calculated as (120/
100)� 1.2). Equation (8) is associated with equation (7)
whereHCOM(.) is approximated in our case by the number of
elements of basis B, i.e. #B. Function ξ transforms real
number (ΔHp(B + 1))/(u/c) into the nearest larger integer
and holds:

ξ
ΔHP(B + 1)

(u/c)
  � #B. (12)

For explanation, we describe a contribution ΔHD(B+ 1)
of power of a possible EMS by approximating the emergent
and nominal values of the selected variables in the com-
partment of real world. Using calibration constantΛ, we find
ΔHP(B+ 1). *en, we form a corresponding representation
in the pregeometry (matroid and matroid bases) and we
compute by (12) the cardinality #B . We solve the violation of
this invariant as an extension of a matroid basis (by waysm1
or m2—Section 6.1). *en, if necessary, conditions for the
proposed EMS are computed in the original compartment of
the real world—called herein “normalization”—Section 6.4.)

6.3. A Simple Scheme for the Analysis (Detection) of an
Emergent Situation. *e description of the processing
emergent situation that we want to indicate in the complex
system compartment has the following form in NAT and
SYMB:

NAT: (synchronization of events) or (change of the structure of CS) or S.E.⟶ PAES, (13)

SYMB: ΔHP(B + 1)⟶ structural invariant(SI)⟶ VSI⟶ detection of PAES, (14)

Table 1: Orientation values of (u/c).

(u/c)
Classes of complex systems—the examples of complex

systems

0.1 “Inanimate” natural systems—avalanches, systems of
clouds, floods, earthquake, tsunami

0.2–0.4 Complex systems in chemical and nuclear applications
0.3 Lower alive systems—bees, termites, ants

0.3–0.4 Mixed natural and artificial systems—ecological systems,
social systems, transport systems

0.5 Large complex systems in the ocean (huge shoals of fish)
and in atmosphere (shoals of birds)

0.6–0.8 Advanced organism systems—human brain, metabolic
systems, biochemical systems

0.9 Metaphorical systems—human mind, systems with high
concentration of information

1 . . .
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where S.E. symbolizes “Something Else,” PAES is a “Possible
Appearance of Emergent Situation,” SI is a structural in-
variant, and VSI is a Violation of Structural Invariant, and
ΔHP(B+ 1) is a contribution of power of the emergent
phenomenon in SYMB.

In case SI is a matroid and its bases, the following ex-
pression holds:

SYMB: ΔHP(B + 1)⟶ 〈X1,MB1〉⟶

〈X1,B1〉⟶ 〈X1∪E1,B1∪ e1〉⟶ 〈X2,B2〉,

(15)

where X1, X2 are carriers of matroids, MB1 is a set of bases
on X1, B1 is a basis from MB1, E1 is a set of elements that
extends X1, e1 is an element that extends basis B1, and B2 is
a basis on X2.

Note 7. Expressions (14) and (15) describe operations as-
sociated with pregeometry (matroid).

Example 1. #X � 1600.(#B � 11 for #X≥ 1597).*e “threat”
of PAES (in NAT) is “represented” (in SYMB) with the ad-
dition of at least 40 elements that enable one element ex-
tension of the Basis (#B � 12 for #X≥ 1637).

We formulate now a basic rule for analyzing (detecting)
an emergent situation (in relation with expression (14)) as
follows.

For case m1 in Section 6.1,

IF(#E1≥minΔf(RN))⇒(PAES), (16)

where E1 is a set that extends the matroid〈X1,MB1〉 (15)
and contains at least one element e1 extending basis B1. *e
number “min Δf(RN)” is the minimal difference between the
next Ramsey number and the current Ramsey number, and
PAES denotes the “Possible Appearance of an Emergent
Situation.”

*e number Δf(RN) provides that at least one element
could be connected with relation IND with all elements of
some basis fromMB1. (*is is the case for #B not for #Y—in
the formalism of Ramsey numbers R(#B, #Y)—*eorem 3.)

For the case m2,

IF ∃e, IND e, xi( , ∀xi ∈ B1( ( ⇒(PAES), (17)

where “e” is an extending element, for which there was
verified Independence (IND) to all elements of B1.

6.4.NormalizationofΔf(RN)with regard toaReal “Volume”of
Added Elements. *e following operation is actual for cases
where the detecting of PAES in pregeometry can be rep-
resented by the addition of real elements to the real com-
partment (e.g., drivers in floods) or the addition of some
time interval to the given time moment [5] in the considered
compartment. (We are speaking about an additive repre-
sentation of drivers.)

Equations (9), (16), and (17) introduce a method for the
detection of PAES without considering the actual state of the
process (for which we compute the emergent phenomenon).

*e actual state corresponds to some number of active el-
ements of the process that are associated with the emergent
phenomenon (e.g., transport elements (cars) in case of traffic
jam). *is number V(B) is different from RN(B)—in
general. *en, it is necessary to execute a normalization of
Δjf(RN) to the actual number of active elements V(B) in the
actual state of a complex system. *e information about
number V(B) is a complementary information, and it does
not influence the calculation according to equations (9), (16),
and (17). *e normalization procedure for the alternative
“m1” (expression (16)) has the following steps:

Let us assume that we have computed ΔHP(B+ 1)
(equations (10) and (11)).
From this number, it is possible to acquire #B by
equation (12).
Considering #B as a number of elements of a basis, we
compute RN(B).
*is number corresponds to an actual state of the
complex system and thus to a “volume” of elements in
this state.
Let us denote: RN(B) corresponds to V(B).
From this correspondence, we extract a normalization
quotient λ:

λ �
V(B)

RN(B)
. (18)

After computation of RN(B+ 1), we extrapolate the
quantity V(B + 1)

V(B + 1) � λRN(B + 1). (19)

*en, the value Δf(RN) corresponds to value
ΔV(B,B + 1) (the number of elements that is necessary
to add to V(B)).

ΔV(B,B + 1) � λΔf(RN). (20)

And, the addition of ΔV(B,B + 1) to the number of
active elements of the actual state (in SYMB) is associated
with PAES (in NAT).

For the case “m2” (expression (17)),

λ �
V(B)

RN(B)
. (21)

After computation of RN(B+ 1), we extrapolate the
quantity V(B + 1):

V(B + 1) � λ(RN(B) + 1)

�
V(B)

RN(B)
 (RN(B) + 1) � V(B) + λ.

(22)

*en, the value Δf(RN) corresponds to value
ΔV(B,B + 1) (the number of elements that is necessary
to add to V(B)).
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ΔV(B,B + 1) � λ. (23)

Summary of the whole process of analysis is given in
Figure 2.

In Figure 2 is illustrated the following process: in the
Model of Reality are estimated possible values of symptoms
(sem, (snom)) that represent the considered emergent phe-
nomenon. By means of these quantities, ΔHD(B+ 1) and
then ΔHP(B+ 1) are computed. *is value is transformed
into the space of pregeometry as a matroid and its bases.
*ese structures represent drivers for the emergent phe-
nomenon. By the normalization procedure (for alternatives
“m1” or “m2”) the values of complements ΔV(B,B + 1) are
acquired that could be added to the actual state in the Model
of Reality as a condition for a Possible Appearance of
Emergent Situation (PAES).

7. Application of the Developed Method on
Modeling the Complex System and the
Analysis of EMSs by means of〈M, BM〉

In this section are presented examples of modeling complex
systems, especially of the analysis and the detection of
emergent situations. Examples lead to the discovery of
“Conditions for indicating PAES.”

*e first two cases are rather methodological ones, i.e.,
they show how to calculate emergences. *ey are not bound
to any specific data and they are not used for comparison
with an experiment. *e onset and consequences of these
EMSs in everyday life are generally known. *e third ex-
ample is tied to specific data and may be compared with
results of real situations.

7.1. Floods. In this section, we do not want to compete with
very solid studies of heavy rainfall events that have been
conducted around the world in the context of climate
changes. At least two works [47, 48] were devoted to the
study of rainfall events in the Czech Republic, which very
systematically compared with the outputs achieved by
simulations in Regional Climate Models (RCM) against the
observation data “at site.” Although heavy rainfall events
have not been identified directly as the cause of floods, we
do get some small satisfaction from the conclusion of
article [48] in relation to our view of the difficult simu-
lability of such events: “*e RCMs on average represent the
number of heavy rainfall events, seasonal total precipita-
tion due to heavy events and event depths relatively well;
however, the number of heavy events as well as the cor-
responding seasonal totals are overestimated at higher-
elevated grid boxes.”

Floods belong to emergent situations. Especially, so-
called sudden (flash) floods with onset in hours or some-
times in minutes. From the point of view of an lay person,
they are induced by heavy rains and by aggregated volumes
of water. On a deeper investigation, we may observe that
there are further influencing factors [49], as follows:

Self-organizing process which interacts with water
carriers such as rivers, brooks, streams, and ponds
Changes in the internal structure of the hydrological
system (e.g., ruptured barriers of water dams and
ponds)
Something else (S.E.) (invisible)

*ere are many variables that characterize the individual
factors mentioned above, and we do not know how they
divide their influence. In addition, it is impossible to de-
scribe the mutual interaction of the acting elements—for
example, by multiagent formalism. But, even there we could
not identify which of the influences is causing the floods. For
this reason, we work with integral values, which we convert
to pregeometry. From this, we then calculate the “scalar”
increment of elements (rivers, streams, etc.). But, we cannot
claim that this contribution will cause floods, we only claim
that it is associated with them.

*e “self-organizing” process is hard to describe but
facilitates the calculation of conditions of floods in a
compartment. (Compartment is considered here as a se-
lected part of the landscape that is strongly influenced by the
floods.)

*e calculus used for the solution of the problem was
explained in Section 6:

According to the possible variables in the external
description, we consider floods as a two-dimensional
case
In equation (11), we consider the calibration constant
Λ� 1 and thus ΔHP(B+ 1)�ΔHD(B+ 1)

Two external variables are used for the computation of
ΔHP(B+ 1):

x1: an average height of water levels in water carriers
(rivers, brooks, streams, basins, etc. that interact in the
considered region)
x2: number of buildings in danger of flooding, in the
considered region

*e following nominal and emergent quantities are
considered:

x1nom � 3m and x1em � 8.1m. *e quotient of impor-
tance ω1 � 0.4.
x2nom � 1000 and x2em � 2500. *e quotient of im-
portance ω2 � 0.6.

Applying expressions (10) and (11) (for Λ� 1), we
compute

ΔHP(B + 1) � ω1
x1em

x1nom
  

2

+ ω2
x2em

x2nom
  

2
⎛⎝ ⎞⎠

1/2

� (0.4∗ 2.7)
2

+(0.6∗ 2.5)
2

 
1/2

� 1.85.

(24)

Now, we use themethod for tuning (u/c) fromAppendix
A.

10 Complexity

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5239&m=db
http://cbs.wondershare.com/go.php?pid=5239&m=db


For the first estimation of (u/c)0, we set up (u/c)0 � 0.09
(from Table 1).

Using expression (9), we compute the first approxi-
mation of cardinality of the basis #B:

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)0
  � ξ

1.85
0.09

  � 21 � #B.

(25)

For #B � 21, we find in tables [37] Ramsey numbers
R(#B, Y): R(21, 3), R(21, 4), R(21, 5), R(21, 6), R(21, 7), R(21,
8): {R(21, 3)≥ 122, R(21, 4)≥ 242, R(21, 5)≤ 10626, R(21,
6)≤ 53130, R(21, 7)≥ 1214, and R(21, 8)≥ 1328}.

For #(B + 1) � 22, we find in tables [37] Ramsey
numbers R(#B + 1, Y): {R(22, 3)≥ 125, R(22, 4)≥ 282, R(22,
5)≥ 422, R(22, 6)≥ 1070, R(22, 7)≤ 296010, and R(22, 8)≤ 1
184 040}.

We are looking for a minimum difference: Δ0f(RN)�

min{(125−122), (282− 242), smaller differences do not
exist},

Δ0 f (RN) � 3,

for
u

c
 

1
� 0.1,

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)1
  � ξ

1.85
0.1

  � 19 � #B.

(26)

For #B � 19, we find in tables [37] Ramsey numbers
R(#B, Y): R(19, 3)≥ 106, R(19, 4)≥ 198, R(19, 5)≥ 338, R(19,
6)≥ 710, R(19, 7)≥ 908, and R(19, 8)≥ 1054.

For #(B + 1) � 20, we find in tables [37] Ramsey
numbers R(#B + 1, Y): {R(20, 3)≥ 109, R(20, 4)≥ 230, R(20,
5)≥ 380, R(20, 6)≥ 878, R(20, 7)≤ 296010, and R(20, 8)≥
1094.

We are looking for a minimum difference: Δ1f(RN)�

min {(109−106), (230−198), (380− 338), (878− 710),
(1094−1054), smaller differences do not exist}:

Δ1f(RN) � 3,

for
u

c
 

2
� 0.15,

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)2
  � ξ

1.85
0.15

  � 13 � #B.

(27)

For #B � 13, we find in tables [37] Ramsey numbers
R(#B, Y): R(13, 3)� [59, 69], R(13, 4)� [133, 291], R(13, 5)≥
193, R(13, 6)� 278, R(13, 7)≥ 511, and R(13, 8)≥ 635.

For #(B + 1) � 14, we find in tables [37] Ramsey
numbers R(#B + 1, Y): {R(14, 3)� [66, 78], R(14, 4)� [141,
349], R(14, 5)≥ 221, R(14, 6)≥ 292, R(14, 7)≤ 296010, and
R(14, 8)≤ 1 184 040}.

We are looking for a minimum difference: Δ2f(RN)�

min {(66− 59), (78− 69), (141− 133), (221− 193),
(292− 278), smaller differences do not exist}:

Δ2f(RN) � 7, (28)

for
u

c
 

3
� 0.2,

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)3
  � ξ

1.85
0.2

  � 10 � #B.

(29)

For #B � 10, we find in tables [37] Ramsey numbers
R(#B, Y): R(10, 3)� [40, 43], R(10, 4)� [80, 149], R(10, 5)≥
[141, 442], R(10, 6)� [177, 1171], R(10, 7)� [1, 2826], and
R(10, 8) [316, 6090].

For #(B + 1) � 11, we find in tables [37] Ramsey
numbers R(#B + 1, Y): {R(11, 3)� [46, 51], R(11, 4)� [96,
191], R(11, 5)≥ 153, R(11, 6)≥ 253, R(11, 7)≥ 322, and R(11,
8)≤ 1 184 040}.

We are looking for a minimum difference: Δ3f(RN)�

min {(46− 40), (46− 43), (51− 43), (96− 80), (153−141),
smaller differences do not exist}:

Δ3f(RN) � 3, (30)

for
u

c
 

4
� 0.08,

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)4
  � ξ

1.85
0.2

  � 24 � #B.

(31)

For #B � 24, we have only approximate estimates of RNs
in the form of inequalities.

*e sequence of values leads to min(Δ0f(RNΔ3f(RN))�

min(3, 3, 7, 3)� 3.
So, it is possible to work with (u/c) � 0.09 or 0.1.
We turn back to (u/c) � 0.09:

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)0
  � ξ

1.85
0.09

  � 21 � #B.

(32)

Model of reality
(NAT)

The power of
EMP: ΔHp (B + 1)

(SYMB)

Normalization:
ΔV (B, B + 1)

(SYMB)

Pregeometry
space (M, BM)

B, B + 1 (SYMB)

Figure 2: *e analysis of EMSs.
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For #B � 21, we find in tables [37] Ramsey
numbers R(#B, Y): R(21, 3), R(21, 4), R(21, 5), R(21, 6), R(21,
7), R(21, 8): {R(21, 3)≥ 122, R(21, 4)≥ 242, R(21, 5)≤ 10626,
R(21, 6)≤ 53130, R(21, 7)≥ 1214, and R(21, 8)≥ 1328}.

For #(B + 1) � 22, we find in tables [37] Ramsey
numbers R(#B + 1, Y): {R(22, 3)≥ 125, R(22, 4)≥ 282, R(22,
5)≥ 422, R(22, 6)≥ 1070, R(22, 7)≤ 296010, and R(22, 8)≤ 1
184 040}.

Optimal pairs of RNs are Δopt f(RN) � (125−122) OR
(282− 242)}� 3 OR 40.

7.1.1. Normalization of Δopt f(RN)
*e additional information about the number of active

elements in the actual state of the complex system is V(B) �

300 water carriers (streams, lakes, ponds, etc.).
For RN(B)�R(21, 3)� 122 and λ � V(B)/RN(B), we

calculate λ� 2.46.
According to (15) and (18) and for Δopt f(RN) �

(125−122) OR (282− 242), we have ΔV(B + 1) � 8 OR 98.

Note 8. More real is the second case—ΔV(B + 1) � 98.

Note 9. .*e computation of other optimal pairs of Ramsey
numbers was complicated in this case by small knowledge of
precise values of Ramsey numbers, e.g., (R(21, 5)≤ 10626,
R(21, 6)≤ 53130), R(22, 7)≤ 34 337 716.

*e answer to the question about flood conditions is:*e
critical contribution of water carriers that is associated with
the assumed power ΔHP(B+ 1) is 98 (for the actual state-
� 300 water carriers). *is number only approximates the
EMS and “covers” both sudden changes in the structure of
the hydrological system and also something else (invisible).

7.2. Traffic Jam on the Highway. In work [50] is confirmed
that traffic jam on the highway is a process with chaos and
thus is hard to detect it. In order to distinguish between
EMSA and EMST, a brief discussion has been introduced in
Section 3, and we remind it here.

For simulation of the traffic jam process using the
physical approach, it is necessary to know causes. e.g.,
someone “stepped on the brake,” someone came unex-
pectedly from the left, someone installed a transport re-
striction, somewhere the surface of the road has
deteriorated. If we are 3 km ahead of the place of such a
change, we encounter an unexplained stop. (*is is a typical
EMSA.)

Traffic jam is an emergent result of interaction of many
transport elements and factors (cars, traffic lights, structure
of transport symbols, weather, hours in the day time, etc.),
[50, 51]. According to the possible variables in the external
description, we consider traffic jam on the highway as a
three-dimensional case with the following external variables:

x1: an average number of cars within 1 km
x2: visibility on the road in [m] (in computation the
quantity (1/x2) is used)
x3: number of bottlenecks (e.g., places of some repairs
where it is allowed to use only one road strip) in 10 km
of the road

In the example, we consider calibration constant Λ� 1
and thus ΔHP(B+ 1�ΔHD(B+ 1).

We considered the following nominal and emergent
quantities:

x1nom � 28 and x1em � 120. *e quotient of importance
ω1 � 0.3
x2nom � 100 and x2em � 40. *e quotient of importance
ω2 � 0.3..
x3nom � 2 and x3em � 4. *e quotient of importance
ω2 � 0.4.

Applying expressions (10) and (11) (for Λ� 1), we
compute

ΔHP(B + 1) � ω1
x1em

x1nom
  

2

+ ω2
x2em

x2nom
  

2

+ ω3
x3em

x3nom
  

2
⎛⎝ ⎞⎠

1/2

� 0.09∗ 18.36 + 0.09∗ 6.25 + 0.16∗ 4 � 1.7.

(33)

Now, we use themethod for tuning (u/c) fromAppendix
A.

For the first estimation of (u/c)0, we set up (u/c)0 � 0.3
(from Table 1).

Using expression (9), we compute the first approxi-
mation of cardinality of the basis #B

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)0
  � ξ

1.7
0.3

  � 6 � #B. (34)

Tuning (u/c).
For #B � 6, we find in tables [37] Ramsey numbers R(6,

3)� 18, R(6, 4)� [36, 42], R(6, 5)� [58, 87], and R(6, 6)�

[102, 166].
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For #B � 7, we find in tables [37] Ramsey numbers R(7,
3)� 23, R(7, 4)� [49, 61], R(7, 5)� [80, 143], and R(7, 6)�

[111, 298].
We are looking for a minimal difference: Δ0f(RN)�min

{(23−18), (49− 35), (80− 58), (143− 87), (111− 102)}—
smaller differences do not exist}:

Δ0f(RN) � 5. (35)

For the further estimation of (u/c)1, we set up (u/c)1 �

0.25 (from Table 1):

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)1
  � ξ

1.7
0.25

  � 7 � #B. (36)

For #B � 7, we find in tables [37] Ramsey numbers
R(7, 3) � 23, R(7, 4) � [49, 61], R(7, 5) � [80, 143], and R(7,
6) � [111, 298].

For #(B + 1) � 8, we find in tables [37] Ramsey numbers
R(8, 3)� 28, R(8, 4)� [56, 84], R(8, 5)� [95, 216], and R(8,
6)� [127, 495].

We are looking for a minimal difference: Δ1f(RN))�min
{(28− 23), (56− 49), (95− 80), (143− 87), (127−111) }—
smaller differences do not exist}:

Δ1f(RN) � 5. (37)

For the further estimation of (u/c)2, we set up (u/c)2 �

0.35 (from Table 1).

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)2
  � ξ

1.7
0.35

  � 5 � #B. (38)

For #B � 5, we find in tables [37] Ramsey numbers R(5,
3)� 14, R(5, 4)� 25, R(5, 5)� [43, 49], and R(5, 6)� [58, 87].

For #B � 6, we find in tables [37] Ramsey numbers R(6,
3)� 18, R(6, 4)� [35, 41], R(6, 5)� [58, 87], and R(6, 6)�

[102, 166].
We are looking for a minimal difference: Δ2f(RN))�min

{(18−14), (35− 25), (95− 80), (58− 49), (102− 87) }—
smaller differences do not exist}:

Δ2f(RN) � 4. (39)

For the further estimation of (u/c)3, we set up (u/c)3 �

0.4 (from Table 1).

HCOM(B) � ξ ΔHP

(B + 1)

(u/c)3
  � ξ

1.7
0.4

  � 5 � #B. (40)

According to (29) and (30), we obtain the same result as
for (u/c)3 � 0.35, i.e., Δ3f(RN)� 4.

For the further estimation of (u/c)4, we set up
(u/c)4 � 0.45.

HCOM(B) � ξ(ΔHP(B + 1)/(u/c)4) � ξ(1.7)/0.45) �

4 � #B.
R(4, 3)� 9, R(4, 4)� 18, R(4, 5)� 25, R(4, 6)� [35, 41].
R(5, 3)� 14R(5, 4)� 25, R(5, 5)� [13, 49], R(5, 6)� [58,

87].
We are looking for a minimal difference:

Δ4f(RN)�min{(14− 9), (25−18), (49− 25), (58− 35)}
—smaller differences do not exist}

Δ4f(RN)�min{5, 7, 24, 23}� 5
Δ4f(RN)� 5

*e sequence of values Δ0f(RN)), . . ., Δ4f(RN) leads to
min(Δ0f(RN)), . . ., Δ4f(RN))�min (5, 5, 4, 4, 5)� 4. And,
according to (9), we take the number (u/c) for which we
found min{ Δ0f(RN)), . . ., Δ3f(RN), Δ4f(RN))} and thus
(u/c) � 0.35 OR 0.4.

We take (u/c) � 0.4.

HCOM(B) � ξ
ΔHP(B + 1)

(u/c)3
  � ξ

1.7
0.4

  � 5 � #B. (41)

For #B � 5, we find in tables [37] Ramsey numbers R(5,
3)� 14, R(5, 4)� 25, R(5, 5)� [43, 49], and R(5, 6)� [58, 87].

For #B � 6, we find in tables [37] Ramsey numbers R(6,
3)� 18, R(6, 4)� [35, 41], R(6, 5)� [58, 87], and R(6, 6)�

[102, 166].
Δoptf(RN)) ∈ (18 − 14), (35 − 25),{

95 − 80), (58 − 49), (102 − 87)( }.
(42)

Δoptf(RN)) ∈{4, 10, 15, 9, 15)} is the same as we write
Δoptf(RN))� 4 OR 10 OR 15 OR 9.

Figure 3 shows a matroid with a cardinality X� 14 and
with one of the bases of five elements.

*e number of edges of the graph in Figure 3 is 91 (some
of them are not visible) and 10 of them connect the elements
of some base (base marked with red edges).

Furthermore, the extension of the base of the matroid by
one element (blue edges) from added four elements is in-
dicatedΔoptf(RN))� 4. In the figure, the connections of these
elements with all elements of the matroid are omitted (due to
the increased and confusing line density).

7.2.1. Normalization of Δopt f(RN). *e additional infor-
mation about the number of active elements in the actual
state of the complex system is V(B) � 800 (in the com-
partment) transport elements (cars, traffic lights, structure of
transport symbols, etc.).

Table 2: Values of components for phases Pbnm and Ibmm.

Component (Cx) Pbnm phase (CPbnm) Ibmm phase (CIbmm)
εxx
1 (0) 3.234 3.273
εyy
1 (0) 3.137 3.173
εzz
1 (0) 3.116 3.079
Δε −0.033 −0.046
ωxx

p 8.530 8.966
ωyy

p 8.095 8.068
ωzz

p 8.449 7.768
nxx(0) 1.798 1.809
nyy(0) 1.771 1.781
nzz(0) 1.765 1.754
Δn(0) −0.030 −0.041
εxx
1 (0), εyy

1 (0), and εzz
1 (0) are real parts of tensor components of dielectric

function in frequency 0ωxx
p , ωyy

p , and ωzz
p are real parts of tensor com-

ponents of plasmon oscillations; δε is uniaxial anisotropy; nxx(0), nyy(0), and
nzz(0) are tensor components of refractive index in frequency 0; Δn(0)
represents birefringence.
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For RN(B) � R(5, 3) � 14,

λ �
V(B)

RN(B)
we calculate λ � 57.1.

(43)

According to (15) and (18) and for Δopt f(RN) ∈{4, 10, 15,
9)}, we have

ΔV(B + 1) ∈ 228, 571, 513, 857{ }. (44)

*e answer to the question about the traffic jam con-
ditions is: *e critical contribution of transport elements
that could “cause” congestion on the highway is 228, 513,
571, and 857 (considering the actual state of 800 traffic el-
ements). It means that the complete number of transport
elements in the considered compartment of the complex
system is 1028, 1313, 1371, or 1657. *ese numbers only
approximate the EMS and “cover” both sudden changes in
the structure of the transport system and also something else
(invisible).

Note 10. It is hard to provide the reproducibility for
emergent situation. It means, e.g., it is not sure if the traffic
jam will appear tomorrow among 165 and 298 transport
elements as today.

7.3. Phase Transition as an Emergent Phenomenon. *e
phenomenon of phase transition is usually investigated in
chemistry and in crystallography. *e selected compound
changes its crystallographic structure as a result of changing
some external (internal) variables. *e causal connection of
these variables with phase transition and the proportionality
of their influence is usually not completely known and the
change of the compound structure is “modelled” as an in-
fluence of some representative variable (e.g., temper-
ature—as in our case below). In this section, we investigate
the phase transition of Ba*O3 between Pbnm crystalo-
graphic structure and Ibmm crystallographic structure as an
emergent phenomenon.

We use experimental and computed data acquired from
[19]. *e influence of phase transition on the electronic
structure and the optical properties of Ba*O3 was inves-
tigated by means of Density Functional -eory [19, 52] and
verified by program wien2k [53]. At room temperature,

Ba*O3 is stable in the Pbnm phase until 547°C, whereas it is
stable in the Ibmm phase at temperature higher than 700°C.
*e transfer from Pbnm phase to Ibmm phase by the in-
fluence of temperature is considered an emergent situation.
Table 2 presents the quantities for Pbnm phase and Ibmm
phase computed by program wien2k [53]:

As a power of emergent phenomenon, cumulative result
of changes of the optical properties for Pbnm and Ibmm
phases are used.

For computation of ΔHD(B+ 1), we use dimensionless
expression (CIbmm/CPbnm) for all quantities from Table 2;
quotients “ωi” of importance (equation (10)) are equal to 1
and for calibration constant Λ� 1 (equation (11)) and we
have ΔHP(B+ 1)�ΔHD(B+ 1).

ΔHD(B + 1) �
3.273
3.234

 
2

+
3.173
3.137

 
2

+
3.079
3.116

 
2

+
−0.046
− 0.033

 
2



+
8.966
8.530

 
2

+
8.068
8.095

 
2
+

+
7.768
8.449

 
2

+
1.809
1.798

 
2

+
1.781
1.77

 
2

+
1.754
1.765

 
2


1/2

+ 1.1 + 0.99 + 0.845 + 1.01 + 1.012 + 0.987)
1/2

#B � ξ
ΔHP(B + 1)

(u/c)
  � 8 for

u

c
 

� 0.42 (Table 1 and the tuning according toAppendix A.)

(45)

Δf(RN)�RN(x, 9)–RN(y, 8). RN(y, 8): (28, 56, 89, 95,
216, 495). RN(x, 9): (36, 115, 121, 316, 380).
Δf(RN)�min {(36− 28), (115− 28), (115− 56), . . .,

(115− 95), . . ., (316− 95)}�min{8, 87, 59, . . ., 20, 221}� 8.

λ �
547
28

� 19.5,

ΔT � λ · Δf(RN) � 19.5∗ 8 � 156 °C.

(46)

*e quantity of temperature that is needed for the
considered phase transfer is

TPT � 547 + 156 � 703°C. (47)

And, it corresponds to results of experimental verifi-
cation, the phase transition, and its consequences [19].

We may compare this result with calculation in [24],
where

#B � ξ ΔHP

(B + 1)

(u/c)
  � 9 for

u

c
 

� 0.37(Table 1 and the tuning according toAppendix A.),

ΔT � 161.84°C.

(48)

*e quantity of temperature that is needed for the
considered phase transfer is

Figure 3: Matroid M �〈X, MB〉, #X � 14, with a marked base
B, #B � 5 and with extension of this base by one element.
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TPT � 547 + 161.84 � 708.84°C. (49)

Both cases lead to a temperature higher than 700°C, and
it corresponds to results of experimental verification of the
phase transition, [19].

8. Discussion

In this section, only some substantial issues of our developed
method and its application are introduced:

*e structural invariants are defined by expressions (1)
and (2).
Calculating #B and RN(#B, Y) in expression (12), we
consider a perfect subgraph with #B nodes in a perfect
graph Gp with RN(#B, Y) nodes. *is case leads to the
calculation of Δf(RN) and to ΔV(B + 1) in normali-
zation procedure. However, this is only one variant
where the matroid is associated with a perfect graph..
*ere are other graph representations of the matroid
with #B node basis (e.g., in [35]).
Additive Representation of Drivers. *e PAES that cor-
responds to values of symptoms concentrated in the
power of the emergent phenomenon (ΔHP(B+1)) is
associated with the result of the normalization procedure
ΔV(B + 1). In the “volume”ΔV(B + 1) of real elements,
it is necessary to add to a current volume V(B) in order
to model a possible appearance of emergent situation
(PAES). We are speaking about additive representation
of drivers. *is is the only one way to use #B and to
construct matroid M(X, B1, . . ., Bn).
Verifiability and Reproducibility. *e results obtained
using the method submitted are not verifiable in the
classical sense. E.g., if we calculated today that with
connecting 98 new water carriers to 300 existing ones,
will be associated an emergent flood situation, it may
not happen tomorrow or next month.

9. Conclusion

*e whole article is based on the thesis that emergent
phenomena in complex systems are associated with sharp
changes in the structure of the systems, with coincidence of
events in the systems (in the NATplane) or with something
else (S.E.)—what we do not actually see. However, we are
able to record and to process these changes in some sym-
bolical system (in SYMB). For the analysis and the detection
of emergent situations, we used the so-called structural
invariants in SYMB by which we are able to indicate the
eventual occurrence of the emergence as their violation. In
the article, a list of structural invariants that we have dis-
covered in the analysis and in the detection of emergent
situations is introduced.*is list is not limited by cases from
physics (where we have started with R. Laughlin [13]). It
focuses in particular on emergences on macrostructures,
such networks (hydrological and transport networks
[31, 32]), ecosystems or bioengineering systems monitoring
[6], and processes with characteristic cycles (cycles in ma-
chines, biorhythms, circadian cycles, ECG signals [43, 44]).

In this article, we focused on the development of a method
for the analysis of emergent situations with the help of a
structural invariant (M, BM) and its application on mac-
rostructures (Sections 7.1 and 7.2) and on microstructures
(Section 7.3).

Appendix

*e method of soft tuning of (u/c) is as follows: consid-
ering the complexity of the compartment of the complex
system given by the number of a matroid—HCOM
(B) � #B—the procedure for calculating and determining
the coefficient (u/c) is based on the following limitations
and conditions:

(a)
u

c
  ∈ 〈0, 1〉, (A.1)

(b)ΔHP(B + 1)≥ 0.1, (A.2)

(c)#B ∈ Z
+
. (A.3)

Procedure for computation of (u/c):

(S1) First, we compute ΔHP (B+ 1) (resp., ΔHD(B+ 1)).
(S2) Fulfilling condition (u/c) ∈〈0, 1〉 (starting with

an initial quantity of (u/c)—for orientation, it is
possible to use estimations from Table 1) is chosen
the quantity #B.

(S3) In the list of Ramsey numbers [37], we find
numbers R(3, #B), R(4, #B), ..., R(r1, #B).
(Numbers R(..., #B) are sometimes given as subsets
on the interval [R1, R2] ∈Z+).

(S4) We find the nearest numbers R(3, #B + 1), R(4,
#B + 1), ..., R(r2, #B + 1).

(S5) We compute combinations of Ramsey numbers
for the selection of a minimal difference:

Δf(RN) � RN(x, #B + 1) − RN(y, #B). (A.4)

So we find numbers RN(y, #B): (p1, p2, p3,

p4, p5, . . .), and RN(x, #B + 1): (q1, q2, q3, q4, q5,
etc.), and we express the sequence ((q1 − p1),

(q1 − p2), (q2 − p2), (q2 − p3), (q3 − p3), . . .)

(S6) From this sequence is computed Δ1f(RN) �

min (q1 − p1), (q1 − p2), (q2 − p2), (q2 − p3), (q3
−p3), . . .}.

(S7) We turn back to step S2 and we select another
(u/c) (fulfilling condition a).

(S8) We continue till the step S6 and compute
Δ2f(RN))�min {. . .}.

(S9) *is procedure from S7 to S8 is repeated as many
times as possible until the variability of the se-
quence (Δ1f(RN), . . ., Δkf(RN)) is seen.

(S10) *e best value of the quotient (u/c) is a number for
which we found

min Δ1f(RN)( , . . . , Δkf(RN)(  . (A.5)
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(S11) For this value of (u/c) we solve equations (9) and
(12) (from Section 6.2) and we continue in the
method.
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