
978-1-7281-7116-6/20/$31.00 ©2020 IEEE

Proc. of the 2nd International Conference on Electrical, Communication and Computer Engineering (ICECCE)
1 -1 2020, Istanbul, Turkey

Abstract— In this paper, a fast parallel 2D-array computation
has been implemented based on QSD number system and
FPGA hardware. The QSD numbers are coded in binary bit
streams in order to be processed inside the digital hardware.
The same parallel addition algorithm for adding two QSD
numbers is used for adding the binary codded QSD numbers
and its two steps has been implemented successfully in FPGA
chip. The syntheses and implementation of the hardware
parallel adder shows that the proposed parallel adder has a
high performance than the software version, and the size of
data arrays depends on the number of logic elements of the
FPGA chip.

Keywords—Parallel computing, QSD numbers, Addition
algorithm, FPGA.

I. INTRODUCTION

 Current technologies are going toward developing high
speed processing units to fulfill the requirement of today
demands for ultra-high speed devices [1]. With respect to
digital system units, the arithmetic unit takes long
processing time when dealing with long numbers as well
the large array of numbers of form conventional binary
number system. This occurs because of the carry/barrow
propagation delay which needs sequential operation of the
intermediate results [2]. It is clear that the computations
will take long time when the numbers under processing has
long bit length. In order to overcome this bottleneck,
Signed-Digit (SD) number system had been proposed and
used in various digital systems with different
implementations, such as digital and optical computing
system [3-4].

Signed-Number (SD) system has the general form [5]:

 (1)

where,
d= the SD number,
n= number of SD digit of the SD number
r= the radix of the SD number system,

= the ith digit of the SD number.
 The radix r can take any value such as 2 (Modified
Signed-Digit (MSD)), 3 (Trinary Signed-Digit (TSD)), and
4 (Quaternary Signed-Digit (QSD)) number systems.

 An arithmetic unit will be more powerful if it can process
higher radix SD number system. For QSD number system,
the SD number will be formed from seven digits (, , , 0,
1, 2, 3), such as (1)QSD which equals to (19)10.
Singed-Number system (SD) has its special features [6]:

1- The carry propagation of the arithmetic operations can be
limited with few steps independently to the length of the
numbers, such as three, two, or one step.

2- Because of the limitation in carry propagation, parallel
arithmetic operations can be done for all digits of the two
numbers.

3- The number has a redundant equal values such as
(19)10=(1)QSD, (011)QSD, (0103)QSD, and (02)QSD,
and this feature led to construct special intermediate results
for the arithmetic operation to be done in limit steps and in
parallel manner as explain in the next section.

II. PARALLEL TWO-STEP ADDITION FOR QSD NUMBERS

Parallel two-step addition operation of QSD number
consists of two steps to produce the addition result [7].
During the first step, the addend and augend corresponding
digits are added and produced intermediate sums and
carries. In the second step, the intermediate sums and
curries will be added and find the final result. Equation (2)
explain the two steps of addition [8].

step1: xi + yi = ci + si
step2: si + ci-1 = zi (2)

where xi , yi, ci, si, and zi are the ith SD digit of addend,
augend, intermediate carry, intermediate sum, final sum
respectively, and ci-1 is the carry of the previous ith-1 digit.

 Fig. 1 shows the block diagram of the two-step QSD
adder for two n-digit numbers. Note that the resulted QSD
number will be (n+1)-digit as maximum length [9]. Tables
1 and 2 show the addition results for the first and second
steps, respectively.

Hardware Implementation for High-Speed
Parallel Adder for QSD 2D Data Arrays

Mohammed A. Al-Ibadi
Computer Engineering Department

University of Basrah
Basrah, Iraq

m.a.al-ebadi@ieee.org

Page 777 of 1513

Fig. 1. Block diagram of the two-step QSD adder

III. BINARY CODED QSD DIGITS

 As explained in the previous section, the QSD numbers
may have signed (negative and positive) digits in its
contents. The sign of the digits should be represented as a
digital data in computing systems that process such number
type [10]. The key of the design is the converting QSD
digits into its equivalent binary bits to be capable to process
as a digital data. We suggest that, each QSD digit can be
represented by 3-bit binary coded QSD digit, two bits for
the value and the last bit for the sign. Table 3 Explain the
proposed binary coded QSD digits.

 By this way, we will consider the signed QSD digits
presented in Tables 1 and 2 as their equivalent binary coded
QSD digits listed in Table 3.

IV. DESIGN AND IMPLEMENTATION A HARDWARE
ARCHITECTURE FOR QSD ARRAY ADDER

A. Design overview
 Fig. 2 explains the proposed hardware design for QSD
array adder based on an FPGA chip. The hardware design is
consist mainly from three parts as describes below:
1- The memory locations of the two input QSD array:
 The two arrays to be added enter the chip from external
interface as a binary coded form as explained in section
(III). The two arrays will be stored in distributed memory
locations using the dedicated memory blocks of the FPGA
chip. According to data bus width, the QSD array sizes, and
the clock time period, the total time of loading the two
arrays can be calculated. The distributed memory locations
is done by using only the first memory location of each
memory block of the FPGA chip for storing a part of the
QSD array. These memory locations can be configured with
a suitable data width as the design requirements. The total
number of the memory blocks is depending on the targeted
FPGA chip. The write and other control signals of the
memory blocks are supplied and synchronized from outside
the FPGA chip. By this way, the two QSD array will be
stored completely in this part of the proposed QSD array
adder.

TABLE III. THE PROPOSED CONVERSION OF THE QSD DIGITS
INTO BINARY BITS.

QSD
Digit

Sing
bit

Digit
bits

Binary coded QSD
digit

3 0 11 011
2 0 10 010
1 0 01 001
0 0 00 000

1 01 101
1 10 110

 1 11 111

TABLE I. FIRST STEP RESULTS OF QSD ADDITION

SD digits to be added
Intermediate

results

(xi , yi) si ci

(3,3) 2 1

(3,2),(2,3) 1 1

(3,1),(1,3),(2,2) 0 1

(3,0),(0,3),(2,1),(1,2) 1

(3,), (,3),(2,0),(0,2),(1,1) 2 0

(3,),(,3),(2,),(,2),(1,0),(0,1) 1 0

(3,),(,3),(2,),(,2),(1,),(,1),(0,0) 0 0

(,2),(2,),(,1),(1,),(,0),(0,) 0

(,1),(1,),(,0),(0,),(,) 0

(,0),(0,),(,),(,) 1

(,),(),(,) 0

(,),(,)

(,)

TABLE II. SECOND STEP RESULTS OF QSD ADDITION
Intermediate results Final result

(si, ci-1) zi
(2,1) 3

(2,0),(1,1) 2
(2,),(1,0),(0,1) 1
(1,),(,1),(0,0) 0
(,1),(,0),(0,)

(,0),(,)
(,)

1st step 1st step 1st step

2nd step 2nd step 2nd step 2nd step

Page 778 of 1513

Fig. 2. Block diagram of the proposed hardware architecture for QSD array

adder

2- Parallel QSD array adder:
 This part contains the parallel adder of the two QSD
arrays. Its two inputs are the two QSD arrays to be added
and stored in memory parts. The two arrays will enter
completely at the same time to the first step of the QSD
adder. Each two corresponding binary coded QSD digits
will be added simultaneously. As a result, the intermediate
sums and carries of all added numbers, whole arrays, will
be produced at the same time, i.e. two new arrays will be
generated, one for intermediate sums and the other for
intermediate carries. The time from entering the two arrays
to generation the arrays for intermediate sums and carries is
one clock period. This is because all digits of all numbers of
the two arrays will be added in parallel manner during just
one clock period.

 During the second period, the second step operation of
the QSD adder will be done over the two intermediate
arrays of sums and carries which generated from the first
step, and the produced array will be the binary coded QSD
array of the addition results.

 It should be noticed that, if the array size of the two
inputs are , the final result array will be

, where and are the number of rows and
columns of the input QSD arrays and is the number of the
QSD digits per a number. In binary coded QSD point of
view, each number of the resulted array will be increased
by 3 bits which represent the additional QSD digit of the
resulted numbers. An example of two 16-digit QSD
numbers addition is explained below:

11021122001111023

2011111100130312

3113121012021320

+

that equivalent in decimal number system to:

 2005267773

 0894701077 +

 2899968850

3- The memory locations of the resulted output QSD array:

 This part of the QSD adder is for storing the final result
binary coded QSD array. It has the same design principles
of the first part of the QSD array adder which consists of
distributed memory locations for storing the binary coded
QSD array. The final results array will be stored completely
during one clock period to the memory locations of
memory block of the FPGA chip. Then, result array will be
read by the external hardware as a binary coded QSD array
of the resulted addition operation. Also, depending on data
width selected, the time of completely extracting the
resulted array can be calculated accurately by calculated the
number of clocks periods required for finishing this
operation.

B. FPGA-Based Implementation

 In order to implement the proposed hardware architecture
of the QSD array adder, an FPGA chip is used as a targeted
chip for implementation. Altera Cyclone III
(EP3C16F484C6) (DE0 Board) is used and a complete
hardware design is described using VHDL language and the
implementation is done by Quartus II design tool.

 Fig. 3 show the FPGA-based implementation of the two
steps of the QSD adder for adding two numbers each is 16
QSD digits (binary recoded) and generating the sum and
carry and the final result.

 After synthesis, mapping, placing, and routing stages of
FPGA design implementation, the logic elements, storage
bits, and I/O pins of the FPGA chip that used by
implementing a QSD array adder for array size (

) are as explained in Table 4.

TABLE IV RESOURCE OCCUPATION OF THE FPGA CHIP
(EP3C16F484C6) FOR QSD ARRAY ADDER IMPLEMENTATION

FPGA Resources Used Usage Ratio

LEs usage ratio 89.3%

Storage bits usage ratio 0.57%

I/O pins usage ratio 22.5%

CLOCK

write &
control
signals

DATA
DATA

ADDRESS

write &
control
signals

ADDRESS

FPGA CHIP

PARALLE
L BUS

PARALLE
L BUS

MEMORY

LOCATIO
NS

OF

TWO

INPUT

QSD

ARRAYS

QSD

ARRAY

ADDER

MEMORY

LOCATIO
NS

OF

RESULTE
D

OUTPUT

QSD
write
signal

ADD
Signal

Page 779 of 1513

Fig. 3. The two steps adder of two QSD numbers (each 16 QSD digits

binary recoded) implemented in FPGA chip

 Referring to Fig. 2, the data bus width is selected as 32-
bit for both input data (the two arrays to be added) and
output data (the result array) of the first and third parts of
the QSD array adder, respectively. The two input arrays
will enter the FPGA chip divided to pieces, each piece is 32
bits. Each 32 bits will be stored in the first memory location
of a single memory block. The EP3C16F484C6 FPGA has
56 memory block each with 9 Kbits called M9K blocks.
These memory blocks can be configured by different ways.
The 32-bit width of a memory location is selected as
required configuration. So, for two () input
QSD arrays which both have 1920 bits, the total number of
the array pieces are 60. By the same way, the result array
which has 1020 bit will be extracted from the FPGA by 32

pieces of 32 bits. Thereby, the address bus for the input part
is 6-bit and for the output part is 5-bit for providing 60 and
32 memory addresses, respectively.

C. Performance of the proposed QSD adder

It is clear know, the input arrays required 60 clock cycles
for completing storing the two QSD arrays inside the
distributed memory locations, and the output array required
32 clock cycles for extracting the complete result array
outside the FPGA chip. Because of the parallel addition of
the QSD adder of the two stored QSD arrays, it need only
two clock cycles to complete the two step addition. Also,
one clock cycle is required for reading all memory locations
of the first part to reach simultaneously to the second part,
and also one clock cycle is needed to write the complete
result array into the distributed memory location of the third
part. Therefore, the total clock cycles of the QSD array
adder is 96 for loading two arrays, adding two arrays, and
extracting final result array.

The placing and routing operation of the FPGA
implementation procedure reported that the maximum
frequency of the clock signal is 142.8 MHz, i.e. the clock
period approximately is 7 ns. This means the total
processing time of the QSD array adder is 672 ns.

 Fig. 4 illustrates the timing diagram for adding various
QSD digits by the proposed QSD adder.

Fig. 4. Timing diagram of the QSD adder operation

V. CONCLUSIONS

 It is clear that, the size of arrays and the length of the
QSD numbers are depending on the FPGA chip and its
logic resources. For larger arrays and longer numbers, other
FPGA chips can be chosen which have more logic
elements.

 As expected, the FPGA-based hardware design has
higher performance than the software program for array
addition. For the two (10×2×16) QSD arrays addition, the
FPGA-based array adder has 672 ns for complete array
addition while the PC-based program for two (10×2×32)
binary array (which equivalent of (10×2×16) QSD array)
has 0.51314 ms.

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

A[2..0]

B[2..0]

S[2..0]

C[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

S[2..0]

C[2..0]
Z[2..0]

3' h0 --

first_step:U_fs_1

first_step:U_fs_2

first_step:U_fs_3

first_step:U_fs_12

first_step:U_fs_16

second_step:U_ss_1

second_step:U_ss_2

second_step:U_ss_3

second_step:U_ss_4

second_step:U_ss_5

second_step:U_ss_6

second_step:U_ss_10

second_step:U_ss_11

second_step:U_ss_13

second_step:U_ss_16

NO1[47..0]
NO2[47..0]

SUM[50..0]

first_step:U_fs_15

first_step:U_fs_14 second_step:U_ss_15

second_step:U_ss_14

first_step:U_fs_4

first_step:U_fs_5

first_step:U_fs_6 second_step:U_ss_7

first_step:U_fs_7

second_step:U_ss_9

second_step:U_ss_8

first_step:U_fs_11

first_step:U_fs_13

first_step:U_fs_8

first_step:U_fs_10

first_step:U_fs_9

second_step:U_ss_12

Page 780 of 1513

REFERENCES
[1] K. Deepak, “Design and Analysis of High Speed and Low Power

Reversible Vedic Multiplier Incorporating with QSDN Adder”,
International Journal of Innovative Technology and Exploring
Engineering (IJITEE), Vol.-8 Issue-4, pp. 273-279, February 2019.

[2] P. Dalmia,V. Vikas, A. Parashar, A. Tomar and N. Pandey, “Novel
High speed Vedic Multiplier proposal incorporating Adder based on
Quaternary Signed Digit number system,” 31th International
Conference on VLSI Design, ieee computer society 2017, pp. 289-
294, 2018.

[3] P. Gowthami and R. Satyanarayana, “Design of Digital Adder Using
Reversible Logic”, IJERA, Vol. 6, Issue 2, pp.53-57, February
2016M.

[4] C. Sathish Kumar and P. Reddy, "Implementation of a Fast Adder
Using QSD for Signed and Unsigned Numbers", International
Journal of Science, Engineering and Technology Research (IJSETR),
Vol. 3, Issue 11, pp. 3155-3160, November 2014.

[5] D. Jaina, K. Sethi and R. Panda, “Vedic Mathematics based multiply
accumulate Unit,” IEEE International Conference on Computational
Intelligence and Communication Systems, pp. 754-757, 2011.

[6] S. Saste1and A. Sawant, “Design and Implementation of Radix 4
Based Arithmetic Operations”, Advances in Intelligent Systems
Research, Vol 137, pp. 800-809, 2017.

[7] M.Suneetha, S.Anilkumar, and P.Sivakrishna, “Design and
Implementation of 2-Digit Adder using Quaternary Signed Digit
Number System” International Journal of Electrical, Electronics and
Computer Systems (IJEECS), Vol. 2, Issue 10, pp. 17-21, 2014.

[8] S.Mallesh and C. Narasimhulu, “Design of QSD Number System
Addition using Delayed Addition Technique”, International Journal
of Ethics in Engineering & Management Education, Vol. 1, Issue
10, pp. 1-4, October 2014.

[9] J. Moskal, E. Oruklu and J. Saniie, “Design and Synthesis of a Carry-
Free SignedDigit Decimal Adder”, IEEE International symposium on
Circuits and Systems, pp. 1089- 1092, 2007.

[10] A. Sruthi, Y. Raju and K. Mohan “Design and Implementation of
ALU Using QSD in FPGA Technology” International Journal of
Professional Engineering Studies (IJPRES), Vol. 5, Issue 3, pp. 18-
24, AUG 2015.

Page 781 of 1513

