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Abstract: Knowledge of the groundwater potential, especially in an arid region, can play a major
role in planning the sustainable management of groundwater resources. In this study, nine machine
learning (ML) algorithms—namely, Artificial Neural Network (ANN), Decision Jungle (DJ), Aver-
aged Perceptron (AP), Bayes Point Machine (BPM), Decision Forest (DF), Locally-Deep Support
Vector Machine (LD-SVM), Boosted Decision Tree (BDT), Logistic Regression (LG), and Support
Vector Machine (SVM)—were run on the Microsoft Azure cloud computing platform to model the
groundwater potential. We investigated the relationship between 512 operating boreholes with
a specified specific capacity and 14 groundwater-influencing occurrence factors. The unconfined
aquifer in the Nineveh plain, Mosul Governorate, northern Iraq, was used as a case study. The
groundwater-influencing factors used included elevation, slope, curvature, topographic wetness
index, stream power index, soil, land use/land cover (LULC), geology, drainage density, aquifer
saturated thickness, aquifer hydraulic conductivity, aquifer specific yield, depth to groundwater,
distance to faults, and fault density. Analysis of the contribution of these factors in groundwater
potential using information gain ratio indicated that aquifer saturated thickness, rainfall, hydraulic
conductivity, depth to groundwater, specific yield, and elevation were the most important factors
(average merit > 0.1), followed by geology, fault density, drainage density, soil, LULC, and distance
to faults (average merit < 0.1). The average merits for the remaining factors were zero, and thus,
these factors were removed from the analysis. When the selected ML classifiers were used to esti-
mate groundwater potential in the Azure cloud computing environment, the DJ and BDT models
performed the best in terms of all statistical error measures used (accuracy, precision, recall, F-score,
and area under the receiver operating characteristics curve), followed by DF and LD-SVM. The
probability of groundwater potential from these algorithms was mapped and visualized into five
groundwater potential zones: very low, low, moderate, high, and very high, which correspond to
the northern (very low to low), southern (moderate), and middle (high to very high) portions of the
study area. Using a cloud computing service provides an improved platform for quickly and cheaply
running and testing different algorithms for predicting groundwater potential.
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1. Introduction

Groundwater is a vital resource for supplying drinking water for millions of people
around the world, as well as for agriculture, industry, and preserving the natural environ-
ment. Relative to surface water, groundwater has a range of important benefits: it is less
susceptible to seasonal and perennial variability, often more evenly dispersed over large
areas, more insulated against pollution, and of acceptable quality for most common uses,
such as drinking and irrigation [1]. Groundwater also acts as a key strategic reservoir dur-
ing droughts [2]. Notwithstanding these benefits, groundwater is often under-monitored
and under-controlled in comparison with more visible surface water. As a result, it is
difficult to get a good picture of groundwater’s temporal and spatial availability, which is
the most important requirement for groundwater management. Hydrogeological mapping
is a tool for comprehensive groundwater resource development and planning. Hydrogeo-
logical maps are necessary for collecting and analyzing aquifer and related geological data
in order to establish a three-dimensional representation of the subsurface environment
where groundwater exists [3]. Furthermore, mapping aids in determining the exposure
of aquifers and their related ecosystems to pollution and overexploitation, as well as
identifying areas for artificial recharge and communicating information to groundwater
users [4]. Traditional groundwater mapping requires a lot of effort and money, especially in
remote areas or developing countries. This necessitates the development of new methods
to make groundwater exploration and assessment as effective as possible. One of these
methods is the assessment of groundwater potential by relying on geographic information
systems (GIS), which has also been associated with the use of remote sensing techniques
and global positioning system technology, machine learning (ML), and soft computing
techniques [5–7]. The term groundwater potential denotes the amount of groundwater
available in an area, and it is a function of several hydrologic and hydrogeological fac-
tors [8]. This definition, from our point of view, is too simple, as the groundwater potential
in an area is the outcome of a complex process that is not influenced by hydrological
and hydrogeological elements. Many other factors such as geology and structural setting,
geomorphology, and topography can influence groundwater accumulation. The most
accurate definition should be as follows: groundwater potential denotes the amount of
groundwater available in an area, and it is a function of several surface and subsurface
factors.

Martínez-Santos and Renard [9] provide a more practical definition for this term as
“an application of predictive mapping, a forecasting technique that consists in developing
spatially distributed estimates for a target variable based on a series of indirect indicators
(explanatory variables)”. The target outcome of groundwater potential maps is the fea-
sibility of drilling successful boreholes in different parts of a given region. In general, a
closer look at the literature shows two different meanings for groundwater potential. Some
researchers have used groundwater potential analysis as an exploration tool by assuming
that the study of surficial factors such as topography, geology, geomorphology, soil, land
use/land cover (LULC), drainage characteristics, lineament density, and proximity to
surface-water bodies offer an indirect exploration tool to find where the groundwater is
more likely to occur [10–12]. Others have contended that groundwater potential maps
show variation in groundwater storage across a given region and thus provide information
on groundwater availability and productivity [5,13,14].

Worldwide, researchers have used three types of techniques to model groundwater
potential: data-knowledge, data-driven, and hybrid models of knowledge and data-driven
techniques [15]. In data-knowledge models, such as simple overlay technique, fuzzy logic,
and multi-criteria decision making (MCDM), a specific number of groundwater-affecting
occurrence factors are combined to generate the groundwater potential map [16–19]. In
data-driven models, such as bivariate and multivariate statistical models, ML classifiers,
and hybrids of these three models, or with knowledge-driven models, the relationship be-
tween the locations of wells with specified pumping capacity or specific capacity (Sc)
and the groundwater influential occurrence factors is explored to map groundwater
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potential [5,13,20–24]. The locations of the operating groundwater wells, in this case, are
taken as the target (dependent) variable and the groundwater influential occurrence factors
are taken as predictors (independent variable).

Cloud computing services enable the development of virtual servers, referred to as
instances, inside a centralized computing facility operated by service providers such as
Amazon, Microsoft, or Google, among others [25]. Cloud computing encompasses all the
technologies provided as services over the Internet, as well as the hardware and software
in the data centers that support those services [26]. The key benefit of cloud computing
is that it allows users to access huge computational resources without having to invest
in conventional servers or distributed computing infrastructure. The major benefit of the
cloud is that any researcher with an internet connection, a username, a password, and
a system may access the final output from any location in the world [27]. Anyone may
perform the reengineering and test the results if necessary. The final assessed result can be
made available to an application that can use it as a web service. Hayley [25] discussed
how cloud computing can be effectively used for numerical modeling of groundwater flow
and automatic calibration of groundwater simulation models that need vast resources to
implement [28,29]. In this study, we use cloud computing in GIS-based groundwater poten-
tial mapping and examine the opportunity given by this remote, highly efficient platform
instead of using stand-alone applications. Wang et al. [30] presented the only available
study concerning the use of cloud computing to study groundwater potential mapping,
employing a simple overlay technique supported by the analytical hierarchy process (AHP)
method and employing only a few surface thematic layers such as topographic slope,
aspect, water-density, land surface temperature, and normalized difference vegetation
index (NDVI). The authors of the previous article used the groundwater potential maps as
an exploration tool to indicate where the groundwater was likely to occur.

In this study, the Microsoft Azure cloud computing platform was used for modeling
groundwater productivity in the Nineveh Plain, northern Iraq. Nine ML algorithms—
namely, Artificial Neural Network (ANN), Decision Jungle (DJ), Averaged Perceptron
(AP), Bayes Point Machine (BPM), Decision Forest (DF), Locally-Deep Support Vector
Machine (LD-SVM), Boosted Decision Tree (BDT), Logistic Regression (LG), and Support
Vector Machine (SVM)—were used for modeling the relationship between the locations
of 520 boreholes with specific capacity data and 14 groundwater-influencing occurrence
factors. The primary focus was to demarcate groundwater potential areas—e.g., areas with
a sufficient yield for groundwater abstraction for a given region. The novelty of this work
is that it is the first-time cloud computing has been used to reveal groundwater potential
(storage variation) using both surface and subsurface groundwater influential occurrence
factors, whereas in most groundwater potential studies, the subsurface factors (aquifer
related factors) have been ignored.

2. Materials and Methods
2.1. The Study Area

The study area (Nineveh Plain) is located in northeastern Mosul governorate, northern
Iraq, between 36◦47′27.47′ ′ N–35◦59′3.57′ ′ N latitude and 42◦44′33.51′ ′ E–43◦33′33.91′ ′ E
longitude. It covers an area of 2540 km2. It extends from Mosul Lake in the north to the
Great Zab River in the south and is bordered by the Tigris River on the west (Figure 1). The
elevation ranges from 1047 m above mean sea level (amsl) in the northeastern part of the
study area, within the Alqoosh and Ain Sifni anticlines, to 190 m amsl in the Tigris River
basin to the southwest. In general, the land surface is relatively flat in the middle and south
of the area, with some hills and valleys in the north and northeast (Figure 1). The ages of
exposed formations in the study area range from Middle–Upper Eocene to Quaternary. The
youngest formations are exposed in the middle and south of the study area, while the oldest
formations appear within the folded rocks in the north and northeast of the study (Figure 2).
Table 1 gives a brief overview of the exposed formations in the study area (see [30] for
more information). The study area contains many complex structures in the northern and
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northeastern parts (Figure 2), including several major faults near the folds. The axes of the
folds represent hydrologic divides. Geological formations that are exposed on the flanks of
these folds represent recharge areas the Pila Spi Formation, which is jointed and fractured
in the folded area. Six LULC classes are recognized in the study area: Urban, Agriculture,
Grassland/Pasture, Rocky, Forest, and Water Bodies (Figure 3). Agriculture covers about
1769 km2 (69.4%), while the other classes cover 771 km2 (30.6%). The soil textures in the
study area were mapped using 36 soil samples using the USDA web-based soil texture
calculator (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey) in 2 April
2020. Based on the assigned texture, the soils were classified into hydrological groups and
mapped using the Thiessen polygon method (Figure 4).
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Table 1. A brief description of the exposed geological formations in the study area (After [31]).

Formation Age Environment Description

Pila spi Middle–Upper Eocene Shallow marine Limestone and dolomite limestone
Fatha Middle Miocene Shallow marine Anhydrite, mudstone, and thin limestone

Injana Upper Miocene Sub-marine Red or gray colored silty marl or clay stones and purple
silt stones

Muqdadyia Pliocene Continental Gravely sandstone, sandstone, and red mudstone
Bai Hassan Late Pliocene Continental Conglomerate with sandstone, silt stone, and claystone
Quaternary Pleistocene–Holocene Continental Mixture of gravel, sand, silt, and clayWater 2021, 13, x FOR PEER REVIEW 6 of 31 
 

 

 
Figure 3. Major LULC in the study area. Figure 3. Major LULC in the study area.
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The construction of the conceptual model for study area was based on the records
data for boreholes obtained from the Groundwater Department in the city of Mosul. These
data represent characteristics of a well, including construction data, well owner, well depth
and geographic coordinates, lithology and stratigraphy data including intervals, material
types, and well screens position. Additionally, information such as depth to groundwater,
drawdown, pumping test data, and well discharge were also available. Thirty-four wells
were selected to represent the study area. These wells had a semi-completed record, and
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there was an even distribution of these wells through the area. The main water-bearing
layers in the study area are located in the Quaternary and Tertiary formations (Mukdadiyah,
Bai Hassan, and Injana Formations). Due to the lack of a regional confining unit in the
study area and the existence of numerous joints, faults, and fractures that allow hydraulic
connections between these formations, these water-bearing layers can be considered as
a single unconfined aquifer system, Figure 5. The groundwater depth ranges from 11 to
66 m below land surface (bls) and averages 28.81 m bls. Figure 6a shows the spatial
distribution of the groundwater depths in the study area based on the measurements made
by the authors in 58 wells evenly distributed throughout the study area. The depth to
groundwater increases from southeast to northeast. Overall, the shallow depths occur in
the plain, and the greater depths appear in the folded areas, especially where the oldest
formations are exposed. Groundwater levels (heads) were estimated by subtracting the
ground elevation from the depth to groundwater available at 58 wells, and the result was
interpolated by Empirical Bayesian Kriging technique to reveal the spatial distribution of
groundwater level over the study area, Figure 7. The groundwater levels are high in the
north and northeastern parts of the study area and decrease towards the Basin of Tigris
River. The north and northeast areas of the study area represent the recharge zone while
south and southwest areas represent discharge areas.Water 2021, 13, x FOR PEER REVIEW 9 of 31 
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Figure 6. Aquifer-related factors: (a) depth to groundwater (m), (b) saturated thickness (m), (c) hydraulic conductivity
(m/d), (d) transmissivity (m2/d), (e) specific yield (f), slope (%), (g) TWI, (h) SPI, (i) drainage density (km/km2), (j) distance
to faults (km), (k) fault density (km/km2), (l) annual rainfall (mm).
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The spatial distribution of the saturated thickness of this aquifer is shown in Figure 6b.
There is a clear decrease in the saturated thickness of the aquifer from the north and
northeast to the west and southwest. The structural setting (the distribution of folds and
faults) plays a major role in controlling the aquifer saturated thickness, in addition to the
proximity to the recharge area.

The pumping test data of 14 wells in the study area was used to infer the hydraulic
characteristics of the main aquifer, i.e., the hydraulic conductivity and specific yield. The
estimated hydraulic conductivity was interpolated using inverse distance weighting to
reveal its spatial distribution (Figure 6c). The hydraulic conductivity is low in the north and
increases towards the Tigris River in the south and west, where there are high-permeability
Quaternary and Tertiary sediments that mainly consist of pebbly sands. The transmissivity
is higher in the middle of the study area and the south than in the northern and eastern
parts (Figure 6d), which are mainly occupied by lower-permeability fractured rocks. The
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specific yield of the aquifer ranges from 0.001 to 0.01 (average 0.004), with the relatively
high values appearing in the northeast part of the study area and in small spots in the
middle and southeast (Figure 6e).

2.2. Workflow Steps

The steps for conducting this work are summarized in Figure 8 and consisted of
four stages. The inventory map of productive wells was prepared first from well capacity
data. This map was used as a target variable in the analysis of groundwater potential.
Second, 14 surface and subsurface factors influencing groundwater productivity—namely,
hydraulic conductivity, saturated thickness, specific yield, depth to groundwater, rainfall,
geology, soil, LULC, topography-related factors (slope, topographic wetness index (TWI),
stream power index (SPI)), drainage density, fault density, and distance to faults—were
collected from different sources such as field surveys, remote sensing data, and previous
works. These factors were used as predictors in the groundwater potential analysis. Third,
the relationship between the well inventory map and the influential groundwater occur-
rence factors was explored using nine ML algorithms through the Microsoft Azure cloud
computing platform. Fourth, the performance of the used algorithms was compared using
error statistics measures, and the best was selected to map the probability of groundwater
potential.

2.2.1. Operating Wells Inventory Map

Water wells in the study area are mainly used for drinking, industrial, and agricultural
(including livestock) purposes. The inventory map of the well locations was prepared
using the data of the General Commission of Groundwater (GCG), Mosul branch, and an
extensive field survey by the authors. We registered and mapped locations of 520 wells
to use as the target variable to generate the map of groundwater potential. Values of Sc,
which is the pumping rate divided by the drawdown [32], were considered. The Sc can be
efficiently used to design the maximum yield of a well and to estimate the transmissivity
of the aquifer tapped by the well. The pumping capacity of the well is not a good indicator
for determining the productivity of the water-bearing layer because pumps may vary in
capacity from one well to another. Therefore, the areas of low productivity may seem
to be highly productive if the pumping capacity of the well (flow rate) is high and vice
versa [33]. Values of Sc in the study area ranged from 0.006 to 9.994 L/s/m, with an average
of 1.000 L/s/m. The Sc of the 520 wells was divided into high-potential (>2 L/s/m) and
low potential (≤2 L/s/m) [5]. Wells with high and low productivity status were coded
as yes and no, respectively, to use in the classification problem solved in this study. After
assigning the codes for the wells, these wells were randomly partitioned into two groups:
70% (364 wells) were used for training the models, and the remaining 30% (156 wells) were
allocated for testing (Figure 9).

2.2.2. Factors Affecting Groundwater Occurrence and Availability

The numbers and types of groundwater-influencing occurrence factors used in the
analysis of groundwater potential vary depending on the complexity of the problem to
be solved, data availability, and the method in which the groundwater potential map is
used, i.e., as an exploration tool or to refer to the groundwater productivity and availability.
These factors can be categorized into two main groups: surface and subsurface. The surface
factors such as the topography-related factors, exposed lithological units, soil, LULC,
and drainage density mainly control the groundwater renewal rate, while subsurface
factors determine the aquifer capacity (the ability of the aquifer to store and transmit
groundwater) and the capability of an aquifer to respond to external stresses (natural or
induced). The subsurface factors, which include the transmissivity, storativity, aquifer type,
aquifer architecture, groundwater depth, and presence of structural features such as faults,
determine the strategic or fixed groundwater storage. In most cases, especially in arid and
semi-arid regions, due to the precipitation scarcity, uneven distribution of precipitation,
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and absence of perennial lakes and rivers that have direct contact with the aquifer system,
the percentage of renewable storage is much lower than the fixed groundwater storage
in stock. Therefore, many of the large aquifers in arid and semi-arid regions are depleted
and enter a stage of mining due to the imbalance between aquifer inputs and outputs [34].
Mapping of groundwater availability or productivity using only surface factors pertains
only to the renewable storage of the aquifer. To map the spatial distribution of groundwater
productivity across the study area, we need to consider both the surface and subsurface
factors.
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The elevation, soil, LULC, geology, depth to groundwater, aquifer saturated thickness,
hydraulic conductivity, and specific yield were generated using different sources such
as the 30 m Shuttle Radar Topography Mission digital elevation model (DEM), archival
data, and field test data (Figures 1–4 and Figure 6a–e), Section 2.1. To generate the slope,
TWI, and SPI, the same DEM that was used to generate the elevation layer was used after
pre-processing (fill sink) and re-projection. The importance of these factors for modeling
groundwater potential is comprehensively discussed elsewhere [35–37]. The slope thematic
layer was directly generated from the DEM (Figure 5f). Both TWI and SPI are used to
describe the spatial soil moisture pattern. TWI was developed by [38] and is defined as

TWI = ln
[

α

tanβ

]
(1)

where α is the local upslope area draining through a certain point per unit contour length,
and tan β is the local slope in degrees. TWI reflects the tendency of water to accumulate at
any point in a catchment (in terms of α) and the tendency of gravitational forces to move
that water downslope (in terms of tan β). The SPI measures the erosive power of the stream
and is defined as [39]

SPI = Astan β (2)

where As is a specific catchment area. The TWI and SPI maps are shown in Figure 6g,h.
Drainage density (DD) is the total length of all channels (L) in the drainage basin

divided by the area of the basin (A):

DD =
L
A

(3)

DD represents both the drainage basin’s ability to produce surface runoff and the
erodibility of the surface material by indicating the extent of terrain dissection by channels.
Areas with high DD are generally characterized by low infiltration rate, rapid runoff
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generation, and moderately erodible surface materials. As a result, when the DD is high,
the surface run-off is high, and the quantities of water infiltrated through the soil section,
which contribute to groundwater recharge and storage, are reduced. When the DD is
low, however, it is expected that water infiltration will be larger due to the availability of
adequate circumstances such as topographic characteristics, soil, and land uses, and that
this process will affect groundwater recharge. The DD in the middle and northern portions
of the study area is relatively dense, indicating that these parts receive less recharge than
other parts (Figure 6i).

The structural setting, represented by distance to faults and fault density, plays a role
in controlling the fixed groundwater storage by controlling the architecture of the aquifer
itself. In addition, faults allow water to enter the subsurface and enhance groundwater
storage [40]. The fault features were firstly digitized from the tectonic map of Iraq with a
scale of 1:1,000,000. The Euclidian distance command of ArcGIS 10.4 was used to create the
distance to faults map (Figure 6j), and the line density command was used to create the
fault density map (Figure 6k).

Rainfall is an important factor in delineating groundwater potential because it mainly
affects the renewable recharge of the aquifer system. The average annual sum of rainfall
recorded at eight stations inside and outside of the study area was used to map the
interpolated surface of this factor (Figure 6l) [41]. Overall, the rainfall in the northern part
of the study area is higher than in the south, indicating that recharge is higher in the north,
taking into consideration the exposed lithology and type of soil.

2.3. Feature Selection

Feature selection is the process of selecting a subset of characteristics from a dataset
based on their quality, importance, conventions, significance, and constraints [42]. Feature
selection helps in (1) simplifying the predictive models so that they can be easily developed
and interpreted; (2) shortening the time of model training, and (3) enhancing generalization
by reducing model over-fitting. In this study, the information gain ratio was used to
quantify which variables were important in the analysis of groundwater potentiality and
which should have been discarded to obtain more accurate ML models. Information gain
chooses features by assessing each variable’s gain in the context of the target variable. The
calculation is called mutual information between the two random variables. By dividing a
dataset according to a specified value of a random variable, information gain evaluates the
reduction in entropy or surprise. A higher information gain implies a lower entropy group
or groups of samples, and hence a lower level of surprise [43]. More information about the
mathematics of this technique can be found in [44].

2.4. Azure Cloud Platform and Machine Learning Classifiers Used

Azure is a cloud computing service for developing, testing, deploying, and managing
applications and services through Microsoft-managed data centers [45]. It offers software
as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS), and
it supports a wide range of programming languages, tools, and frameworks, including
Microsoft-developed and third-party software.

For this research, nine ML classifiers were used to map the probability of groundwater
potential in the study area. The first of these, ANN, is a computer system that mimics the
way the human brain analyzes and processes data [46]. An ANN is made up of hundreds
or thousands of artificial neurons called processing units that are connected via nodes.
Based on an internal weighting mechanism, the input units receive diverse forms and
structures of information, and the neural network strives to learn about the information
provided to generate one output report [47]. Backpropagation is a set of learning principles
used by ANNs to perfect their output results. Many hidden layers can be inserted between
the input data and output data layers. Just one or a few hidden layers can perform most
predictive tasks quickly.
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AP is a special kind of neural network perceptron, which is a classification method that
finds a separating hyperplane (a line that linearly divides a dataset) to make predictions.
The perceptron is an online algorithm, which means it processes each instance in the
training set individually [48]. Using a set of starting weights, the weighted sum of the
features is calculated for each sample in the training set. The weights stay unchanged if
this value has the same sign as the current example’s label. The weights are updated in a
generalization of this method by multiplying the feature vector by the learning rate and
by the gradient of some loss function [49]. In the AP, a weight vector is produced for each
iteration or pass over the training data. After that, the final prediction is determined by
averaging the weighted sum of each weight vector and examining the result’s sign.

SVM is an advanced supervised machine learning approach to classification and
regression problems. It aims to determine the optimum hyperplane for dividing a dataset
into distinct classes [50]. The data points near the hyperplane, called support vectors, are
important parts of the SVM since deleting them changes the location of the hyperplane
substantially. The SVM method selects a hyperplane with the largest possible margin
between it and any point in the training dataset, allowing the new data to be correctly
categorized. When defining a clear hyperplane is problematic, the two-dimensional data
are transformed into three dimensions using kernelling, and the hyperplane becomes a
plane [51]. The dataset is continuously mapped into higher and higher dimensions until an
optimum segregation hyperplane can be constructed.

LD-SVM is a kind of SVM in which the kernel function for mapping data points
to feature space is specially intended to minimize training time while keeping maximal
classification accuracy. Because this approach is based on supervised learning, it requires a
tagged dataset with a label column.

The BPM is a Bayesian method for linear classification. By selecting one “average”
classifier, the Bayes Point efficiently approximates the theoretically optimal Bayesian aver-
age of linear classifiers (in terms of generalization performance) [52]. The BPM is not prone
to overfitting the training data because it is a Bayesian classification machine.

DF is a fast supervised ensemble model, and it is a good choice for predicting a target
with a maximum of two outcomes. The DF algorithm is a classification-focused ensemble
learning approach. Ensemble techniques are founded on the basic idea that by developing
several related models and integrating them in some way, one may achieve better results
and a more generalized model than by depending on a single model. In general, ensemble
models outperform single decision trees in terms of coverage and accuracy.

DJ is a recent extension to DF. A DJ consists of an ensemble of decision-directed
acyclic graphs (DAGs). A DAG enables numerous pathways from the root to each leaf,
unlike traditional decision trees that only allow one path to each node. Node splitting and
merging are driven by the minimization of the same objective function during training, in
this case, the weighted sum of entropies at the leaves. Results from a variety of datasets
demonstrate that DJs need significantly less memory than DFs and various other baselines,
while significantly enhancing generalization [53].

A BDT is an ensemble learning approach in which the first tree’s errors are corrected
by the second tree, the second tree’s errors are corrected by the third tree, and so on. The
whole ensemble of trees that produces the prediction is used to create the prediction. BDTs
are, in general, the simplest approaches for achieving top performance on a wide range of
machine learning problems when correctly set. They are, nevertheless, memory-intensive
learners. As a result, a BDT model may not be able to handle the huge datasets that linear
learners can.

Finally, LG is a well-known statistical approach for predicting the probability of a
given event, and it is particularly useful for classification problems. The algorithm predicts
the probability of occurrence of an event by fitting data to a logistic function.
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2.5. Error Statistics Used to Evaluate the Model Performances

Five error measures were used in this study to evaluate the performances of the ML
models: accuracy (ACC), precision (P), recall (R), F-score (F), and area under the receiver
operating characteristic curve (AUC). ACC is the proportion of cases that are predicted
correctly by the model [54]. It is computed in terms of confusion matrix as

ACC =
TP + TN

TP + FP + FN + TN
(4)

where, TP is the number of cases that predicted correctly as high potential, FN is the number
of cases predicted incorrectly as high potential, TN is the number of cases predicted
correctly as low potential, and FP is the number of cases predicted incorrectly as low
potential. Precision is the value of overall positive real outcomes (high potential outcomes)
and is defined as

Precision (P) =
TP

TP + FP
(5)

The recall is the proportion of positive cases that are predicted correctly and is calcu-
lated as

Recall (R) =
TP

TP + FN
(6)

The F-score is the weighted average of P and R and is computed as

F =
2PR

P + R
(7)

Finally, the receiver operating characteristic curve is a graphical plot that illustrates
the diagnostic ability of a binary classifier system, as its discrimination threshold is varied.
It is created by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. The AUC is a measure of the usefulness of a test in general,
where a greater area means a more useful test. The AUC is computed as

FPR =
FR

FP + TN
(8)

TPR =
TP

TP + FN
(9)

AUC = ∑ i∈(TP+FP+FN+TN)
(TPRi + TPRi−1)(FPRi + FPRi−1)

2
(10)

3. Results

Weka 3.8.3 software was used to evaluate the predictive capabilities of the used
factors and based on the information gain ratio with the average merit using 10-fold cross-
validation (Table 2). Aquifer saturated thickness had the highest average merit (0.31),
followed by rainfall (0.238), hydraulic conductivity (0.189), depth to groundwater (0.185),
specific yield (0.183), elevation (0.161), geology (0.062), fault density (0.058), drainage
density (0.048), soil (0.048), LULC (0.046), and distance to faults (0.038). The average merit
values for slope, TWI, and SPI are zero, and thus these factors were excluded because they
were unlikely to play a role in regulating groundwater production in this area.

Based on the outcomes of the training process (Table 3) the DJ classifier had the highest
ACC (0.94), followed by BDT (0.93), DF (0.93), LD-SVM (0.91), SVM and ANN models (both
0.86), BPM and LR (both 0.85), and AP (0.84). In terms of precision, all models performed
well, with DJ presenting the highest performance (0.95), followed by ANN (0.92) and BDT
(0.90). The BDT model showed the highest performance concerning the classification of
high potential locations, having a recall index of 0.82, followed by LD-SVM (0.81), DJ (0.80),
and DF (0.78). In terms of the F-score, the highest performance models were DJ (0.87), BDT
(0.86), DF (0.83), and LD-SVM (0.83). Finally, for AUC values, DJ and BDT showed the
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highest performance (0.95), followed by DF (0.930) and ANN (0.90). The other algorithms
also performed well (AUC > 0.80).

Table 2. Feature selection with information gain ratio (10-fold cross-validation).

Attribute Average Merit Average Rank

Aquifer saturated thickness 0.310 ± 0.016 1.0 ± 0.00
Rainfall 0.238 ± 0.038 2.7 ± 1.42

Hydraulic conductivity 0.189 ± 0.013 3.3 ± 1.19
Depth to groundwater 0.185 ± 0.008 4.0 ± 0.63

Specific yield 0.183 ± 0.015 4.2 ± 0.75
Elevation 0.161 ± 0.007 5.8 ± 0.40
Geology 0.062 ± 0.004 7.3 ± 0.44

Fault density 0.058 ± 0.013 8.2 ± 0.98
Drainage density 0.048 ± 0.004 9.6 ± 1.02

Soil 0.048 ± 0.003 9.7 ± 1.10
LULC 0.046 ± 0.007 10.6 ± 1.02

Distance to faults 0.038 ± 0.005 11.6 ± 0.92
TWI 0.000 ± 0.000 13.1 ± 0.30
Slope 0.000 ± 0.000 13.9 ± 0.30
SPI 0.000 ± 0.000 15.0 ± 0.00

Table 3. Examining the performance of the models used using error measures.

Model

Error Measures Used

Training Phase Testing Phase

ACC AUC Precision Recall F-Score ACC AUC Precision Recall F-Score

AP 0.84 0.86 0.76 0.59 0.66 0.83 0.85 0.75 0.58 0.65
LR 0.85 0.87 0.82 0.54 0.65 0.84 0.86 0.81 0.53 0.64

BPM 0.85 0.87 0.78 0.62 0.69 0.84 0.86 0.77 0.61 0.68
NN 0.86 0.90 0.92 0.51 0.66 0.85 0.89 0.91 0.50 0.65

SVM 0.86 0.87 0.84 0.59 0.69 0.85 0.86 0.83 0.58 0.68
LD-SVM 0.91 0.91 0.85 0.81 0.83 0.90 0.90 0.84 0.80 0.82

DF 0.92 0.93 0.89 0.78 0.83 0.91 0.92 0.88 0.77 0.82
BDT 0.93 0.95 0.90 0.82 0.86 0.92 0.94 0.89 0.81 0.85
DJ 0.94 0.95 0.95 0.80 0.87 0.93 0.94 0.94 0.79 0.86

3.1. Results Validation

After training, the test dataset was passed to the algorithms (Table 3 and Figure 10).
In terms of overall ACC, all models performed very well, with the best performance by DJ
(0.93), BDT (0.92), DF (0.91), and LD-SVM (0.90). The remaining models also showed high
ACC (>0.8). In the case of precision, the highest performance model was DJ (0.94), followed
by ANN (0.91), BDT (0.89), DF (0.88), LD-SVM (0.84), SVM (0.83), LR (0.81), BPM (0.77),
and AP (0.75). In terms of recall, the best performing model was BDT (0.81), followed by
LD-SVM (0.80), DJ (0.79), and DF (0.77). The F-score was best for DJ (0.86), followed by
BDT (0.85) and LD-SVM (0.83). The other models had F-scores between 0.60 and 0.70 and
are thus classified as moderate-performance. Finally, all models had AUC > 0.80 (very
good to excellent), with DJ and BDT having the highest values (0.94), followed by DF (0.92)
and LD-SVM (0.90).
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Training and testing revealed that the DJ, BDT, DF, and LD-SVM models performed
best in demarcating the groundwater productivity in the study area. The probability
values of these models for the training and testing stage were exported to ArcGIS 10.8.1
and interpolated to map groundwater potential based on the predicted probability of
0 (low) to 1 (high). We employed a natural break classification system in the GIS platform
to reclassify the probability values into five groups—namely, very low, low, moderate,
high, and very high (Figure 11)—to build a theme zoning map that could be more readily
understood by end-users and policymakers. The natural break classification scheme is the
most common system used in groundwater potential mapping [5,23,55–57]. We reduced
the five groups to three zones (very low–low, moderate, and high–very high) and listed the
zonal areas calculated by the best four models in Table 4. Overall, the spatial distributions
of groundwater potential zones for the DJ, DF, and LD-SVM models were similar. The very
low–low zone occupied 29.3–38% of the study area, mainly in the north and northeast. The
moderate zone covered 31.8–33.8% of the study area, mainly in the south. The high-very
high zone encompassed 34.0–36.9% of the study area, primarily in the middle. For the BDT
model, the groundwater potential zones were somewhat different: the very low–low zone
was distributed over large areas in the north, middle, and south (38% of the study area), the
moderate zone covered 23% of the study area, and the high–very high zone encompassed
39%.

When it comes to developing strategies to manage the aquifer in the region, the
discrepancy in the groundwater potential map between the second-best algorithm (BDT)
and the remainder of the algorithms may cause some difficulty for hydrogeologists and
decision makers. To reduce this difference (i.e., the uncertainty), the ensemble approach
was used to produce three maps: the first map relied on all four best algorithms (i.e., DJ,
BDT, DF, and LD-SVM), Figure 12a, while the second map was produced by the ensemble of
algorithms that gave a similar pattern to the distribution of groundwater zones in the study
area (DJ, DF, and LD-SVM), Figure 12b. The third map was produced by the ensemble
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of all used models (Figure 12c). When comparing these two maps, it can be seen that
the distribution of groundwater potential zones is very similar for the first two maps and
slightly different from the third map. The very low–low zones occupied 77.6% (1976 km2)
and 77.5% (1974.8 km2) of the study area, the moderate zone occupied 9.9% (251.6 km2)
and 10.2% (258.4 km2), and the high–very high zones occupied 12.5% (319.4 km2), for
the first and second ensemble models, respectively. In case of the third map (all used
models), the very low-low zones were distributed over 72.8% (1852.9 km2) of the study
area, the moderate zone covered 13.7 (348.3 km2), and the high-very high zones occupied
13.6% (345.8 km2). Perhaps, the reason for the result similarity is that all algorithms used
performed well, especially in the training stage. When using the ensemble approach,
the weaknesses of the algorithms that performed fairly low in the testing stage may be
mitigated, which could explain why these maps show the same pattern and approximate
occupied potential areas.

Table 4. Areas occupied by groundwater potential zones.

Groundwater
Potential Zone

Algorithms Used

DJ BDT DF LD-SVM

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Very low–low 33.9 862 38 973 34.2 870 29.3 744
Moderate 32.1 816 23 576 31.8 806 33.8 856

High–very high 34.0 862 39 991 34.0 864 36.9 940

3.2. Source of Result Uncertainty

The uncertainty in the results can be attributed to either the physical model or the
method used to integrate the data (i.e., the algorithm) [9]. The physical models here mean
the groundwater-influencing occurrence factors. We used both surface and subsurface
factors to delineate groundwater potential zones; thus, the maps produced can be used to
quantify groundwater potentiality, but only for the shallow groundwater aquifer system
in the study area. When attempting to assess the deep aquifers in comparison with the
shallow ones, more detailed research should be conducted. Although there is no global
agreement on the type and number of factors used in the analysis of groundwater potential,
the inclusion of both surface and subsurface factors in this analysis makes it more realistic
than using only surface factors, which only reflect the amount of renewable storage of the
aquifer.

Another source of uncertainty may have resulted from the use of interpolation tech-
niques, which may be caused by the type of interpolation technique (deterministic or
stochastic), the number of samples taken, which is controlled by the nature of the field
work, and the financial cost, which may vary depending on the factor used. To reduce the
uncertainty in our instance, we used the stochastic kriging technique and its derivative
Empirical Bayesian Kriging, which is believed to be more accurate than deterministic
models, such as the inverse distance approach. Another significant source of uncertainty
is attributed to the ML algorithms, particularly if there is no relationship between the
groundwater influential factors and the borehole location target variable. Examining the
overfitting (Table 3) revealed that there is no overfitting problem, allowing the findings of
training and testing to be used to map the groundwater potential.
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4. Discussion
4.1. Contribution of Groundwater Factors in Developing Groundwater Potential Map

The findings of this research indicate that a combination of subsurface factors (aquifer
saturated thickness, aquifer hydraulic conductivity, depth to groundwater, and aquifer
specific yield) and surface factors (rainfall and elevation) contribute most to groundwater
potential in the study area. Both transmissivity (the product of saturated thickness and
hydraulic conductivity) and specific yield have a significant impact on aquifer groundwater
storage fluctuation, regulating groundwater productivity and accessible groundwater for
extraction. Elevation is a key morphological factor that influences the development of
soil and vegetation profiles, which can affect infiltration rates, while rainfall can affect the
quantity of runoff generation and percolation through the soil column [35,58]. As the only
main source of recharge in this aquifer is rainfall, it is obvious why this factor was more
important than other factors used in the analysis of groundwater potentiality. Geology,
fault density, drainage density, soil, LULC, and distance to faults were less important
(average merits < 0.1) in contributing to groundwater potential in the study area. TWI,
SPI, and slope had no influence on the groundwater availability because the study area is
nearly flat and there is a relatively smooth slope from northeast to southwest.

4.2. Validation of the Models

The results of the present study are in agreement with previous outcomes concerning
groundwater potentiality mapping and the usage of machine learning models and their
superiority in developing groundwater potential mapping [59–61]. In the present study,
the DJ model achieved the highest performance for all error measures and was slightly
better than BDT in both training and testing stages, followed by DF and LD-SVM. Other
algorithms were good in terms of ACC, AUC, and accuracy, but in terms of recall and
F-score, they had poor performance. The superiority of BDT in modeling groundwater
potential and spring potential is well known [62]. However, to our knowledge, this is the
first time the DJ technique has been used to model groundwater potential; therefore, this
algorithm is promising in this field, as it has outperformed the master machine learning
algorithms such as ANN and SVM, which are known for their predictive abilities.

4.3. Distribution of Groundwater Potential Zones

Mapping the probability of groundwater potential in the study area using the DJs,
DF, and LD-SVM models showed the same pattern of potentiality distribution, and their
results were different from results obtained by BDT. The ensemble technique [9,54] was
used to reduce the difference, and three ensemble maps were produced: with all four best
performance models, with only similar pattern algorithms, and with all used algorithms.
The produced three ensemble maps revealed the same pattern and occupied approximately
the same potential areas. The very low–low, moderate, and high–very high zones covered
12.4% (633.3 km2), 10.05 (510 km2), and 77.55% (3950.8 km2) of the study area, respectively.

Overall, the very low–low zones appeared in the areas where the saturated thickness
of the aquifer and the hydraulic characteristics had low values compared with other parts
of the study area, and this may have been why these portions of the aquifer have low
production values, even though these areas receive more rainfall than the middle and
southern parts. At the same time, these portions also have a high elevation range and
steep slope, and thus, most of the falling rainfall may turn into surface runoff instead
of infiltrating to enhance the groundwater storage. On the other hand, high and very
high potentiality zones were distributed in the east and west of the middle of the study
area. The moderate zone was distributed unevenly between the other zones, and a large
part of it was concentrated in the southern part. In general, it can be said that the high
potential occupied the middle part of the study area, the moderate zone encompassed the
southern part, and the low potential zone covered the northern part. The distribution of
potentiality zones was closely related to the subsurface factors that control the ease with
which groundwater flows through the aquifer material and the capability of the aquifer
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material to store groundwater, i.e., the aquifer transmissivity and storativity. These factors
in most of the studies related to groundwater potential are neglected because, in most cases,
it is difficult or impossible to collect enough data to define the spatial distribution of these
thematic layers, especially in poor data countries. Thus, most research depends only on the
surficial factors that only determine the renewable storage, which in most cases, especially
in arid and semi-arid regions, represents only a small part of the storage available in the
aquifer being studied. Therefore, the study of the aquifer itself and its characteristics is
very important for mapping the groundwater potential, in addition to the factors that only
control the renewable amount of water entering the aquifer system, such as soil, LULC,
and topographical-related factors.

5. Concluding Remarks

In this study, the Microsoft Azure cloud computing service was used for modeling
groundwater potential in the Nineveh Plain of northern Iraq using nine machine learning
algorithms—namely, ANN, AP, SVM, LD-SVM, BPM, DFs, DJs, BDT, and LG. The following
conclusions were drawn from this study. First, the most important factors in groundwater
potential are aquifer saturated thickness, followed by rainfall, hydraulic conductivity,
depth to groundwater, and specific yield. Most of these are subsurface factors that control
the ability of the aquifer to transmit and store water, and it is important to incorporate
these factors in developing groundwater potential maps. The other factors that have
a role in controlling groundwater potentiality include elevation, geology, fault density,
drainage density, soil, and LULC. Second, the DJ and BDT models were the best-performing
ML models, followed by DF and LD-SVM. The DJ model, which does not appear to
have been used for modeling groundwater potential mapping, outperformed well-known,
highly efficient ML algorithms. Third, the high–very high groundwater potential zone
in the study area mostly covers the middle part and is associated with high values of
aquifer hydraulic characteristics. The ensemble technique is very efficient for reducing the
uncertainty in groundwater potential analysis and can be used when the spatial distribution
of groundwater potentiality zones produced by the different algorithms is different. Finally,
using a cloud computing service offers an advanced environment in which to run and test
multiple algorithms for modeling groundwater potential in a fast and inexpensive way.
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