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Abstract
A semi-confined aquifer from Kirkuk Governorate, northern Iraq was taken as a case study to map groundwater potential in 
terms of both the availability and quality of the resource. In terms of quantity, five machine learning (ML) algorithms were 
used to model the relationship between locations of 1031 wells with specific-capacity data and nine influential groundwater 
occurrence factors. The algorithms used were linear discriminant analysis, classification and regression trees, linear vec-
tor quantization, random forest, and K-nearest neighbor. The groundwater occurrence factors used were elevation, slope, 
curvature, aspect, aquifer transmissivity, specific storage, soil, geology, and groundwater depth. Analysis of the worthiness 
of the factors used in the analysis by the information gain ratio indicated that five out of nine factors were worthy (average 
merit > 0): groundwater depth, elevation, transmissivity, specific storage, and soil. The remaining factors were non-worthy 
(average merit = 0) and thus they were removed from the analysis. The performance of the five ML algorithms was inves-
tigated using accuracy and kappa as evaluation metrics. Applying the models in the carte package of R software indicated 
that random forest was the best model. The probability values of this model were used for mapping quantitative groundwater 
potential after classification into three zones: poor, moderate, and excellent. Groundwater quality for drinking was modeled 
using the water quality index and the weights of the chemical constituents used (pH, TDS,  Ca2+,  Mg2+,  Na+, SO2−

4
 , Cl− , and 

NO
−

3
 ) were assigned using entropy information theory. A map of the groundwater quality index revealed five classes: < 50 

(excellent), 50–100 (good), 100–150 (moderate), 150–200 (poor), and > 200 (extremely poor). Combining the groundwater 
quality index map with the groundwater potential map using summation operators revealed three zones of groundwater 
potential: poor, moderate, and excellent. Comparing this combined map with the quantitative groundwater potential map 
showed different patterns for the distribution of potential classes, which confirms that analysis of the groundwater potential 
should include groundwater quality as an important factor.
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Abbreviations
GAOFs  Groundwater-affecting occurrence factors
CART   Classification and regression trees
GIS  Geographic information system
GWQI  Groundwater quality index
KNN  K-nearest neighbor
LDA  Linear discriminant analysis
LU/LC  Land use/land cover
LVQ  Linear vector quantization
ML  Machine learning
TWI  Topographic wetness index

Introduction

In the last few years, groundwater potential mapping has 
become an essential geospatial tool for aquifer management. 
Groundwater potential analysis gives decision-makers and 
hydrogeologists simple rules for managing the aquifer sys-
tem with cost-effective and simple-to-construct models. To 
model groundwater potential, researchers worldwide have 
used two broad classes of techniques: data-knowledge and 
data-driven methods (Davoudi Moghaddam et al. 2020). In 
data-knowledge techniques (e.g. simple weighted overlay, 
fuzzy logic, and multi-criteria decision making), a spe-
cific number of groundwater-affecting occurrence factors 
(GAOFs) are assigned weights and are linearly combined 
to produce the groundwater potential map (Shahid et al. 
2002; Al-Abadi and Shahid 2015; Rahmati et  al. 2015; 
Aouragh et al. 2017; Arabameri et al. 2019). There is not 
yet consensus concerning the number of factors to be used, 
which varies depending on the nature of the problem being 
solved and the data availability (Kordestani et al. 2019; Ter-
meh et al. 2019). In the data-driven approach, the maps of 
groundwater potential are constructed through the study of 
the relationship between the locations of pumping wells with 
specified discharge rates or specific capacity data as target 
variables and the GAOFs as predictors (Kim et al. 2019; 
Razavi-Termeh et al. 2019; Arabameri et al. 2019; Lee et al. 
2020; Panahi et al. 2020). With the development of geo-
graphic information system (GIS) technology and remote 
sensing techniques, groundwater potential mapping becomes 
easier to implement without the need for very costly and 
time-consuming field surveys. GIS is a powerful technology 
for handling spatial and associated non-spatial (attribute) 
information (King 1991). Remote sensing is a significant 
source of information on Earth’s surface features related to 
the groundwater occurrence, such as the presence of line-
aments, land use/land cover (LU/LC) characteristics, and 
geomorphological information (Oh et al. 2011). This infor-
mation can be easily integrated with other data types in GIS 
and then analyzed (Jha et al. 2007; Das 2019).

Groundwater potential maps are mainly used as a man-
agement tool for aquifer systems through evaluating which 
portion of the aquifer is more productive, i.e. as an indicator 
of groundwater availability. However, to manage an aqui-
fer efficiently, information on groundwater quality is also 
needed. Groundwater quality assessment is one of the first 
tasks that should be considered in groundwater studies (Sin-
ghal and Gupta 2010; Şen 2014; Fetter 2018) because of the 
need to determine the suitability of this water for various 
uses such as drinking, agriculture, and industry. Water qual-
ity in highly-productive aquifers may be impaired by salinity 
(Mehta et al. 2000; Prinos et al. 2014), non-point-source 
pollutants such as nitrate from agriculture (Puckett et al. 
2011), and geogenic pollutants such as arsenic (Mukherjee 
et al. 2006; Fendorf et al. 2010; Erban et al. 2013; Schaefer 
et al. 2017).

In this study, a methodology is introduced for modeling 
both quantity and quality aspects in a groundwater poten-
tial assessment. To show the advantages of the proposed 
approach, a semi-confined aquifer from Kirkuk Governo-
rate in northern Iraq is taken as a case study. For modeling 
the groundwater potential in terms of quantity, five master 
machine learning (ML) algorithms were used: linear discri-
minant analysis (LDA); classification and regression trees 
(CART); linear vector quantization (LVQ); random forest 
(RF); and K-nearest neighbor (KNN). For modeling the 
groundwater potential in terms of quality, the groundwa-
ter quality index (GWQI) was used. GWQI considers the 
composite influence of individual parameters in deriving a 
single number that describes overall water quality both spa-
tially and temporally (Coletti et al. 2010). The novelty of this 
research lies in the fact that it considers both the quantitative 
and qualitative dimensions of groundwater in the study of 
groundwater potential, rather than relying solely on ground-
water quantity as a deciding factor in aquifer management.

Characteristics of the study area

The study area is the 422-km2 Lailan basin (35°07′–35°29′ 
N; 44°30′–44°40′ E) in the southern part of Kirkuk prov-
ince, Iraq (Fig. 1), approximately 255 km north of Bagh-
dad. The basin is bounded by the Kirkuk structure to the 
northeast, the Jambur anticline to the southwest, and two 
streams on the north and south (Khassa Chai and Tawuq 
Chai, respectively). The basin is almost flat in the middle 
and becomes hilly to the southwest, with an elevation vary-
ing between 254 and 410 m above mean sea level (amsl) 
(Fig. 2). The area has a semi-arid climate (BSh in the Köp-
pen–Geiger classification system). The annual average rain-
fall of the area is 347 mm/year. Units exposed in the basin, 
which range from Miocene to Holocene in age, include the 
Fatha, Injana, Mudkadiya, and Bai Hassan formations and 
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Fig. 1  Location of the Lailan basin
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Quaternary sediments (Table 1). The oldest units are usually 
exposed on the edge of the basin, while the Quaternary sedi-
ments cover the middle part of it (Fig. 3). The dominant LU/
LC classes are unoccupied land, cropland and urban areas 
(Fig. 4). Five soil types are recognized in the study area, 
with reddish-brown soils (S27) covering approximately half 
of the area (Table 2). The texture of these soils is silty loam 
(Jasem et al. 2016).

The aquifer system in the Lailan basin occurs in the Bai 
Hassan, Mukdadiya, and Quaternary units. The main semi-
confined aquifer occurs within the Bai Hassan Formation 
(Rasheed 2019). The average saturated thickness of the 
aquifer is 45 m. The groundwater depth in the basin var-
ies from 38 to 63 m and generally increases from north-
east to southwest (Fig. 5a). Groundwater flows from east 
to west and southeast to northwest, with hydraulic head 

Fig. 2  Elevation of the Lailan basin (in m amsl)
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ranging from 371 to 274 m amsl (Fig. 5b). The strategic 
groundwater storage is 50 ×  106  m3 and the renewable stor-
age is 11 ×  106  m3, taking into consideration that the annual 
groundwater recharge is 25  mm/year (Rasheed 2019). 
Groundwater assessment is critical within the basin, since 
groundwater supports drinking, aquaculture, and irrigation, 
and many people living in the basin rely on farming for their 
livelihood.

Materials and methods

The proposed methodology in this study has three distinct 
phases (Fig. 6). The first phase includes the following steps: 
(i) preparing the database of the operating groundwater wells 
and GAOFs; (ii) testing the importance of the GAOFs in the 
analysis of the groundwater potential using the information 
gain-ratio feature-selection approach; (iii) applying, com-
paring and validating ML models to select the best model; 
and (iv) mapping the groundwater potential using the best 
performing ML model. The second phase of the analysis 
involves: (i) the collection of groundwater samples and 
analysis for chemical parameters using standard methods; 
(ii) calculating the weight of each chemical parameter using 
the entropy theory approach; and (iii) the calculation of the 
GWQI and interpolation of the results to show the GWQI 
spatial distribution in the basin. In the third phase, the maps 
of groundwater potential and GWQI are combined to show 
the groundwater potential of the study area in terms of quan-
tity and quality.

Groundwater operating wells inventory

The archive of the General Commission of Groundwater in 
Kirkuk and field surveys were relied on to prepare an inven-
tory map of the 1031 groundwater operating wells. The spe-
cific capacity of these wells, which ranges from 0.60 to 5.36 

L/s/m, was partitioned into high-potential (> 2 L/s/m) and 
low-potential (≤ 2 L/s/m) categories (Al-Abadi et al. 2019). 
For the classification problem adapted here for modeling 
groundwater potential, wells with high and low potential 
were coded as yes and no, respectively. After assigning the 
appropriate code for each well, the total number of wells 
was then randomly partitioned into two groups: 70% of the 
data (721 wells) were utilized for ML model training, while 
the remaining 30% (310 wells) were allocated for testing.

Preparing groundwater‑affecting occurrence factors

There is no consensus about the number and type of GAOFs 
used in the analysis of groundwater potential. In general, 
the types of GAOFs used can be classified into two broad 
categories. The first is surficial factors, which primarily 
affect the groundwater recharge (renewable storage of the 
aquifer), such as topographic factors [elevation, slope, cur-
vature, aspect, topographic wetness index (TWI), stream 
power index], drainage density, geology, soil, LU/LC, nor-
malized difference vegetation index, mean annual rainfall, 
and distance to surface features such as streams. The second 
type includes factors controlling the strategic groundwater 
storage, such as the aquifer saturated thickness, hydraulic 
characteristics (transmissivity and storativity), distance to 
subsurface features such as faults (which may be associ-
ated with lineaments), and fault density. For this study, nine 
GAOFs were selected depending on the data availability: 
elevation, slope, curvature, aspect, TWI, soil, transmissiv-
ity, specific storage, and depth to groundwater. The impor-
tance of these factors, especially topographical factors (Al-
Abadi et al. 2016; Naghibi et al. 2016; Khosravi et al. 2018), 
has been discussed extensively in other studies and is not 
repeated here. The elevation layer was created from a digital 
elevation model (DEM) with a 30 × 30 m grid size (Fig. 2). 
This was obtained from the NASA Shuttle Radar Topogra-
phy Mission. The DEM was used as input to extract slope, 

Table 1  Geological overview of the study area (after Jassim and Goff 2006 and Buday and Jassim 1980)

Formation/geological unit Description Age Depositional environment

Fatha Cyclic deposits of anhydrite, gypsum, clay-
stone, limestone, sandstone, and marl

Middle Miocene Rapidly subsiding sag basin

Injana Fine-grained pre-molasse sediments depos-
ited initially in coastal areas, and later in 
fluviolacustrine systems

Late Miocene Anastomosing rivers

Mukdadiya Fining upward cycles of gravelly sandstone, 
sandstone, and red mudstone

Pliocene Fluvial environment in a rapidly subsiding 
foredeep basin

Bai Hassan Thick layers of gravel or conglomerates 
interbedded with sandstone, siltstone, and 
claystone

Pliocene Alluvial fans originated from the high folded 
zone and the Zagros suture

Quaternary deposits 
(Sheet runoff/Slope 
deposits)

A mixture of gravel, sand, silt, and clay Pleistocene–Holocene –
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curvature, aspect, and TWI (Fig. 8a–d). The geological map 
of Iraq (1:1,000,000 scale) was obtained from the Geological 
Survey of Iraq, and a digital copy was created using ArcGIS 
10.5 (Fig. 3). The soil map (Fig. 7) was generated according 
to the work of Muhaimeed et al. (2014) and the exploratory 
soil map of Iraq with a scale of 1:1,000,000 (https:// esdac. 
jrc. ec. europa. eu/ conte nt/ explo ratory- soil- map- iraq- map-1). 
To generate transmissivity and storage coefficient thematic 

layers, pumping test data from 12 wells evenly distributed 
through the study area were analyzed by the Hantush and 
Jacob (1955) analytical solution for a leaky confined aquifer 
in AQTESOLV 4.5 software. The estimated transmissivity 
for the area was found to range from 24.9 to 218  m2/day 
with an average of 125  m2/day, while the estimated stor-
age coefficient ranged from 0.003 ×  10–3 to 1.1 ×  10−2 with 
an average of 2.6 ×  10−3. The obtained values of hydraulic 

Fig. 3  Geology of the Lailan basin
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characteristics were then interpolated in ArcGIS 10.5 
throughout the studied basin using ordinary kriging (Fig. 8e, 
f). The transmissivity values generally increase from north 
to south and from east to west. On the other hand, there is no 
distinctive trend in the spatial distribution of specific storage 
coefficients. However, the central and northern parts of the 
study area generally have the highest values. Finally, the well 
log records were used for mapping depth to groundwater 

(Fig. 5). All GAOFs were prepared as a raster grid with 
30 × 30 m cells for applying the ML models. The total num-
ber of cells was 1,199,890 (970 columns and 1273 rows).

Groundwater sampling and analysis

Twenty-two groundwater samples were collected from oper-
ating wells in the basin 9–12 August 2017 and analyzed for 

Fig. 4  LU/LC in the Lailan basin
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chemical parameters using standard methods (Table 3). The 
groundwater samples were collected in 1-L polyethylene 
bottles. These bottles were first washed with dilute  HNO3 
and then with distilled water. After that, the bottles were 
rinsed several times with the pumping groundwater for each 
well after 15 min of the pump running before taking the 
samples. Temperature, electrical conductivity (EC), and pH 
were measured on site using a calibrated multi-probe device. 
Samples were labeled and were kept in a field refrigerator 
for 2 days, then transferred to the laboratory of the General 
Commission of Groundwater in Kirkuk for chemical analysis 

of major ions  (Ca2+,  Mg2+,  Na+,  K+,  Cl−,  SO4
2−,  HCO3

−, 
and  NO3

−). The charge–balance error of the groundwater 
samples was found to be within ± 10%.

Feature selection using information gain ratio

Feature selection techniques can be implemented in data-
mining applications to reduce the dimensionality of the orig-
inal data and enhance learning efficiency (Liu and Motoda 
1998). By eliminating the irrelevant and redundant features 
in the data, feature selection accelerates data-mining algo-
rithms, improves performance, and enhances model under-
standability (Zhao and Liu 2011). The information gain ratio 
is an improved version of gain information technique (Quin-
lan 2014). Information gain ratio measures the predictability 
of attributes (here GAOFs) by measuring the information 
gain for the class (Al-Abadi 2018). More information and 
mathematical background of this technique are found in Bui 
et al. (2016).

Machine learning algorithms

LDA is a generalized method of finding a linear combination 
of features that characterizes or distinguishes two or more 
groups of objects or events (Fisher 1936). The goal of the 
LDA is to project a feature space onto a smaller subspace 

Table 2  Soil types in the study area

Code Description Occupied areas

km2 %

S27 Reddish-brown soils, medium and 
shallow phase, over gypsum, sand, 
and mudstone

210 50

S28 Reddish-brown soils, deep phase 15 04
S31 Lithosolic soils in limestone 63 15
S33 Brown soils, medium and shallow 

phase over Mukdadiya and Bai Has-
san gravel

67 16

S35 Brown soils, deep phase 67 16

Fig. 5  a Depth to groundwater (m) and b groundwater levels (m amsl) in the study area
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(dimensional reduction) while maintaining the class-dis-
criminatory information. The dimensional reduction helps 
to minimize computation cost and also contributes in reduc-
tion of overfitting. LDA has some assumptions about the 
data used (Brownlee 2016): (i) the input variables have a 
normal distribution (Gaussian distribution); (ii) the variance 

determined by class grouping for each input variable is the 
same; and (iii) the mix of classes within the training dataset 
is representative of the problem.

CART is a term coined by Breiman et al. (1984) to refer 
to the decision tree algorithms in the predictive modeling 
techniques. CART can be used for solving problems in 

Fig. 6  Flowchart of the study procedure
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classification, regression, and feature selection. Decision 
trees are simple but effective methods for simulating the 
relationship between measurements of an object (predic-
tors) and its response variable (target) (Rokach and Mai-
mon 2008). CART uses a binary decision tree to represent 
the solution. Each node in the tree represents a variable 
with a single input and has an output variable that is used 
to make a prediction. CART has many advantages (Aertsen 

et al. 2010): (i) the solution is simple to comprehend; (ii) the 
input data can be of any type (categorical, binary, numeric, 
etc.); and (iii) the monotonous transformations and differ-
ent measurement scales of the independent variables do not 
affect the model results.

LVQ is a prototype-based method that allows choosing 
how many training instances to retain and learns exactly 
what those instances should look like (Brownlee 2016). It is 

Fig. 7  Soil type in the Lailan basin
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Fig. 8  Groundwater influencing 
occurrence factors used in the 
study: a slope (%), b curvature, 
c aspect, d TWI, e aquifer trans-
missivity  (m2/day), and f aquifer 
specific storage ×  10−3

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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a form of data compression that represents data vectors by a 
smaller set of codebook vectors (De Sa and Ballard 1993), 
which look like training instances but have adopted the val-
ues of each attribute based on the learning process. LVQ 
is a special type of artificial neural network where neuron, 
weights, and network represent codebook vector, attribute 
of codebook vector, and codebook vector collection in the 
structure of LVQ, respectively (Brownlee 2016).

RF is an ensemble-supervised ML technique (Breiman 
2001), which involves choosing a set of features randomly 
and creating a model with a bootstrapped sample of the 
training data. The building blocks of RF are decision trees. 
RF increases diversity between classification trees by resa-
mpling the data with replacement and randomly modifying 
data sets over the different induction processes (Peters et al. 
2008). During bootstrapping, 1/3 of observations that are not 
used during tree construction, referred to out-of-bag (OOB) 
samples, are used as a test set to evaluate misclassification 
error rate and estimate predictive accuracy (Pourghasemi 
and Rahmati 2018). The most appealing characteristic of 
RF is the inherent capability for calculating the variable 
importance (Al-Abadi 2018). Two hyperparameters should 
be tuned to get the best results: the total trees that need to be 
grown and the number of available variables for splitting at 
each tree node (Kalantar et al. 2019).

KNN is a simple non-parametric algorithm that stores all 
available cases and classifies new cases based on a similarity 
measure (e.g., distance functions). KNN is a lazy learning 
technique, in which the function is only estimated locally 
and all calculations were postponed until evaluation of func-
tion. The main advantages of KNN are: (i) its robustness to 
noisy data and (ii) simplicity and lack of parametric assump-
tions (Shmueli et al. 2017).

Software used for applying machine learning 
algorithms and error evaluation metrics

The R statistical software and related caret package (Kuhn 
2008) were used in this study for modeling groundwa-
ter potential using ML algorithms. R offers a number 

of different metrics to distinguish the best performance 
model. For this study, accuracy and Cohen’s κ were used. 
Accuracy measures how many observations, both posi-
tive and negative, were correctly classified. Cohen’s κ 
explains how much better a predictive model is compared 
to a random model that predicts based on class frequen-
cies. The predictive model (classifier) is said to be slight, 
fair, moderate, substantial, and almost perfect if Cohen’s κ 
is 0.01–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and > 0.80, 
respectively (Landis and Koch 1977).

Groundwater quality index

GWQI describes the composite spatial and temporal 
influence of individual parameters on the overall qual-
ity of groundwater using a single number (Amiri et al. 
2014; Coletti et al. 2010). In general, GWQI computation 
involves four steps: parameter selection, development of 
sub-indices, assignment of weights and aggregation of 
sub-indices to produce an overall index (Akoteyon 2013). 
Weights reflect the importance of each quality parameter 
in the final score and can be either subjective or objective. 
The subjective methods are totally dependent on expert 
opinions, while in the objective method, entropy infor-
mation theory is usually used to determine the weights. 
Peiyue et al. (2010) indicated that the second method is 
unbiased and more accurate.

The entropy indicates the extent of the instability, dis-
order, imbalance, and uncertainty of a system (Yufeng 
and Fengxiang 2009). The degree of a system’s disorder 
can be easily captured by the information entropy, which 
measures the amount of useful information with the pro-
vided data. When the difference of the value among the 
evaluating objects for the same parameter is high, while 
the entropy is small, it means that this parameter provides 
more information, and the weight of this parameter should 
be set high (Zou et al. 2006). If the difference is smaller 
and the entropy is higher, the relative weight would be 
smaller. Therefore, information entropy theory provides 
an objective method for calculating weights.

In this study, GWQI values were calculated for assess-
ing the suitability of groundwater for human consump-
tion. In the first of three steps, the eight chemical physical 
parameters (pH, TDS,  Ca2+,  Mg2+,  Na+, SO2−

4
 , Cl− , and 

NO−

3
 ) that were considered as indicators of groundwater 

suitability for drinking water in this study were assigned 
weights using entropy information theory. Suppose m 
groundwater samples are taken to evaluate the chemical 
quality of an area. For each groundwater sample, n chemi-
cal constituents are analyzed (j = 1, 2,…,n). The eigen-
value matrix X can be constructed from real data as:

Table 3  Standard methods used for chemical analysis of groundwater 
samples

Parameter Method of analysis

EC, pH, TDS, and temperature Field multi-electrode meter
Ca2+ and  Mg2+ Titration with 0.02 N EDTA–Na salt
Cl

− Titration with 0.02 N  AgNO3

SO
2−

4
Gravimetric method

NO
−

3
UV-spectrophotometer

Na+ and  K+ Flame photometer
HCO

−

3
Titration with 0.02 N  H2SO4

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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To make the data dimensionless and to facilitate the 
comparison between chemical constituents, a standardiza-
tion process must be implemented. To standardize X into 
the range from 0 to 1, the following equations were utilized.

For the cost type (larger values the better):

For the efficiency type (smaller values the better)

where i is the index or attribute, xi is the original value of i, 
and xi(max) and xi(min) are the maximum and minimum val-
ues of original data. After the standardization process, the 
standard-grade matrix Y can be obtained as:

The ratio of the index value of the j index in sample i is 
calculated as:

The information entropy is expressed by the following 
formula (Amiri et al. 2014):

The smaller the value of ej is, the bigger the effect of the j 
index. The entropy weight is computed using Eq. 7:

In the second step of the analysis, the quality rating scale 
qj was calculated for each groundwater parameter as:

where Cj is the concentration of each solute (mg/L) or EC 
(μS/cm) in each groundwater sample, and Sj is the WHO 

(1)X =

⎡⎢⎢⎢⎣

x11 x21 ⋅ x1n
x21 x22 ⋅ x2n
⋅ ⋅ ⋅ ⋅

xm1 xm2 ⋅ xmn

⎤⎥⎥⎥⎦
.

(2)yi =
xi − xi(min)

xi(max) − xi(min)

.

(3)yi =
xi(max) − xi

xi(max) − xi(min)

,

(4)Y =

⎡⎢⎢⎢⎣

y11 y21 ⋅ y1n
y21 y22 ⋅ y2n
⋅ ⋅ ⋅ ⋅

ym1 ym2 ⋅ ymn

⎤⎥⎥⎥⎦
.

(5)Pij =

yij∑m

i=1
yij
.

(6)ej = −

1

lnm

m∑
i=1

PijlnPij.

(7)wij =

1 − ej∑n

j=1

�
1 − ej

� .

(8)qj =
Cj

Sj
× 100,

(2017) standard for drinking water for each chemical 
constituent.

The third step is to calculate GWQI using the linear com-
bination technique:

Results and discussion

Feature selection

The information gain ratio was implemented in WEKA 3.8 
(Witten et al. 2005) and the outputs are presented in Table 4. 
The highest average merit value was assigned for groundwa-
ter depth (0.57), followed by transmissivity (0.526), eleva-
tion (0.519), specific storage (0.058), and soil (0.043). The 
average merit values for TWI, slope, aspect, and curvature 
all were 0, so these factors were not used in further analysis. 
The lack of importance of these factors in the modeling of 
groundwater potential may reflect the fact that they are topo-
graphically derived factors that mainly affect the renewable 
storage of the aquifer. Because the aquifer is relatively deep 
(average depth about 45 m) and semi-confined, these fac-
tors will have little impact on determining the groundwater 
potential.

Training and validation of machine learning 
algorithms

The results of training models using the caret package are 
summarized in Fig. 9 and Table 5. The hyperparameters 
for each model were estimated automatically using the 
grid search tuning function in the caret package (Table 6). 
Depending on the outputs of the training stage, the RF model 

(9)GWQI =

n∑
j=1

wijqj.

Table 4  Feature selection with information gain ratio (tenfold cross-
validation)

Attribute Average merit Average rank

Depth 0.573 ± 0.013 1.1 ± 0.3
Transmissivity 0.526 ± 0.027 2.5 ± 0.67
Elevation 0.519 ± 0.008 2.4 ± 0.49
Geology 0.191 ± 0.004 4 ± 0
Specific storage 0.085 ± 0.021 5 ± 0
Soil 0.043 ± 0.003 6 ± 0
TWI 0 ± 0 7 ± 0
Slope 0 ± 0 8 ± 0
Aspect 0 ± 0 9 ± 0
Curvature 0 ± 0 10 ± 0
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showed the highest accuracy (0.996), followed by KNN 
(0.957), LDA (0.954), CART (0.948), and LVQ (0.919). 
In terms of Cohen’s κ, all models had perfect performance 
(> 0.8), and the best model was RF, followed by KNN, LDA, 
CART, and LVQ. Examination of variable importance using 
the RF model in terms of a decrease in the Gini index and a 
mean decrease in accuracy (Fig. 10) showed that the most 
important GAOFs were the depth to groundwater and aquifer 
transmissivity, followed by soil type and elevation. The least 
important variables were specific storage and geology.

After successful training of the models, the testing data-
set that was not used in the training step was passed to each 
algorithm and the results were compared (Table 4). The 
highest classification accuracy belonged to RF (0.968), fol-
lowed by CART (0.931), KNN (0.930), LDA (0.879), and 
LVQ (0.852). In terms of Cohen’s κ, the best performing 
model was RF (0.936), followed by KNN (0.861) and CART 
(0.863), all of which were classified as perfect models. LDA 
and LVQ were regarded as substantial models (0.7–0.8). The 
results revealed that all ML models performed well, but the 
RF model performed much better than others in both train-
ing and testing stages. Previous researchers have shown 
the superiority of the RF algorithm in studies of ground-
water potential (Rahmati et al. 2016; Naghibi et al. 2017; 
Al-Abadi et al. 2019). RF has many advantages over other 
ML algorithms, including the capability to handle missing 
values, resistance to overfitting, and ability to accept a large 
spectrum of data types (Al-Abadi and Alsamaani 2020). 

Fig. 9  Comparison of machine 
learning algorithms (dot plots)

Table 5  Comparing the performance of machine learning models in 
training and testing stages

Model Training Testing

Accuracy Cohen’s κ Accuracy Cohen’s κ

LDA 0.954 0.906 0.879 0.758
CART 0.948 0.895 0.931 0.863
LVQ 0.919 0.837 0.852 0.705
RF 0.996 0.993 0.968 0.936
KNN 0.957 0.907 0.930 0.861

Table 6  Optimal hyperparameters of the used machine learning mod-
els

ML model Hyperparameters Obtained 
optimal 
values

LDA – –
CART Complexity parameter (cp) 0.0308
LVQ Codebook size 12

Number of prototypes (k) 1
RF mtry 7

ntree 500
KNN Number of neighbors (k) 7
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The number of hyperparameters is not high and they are 
easy to understand (Razavi-Termeh et al. 2019 et al. 2019). 
Therefore, the RF model was selected to map groundwater 
potential in the study area.

Mapping groundwater potential

The probability values of RF models for both training and 
testing stages were exported to ArcGIS 10.5 and visualized 
utilizing three categories of groundwater potential: poor, 
moderate, and excellent (Fig. 11a). We used a natural-break 
classification method to categorize probability values into 
groundwater potential categories because it is the most 
common scheme used in groundwater potential and spring 
potential mapping (Al-Abadi et al. 2019; Arabameri et al. 
2019; Razavi-Termeh et al. 2019; Chen et al. 2020; Nguyen 
et al. 2020). The areas occupied by these three GP categories 
are presented in Table 7. The poor groundwater potential 
category occupies about half (53%) of the study area in the 
eastern, northern, and southeastern parts in Quaternary sedi-
ments. The excellent category occupies 38% of the basin in 
the middle and northwest parts. The moderate groundwater 
potential zone encompasses a small area of the basin as a 
strip between the poor and excellent zones. In general, the 
excellent groundwater potential zone (Fig. 11a) coincides 
with the high values of aquifer transmissivity (Fig. 8e) and 
occurs in areas with greater groundwater depths (Fig. 5a). 
This zone mainly occurs in the Mukdadiya and Bai Has-
san aquifers, which consist primarily of gravel and sand. 

Aquifer transmissivity and groundwater depth were the most 
influential GAOFs in the study area. Groundwater potential 
also varies inversely with elevation, which is consistent with 
topographically driven groundwater flow (Tóth 1962).

Hydrochemistry and groundwater quality index 
mapping

Results of chemical analyses of the groundwater samples 
from the study area are listed in Table 8. These indicate 
that pH values were slightly alkaline, ranging from 7.24 to 
8.06 (average 7.63). EC values ranged from 312 to 3459 
μS/cm (average 1567 μS/cm) and TDS, which is linearly 
related to EC, ranged from 312 to 3459 mg/L (average 
1333 mg/L). EC values exceeded 500 μS/cm for all but 
three samples (W11, W16, and W18), which are located 
in the Quaternary deposits along the eastern edge of the 
study area (Fig. 12). For cations, divalent species were 
most abundant, with  Ca2+ concentrations ranged from 
41 to 353  mg/L (average 142  mg/L) and  Mg2+ ranged 
from 23 to 272 mg/L (average 97 mg/L). Among mono-
valent cations,  Na+ ranged from 19 to 216 mg/L (average 
of 82 mg/L) and  K+ ranged from 1 to 6 mg/L (average of 
4 mg/L). Four samples (W1, W2, W3, and W13) had  Ca2+ 
concentrations > 250 mg/L and 13 samples had  Mg2+ con-
centrations > 50 mg/L, whereas only one sample (W2) had 
 Na+  > 200 mg/L. Sulfate was the most abundant anion, 
with concentrations ranging from 110 to 1906 mg/L (aver-
age 655 mg/L), followed by  Cl− (39–526 mg/L, average 

Fig. 10  Variable importance 
(RF model); Sc specific storage
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140 mg/L),  HCO3
− (35–309 mg/L, average 141 mg/L), and 

 NO3
− (11–69 mg/L, average 28 mg/L). Samples W3, W13, 

and W21 had  Cl− concentrations > 250 mg/L. For  NO3
−, all 

groundwater samples were within the WHO (2017) standard 
(50 mg/L) except W1 and W2, which were taken from wells 
located in Kirkuk City that may be affected by sewage.

The dominant major-ion hydrochemical type (Back 1966) 
was Mg–Ca–SO4 (10 samples), followed by Ca–Mg–SO4 (6 
samples), Mg–Ca–SO4–Cl (3 samples), Ca–SO4 (2 samples), 
and Ca–Mg–SO4–Cl (1 sample). The major-ion composi-
tion is consistent with dissolution of anhydrite, gypsum, 
and calcite from sediments in the Fatha Formation which 
are exposed in the upgradient (eastern and southeastern) 
parts of the groundwater flow system. In particular, a plot 
of milliequivalent concentrations of  (Ca2+ +  Mg2+) versus 

 (SO4
2−  +  HCO3

−) shows a strong linear trend with near-
unit slope (y = 0.920x + 0.405; r2 = 0.98) (Fig.  13a). A 
plot of  Ca2+ versus  SO4

2− likewise shows a strong linear 
trend (y = 0.452x + 0.940, r2 = 0.92) (Fig. 13b), while a plot 
of  (Ca2+ +  Mg2+) versus  HCO3

− shows a weaker but still 
positive trend (y = 5.35x + 2.70, r2 = 0.51) (Fig. 13c). The 
positive linear trend of  Na+ versus  Cl− (y = 0.405 + 25.6, 
r2 = 0.63) (Fig.  13d) and negative linear trend of 
 ([Ca2+  +   Mg2+]–[SO4

2−  +   HCO3
−]) versus  (Na+–Cl−) 

(y =  − 0.381 + 0.819, r2 = 0.68) (Fig. 13e) suggest that halite 
dissolution and cation exchange on clay minerals, respec-
tively, exert lesser influences on groundwater chemistry.

To determine GWQI values, parameter weights were 
calculated using the entropy approach (Eqs. 1–7). The 
cost-normalization formula (Eq. 2) was used for pH and 
the efficient type (Eq. 3) was utilized for the remaining 
parameters. The highest entropy weight belonged to pH 
(0.159), followed by  Ca2+ (0.157),  Na+ (0.140), TDS 
(0.135), and  Mg2+ (0.126). The lowest entropy weights 
were 0.071, 0.100, and 0.112 for Cl− , NO−

3
 , and SO2−

4
 , 

respectively. The obtained GWQI values were exported 
to ArcGIS 10.5 as a point shapefile and interpolated using 
ordinary kriging to create the GWQI map, Fig. 12. The 
interpolated GWQI values, which range from 43 to 303, 
were manually classified into five classes (Jianhua et al. 

Fig. 11  Groundwater potential (GP) maps: a RF model, and b GP–GWQI

Table 7  Areas occupied by groundwater potential zones

GP zone Groundwater potential (R 
model)

Groundwater potential–
GWQI model

Area (%) Area  (km2) Area (%) Area  (km2)

Poor 53 224 27 117
Moderate 9 39 30 125
Excellent 37 159 43 180
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2011): < 50 (excellent), 50–100 (good), 100–150 (moder-
ate), 150–200 (poor), and > 200 (extremely poor). These 
classes encompass areas of 11  km2 (3%) for excellent, 106 
 km2 (25%) for good, 155  km2 (37%) for moderate, 96  km2 
(23%) for poor, and 54  km2 (13%) for extremely poor. The 
poor–extremely poor classes extend over an area of 150 
 km2 (35%) of the basin and are distributed in the northern 
(Kirkuk City) and the southern parts of the study area 
together with some parts of the central region. The excel-
lent–good classes, on the other hand, occupy an area of 
118  km2 (28%) and are mainly distributed in the middle of 
the basin. The moderate zone encompasses an area of 155 
 km2 (37%) and is concentrated in the middle of the basin 
as well. From these results, the Lailan basin is promising 
in terms of quality. Comparing the GWQI map (Fig. 12) 
with the groundwater potential map (Fig. 11a) indicates 
that the groundwater quantity and quality of the basin are 
not coincident: the most productive parts of the aquifer are 
in the west whereas the most suitable groundwater quality 
is in the eastern part of the study area.

Mapping groundwater potential for both quantity 
and quality aspects

Adjustments are necessary to combine the groundwater 
potential and GWQI maps into one map. The groundwater 
potential values are probability values in the range of 0–1, 
while GWQI values are in the range 30–270 (numerical val-
ues), and groundwater quality decreases as GWQI values 
increase. Therefore, the GWQI raster map was normalized 
to a 0–1 range using a min–max scaling function (Eq. 2) in 
the Raster Calculator in ArcGIS 10.5. The resulting raster 
values were then subtracted from 1 so that the high values 
are preferred. After that, the two maps (Fig. 11a and modi-
fied Fig. 12) were combined using the summation opera-
tor to maximize the values of each of the two indicators 
and the resulting raster was classified into three groundwa-
ter potential-GWQI zones (Fig. 11b): poor, moderate, and 
excellent. The poor groundwater potential zone covers an 
area of 117  km2 (about 28% of the study area), the moderate 
zone occupies an area of 125  km2 (30%), and the excellent 

Table 8  Results of chemical analysis of groundwater samples

Superscripts: 1 = USEPA (2020) Secondary Maximum Contaminant Level (esthetic), 2 = WHO (2017) guideline, 3 = inferred from WHO (2017)

Wells T (°C) pH EC (μS/cm) TDS (mg/L) Cations (mg/L) Anions (mg/L) NO
−

3
CBE

Ca2+ Mg2+ Na+ K+
HCO

−

3 SO
2−

4
Cl

−

W1 24.0 7.24 2781 2502 323.4 158.9 131.0 03.52 199.8 1408 188.8 68.70 4.0
W2 24.0 7.30 3844 3459 352.7 272.3 215.8 03.90 109.8 1906 195.3 65.20 2.6
W3 24.1 7.46 2793 2513 304.5 126.4 196.9 04.20 219.6 1268 383.3 25.80 8.7
W4 22.4 7.52 2348 2113 206.3 177.3 106.6 02.35 298.2 1049 200.2 37.80 4.5
W5 22.3 7.69 1333 1066 128.2 67.99 48.59 01.80 195.2 537.7 85.20 24.10 8.5
W6 26.3 7.80 955 668 97.41 24.30 41.30 02.40 134.6 298.4 65.29 10.90 8.1
W7 23.8 7.57 1688 1519 224.4 97.80 87.50 02.30 183.0 804.6 106.5 15.70 0.8
W8 24.0 7.73 950 665 72.00 58.31 29.29 01.20 122.0 322.6 57.61 36.20 3.2
W9 24.8 7.61 1041 832 48.00 77.80 78.90 02.40 158.6 399.5 63.89 26.20 1.7
W10 23.4 7.66 717 430 40.19 36.56 38.04 04.31 55.07 145.9 85.97 38.30 3.2
W11 19.8 7.96 478 330 40.19 24.38 23.06 01.84 47.39 112.5 54.96 11.10 4.0
W12 22.5 7.54 902 631 62.40 57.60 48.91 06.50 66.67 312.2 74.49 22.10 2.3
W13 24.1 7.35 3013 2711 297.9 212.4 161.3 05.22 279.1 1190 526.3 22.90 5.6
W14 23.3 7.75 725 580 96.49 23.20 42.71 03.30 34.70 281.2 95.79 25.20 2.6
W15 24.2 7.63 2827 2544 155.0 132.7 190.6 03.98 309.2 846.8 220.0 16.60 3.3
W16 22.5 7.87 462 319 41.49 25.65 30.79 03.66 45.52 115.9 53.38 42.80 9.2
W17 22.9 7.65 819 655 78.32 42.26 30.97 03.59 41.35 358.6 59.65 23.90 5.4
W18 21.5 8.06 404 312 48.00 25.80 18.52 04.08 49.50 110.0 52.36 24.80 8.5
W19 22.0 7.79 548 329 40.71 23.37 26.70 05.43 44.96 147.3 39.46 33.70 3.3
W20 24.1 7.74 605 424 48.60 29.69 32.20 05.80 46.60 201.7 53.21 22.50 0.4
W21 23.6 7.40 2496 2246 192.3 204.2 119.6 04.90 236.8 1215 255.6 15.00 6.8
W22 23.3 7.50 2756 2480 236.1 231.2 109.0 04.08 230.1 1380 153.1 14.50 1.6
Min 19.80 7.24 404 312 40.19 23.20 18.52 1.20 34.70 110.0 39.46 10.9
Max 26.30 8.06 3844 3459 352.7 272.3 215.8 6.50 309.2 1906 526.3 68.7
Mean 23.31 7.63 1568 1333 142.5 96.82 82.19 3.67 141.3 655.0 139.6 28.4
Guideline 6.5–8.51 – 6003 2503 503 2003 – – 2502 2502 501
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zone encompasses an area of 180  km2 (43%) (Table 7). Rela-
tive to the initial groundwater potential map, which only 
considers groundwater quantity, the area of the poor zone 
decreased by 26%, while the moderate zone increased by 
21% and the excellent zone increased by 6%. The moderate 
and excellent zones cover 73% (305  km2) of the study area, 
which indicates that the aquifer system in the Lailan basin 
is promising in both its availability and its quality aspects. 

The most promising groundwater potential zone occurs in 
the middle of the basin, whereas groundwater potential is 
lower in the north (Kirkuk City) and the south.

Comparison with other studies in the region

Results of this study are broadly consistent with published 
hydrogeologic studies in the region. Water isotopes in 

Fig. 12  GWQI of the Lailan basin
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shallow groundwater samples fall close to the local mete-
oric water line (Sahib et al. 2016), which indicates that 
evaporation during recharge is limited, notwithstanding the 
semi-arid climate. This may reflect the timing of recharge: 
rainfall in the Lailan basin tends to occur during the cool 
season (November to April) and there is a moisture surplus 
from December through March (Al-Kubaisi and Rasheed 
2018). In addition, evaporation may be limited by prefer-
ential infiltration through relatively permeable Quaternary 
slope deposits and faults along the northeastern margin of 
the basin (Fig. 1). Sahib et al. (2016) found that dissolu-
tion of evaporites within the Fatha Formation contributed 
to salinization and that cation exchange contributed to ele-
vated  Na+ in shallow groundwater. Salinization of shallow 

groundwater could also result from upward movement of 
oilfield brines via faults along anticlinal axes. These faults 
cut across the Fatha Formation, which is highly fractured 
and locally karstified (Sahib et al. 2016). Al-Tameemi et al. 
(2020) assessed groundwater quality in Kirkuk Governorate, 
including the Lailan basin, using data from 60 wells sampled 
from 2017 to 2019. Those authors found that 75% of wells 
exceeded 400 mg/L  SO4

2− (the Iraqi drinking-water stand-
ard), and they attributed instances of  NO3

− contamination to 
oxidation of ammonium in sewage from seepage pits. Using 
the Canadian Water Quality Index as an aggregate indicator 
based on 15 parameters, Al-Tameemi et al. (2020) concluded 
that groundwater was marginal to poor for drinking and fair 
to marginal for irrigation.
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Fig. 13  Bivariate plots of a  (Ca2+ +  Mg2+) vs.  (SO4
2−  +  HCO3

−), b  Ca2+ vs.  SO4
2−, c  (Ca2+ +  Mg2+) vs.  HCO3

−. Bivariate plots of d  Na+ vs. 
 Cl−, e  ([Ca2+ +  Mg2+]–[SO4
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Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Environmental Earth Sciences          (2021) 80:426 

1 3

  426  Page 20 of 22

Conclusions

Even though groundwater quality is important, it is seldom 
included in groundwater potential mapping. We developed a 
technique to resolve this problem and demonstrated the tech-
nique for a semi-confined aquifer in northern Iraq. We found 
that groundwater depth, aquifer transmissivity, elevation, spe-
cific storage, and soil type play a major role in controlling the 
physical groundwater potential in the study area. Using the 
RF model, which exhibited the best performance of the five 
ML models considered, we categorized groundwater potential 
into poor, moderate, and excellent zones. The excellent zone, 
which occurs in the Mukdadiya and Bai Hassan formations 
and encompasses 38% of the study area, is closely related to 
low elevation, high transmissivity, and greater groundwater 
depths. Calculation of the weights of the chemical constitu-
ents for the GWQI using entropy theory assigned the highest 
weight for pH , followed by  Ca2+,  Na+, TDS,  Mg2+,  SO4

2−, 
 NO3

− and  Cl−. The calculated GWQI indicates that the basin 
is promising for drinking-water quality except for some parts 
in the north (Kirkuk) and in the south. A comparison of the 
maps of groundwater potential and GWQI shows the most 
productive parts of the aquifer are in the west and the most 
suitable groundwater quality is in the east. Aggregating the 
results of groundwater potential and GWQI produced a new 
map for aquifer potential, which could be used to help manage 
groundwater use by coordinating pumping across the basin in 
order to avoid depleting the strategic storage and degrading 
the quality of the groundwater resource. We recommend this 
approach to take into consideration both quantity and quality 
aspects in future studies of groundwater potential.
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