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Abstract
The aim of this study was to determine, by a systematic review,
the radiation doses of different dental x-ray devices, their particular
effects, and the cumulative results of various studies done with various
dosimeters. Google scholar was searched from 2014 to 2021 using the
following keywords: radiation dose, dosimeters in dentistry, types of
dosimeters, Cone beam computed tomography (CBCT) radiation. The
references of selected papers were also analyzed. Articles were chosen
that fit the criterion for utilizing dosimeters in dentistry applications.
This review was separated into four sections: (1) biological impacts of
radiation, (2) dosimeter characteristics, (3) dosimeter kinds, and (4)
the findings of numerous investigations employing various dosimeters.
According to a recent assessment of dosimetry based on different
investigations conducted with dosimeters, the effective dosage supplied
has decreased since the introduction of radiography techniques. As
a result, radiological method selection is critical in dental dosage
administration.

1. Introduction:
Diagnostic radiology exists because the benefits of the exami-
nation outweigh the hazards of radiation exposure. Dosime-
ters that measure absorbed doses for risk analysis are used to
resolve information about the dosage provided by a diagnostic
radiography examination. The most widely used dosimeters
for such point dosimetry assessments are thermo-luminescent
dosimeters (TLDs) [1] [2] [3]. To enhance in patient evalua-
tion, a variety of intraoral and extraoral imaging techniques
are now available. Bitewing, periapical, and panoramic radiog-
raphy are examples of common two-dimensional (2D) modes.
These modes are reasonable in light of the fact that they are ef-
fortlessly procured, modest, and give high-resolution images.
Moreover, while all of these modalities can provide useful di-
agnostic information, none of them are without restrictions [4]
[5]. Medical applications are the most common source of pop-
ulation exposure to radiation; among them, dental radiology
is the most well-known radiological examination type used in
industrialized countries, with intraoral radiography being one
of the most often used X-ray exams in humans. Periapical
radiography is one of the intraoral radiography methods[6].
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Periapical radiographs (”peri” means ”around” and ”apical”
means ”apex” or end of tooth root) provide pictures of the
teeth’s shapes, positions, and mesiodistal extension [7]. The
intraoral periapical method is a dental radiography technique
that allows for the identification of a range of dental abnormal-
ities such as caries, dental trauma, and periodontal diseases
while exposing patients to relatively modest radiation doses
[8]. Intraoral periapical radiography is applied to examine two
to four teeth from crown to apex, as well as the periodontal
area and adjacent bone tissue [6]. The standard difficulty with
periapical radiography for detecting root resorption is that the
3-dimensional anatomy of the region being radiographed is
compressed into a 2-dimensional picture, which is impacted
by anatomic superposition and the angle of the X-ray spec-
trum [9] [10]. A panoramic radiograph, which is a routinely
conducted examination by dentists and oral surgeons in ev-
eryday practice, is another essential diagnostic tool. All new
grown-up patients are routinely screened using panoramic ra-
diographs alone or in conjunction with bitewings radiographs
[11]. Panoramic radiography allows for the creation of numer-
ous anatomical lineaments at a reasonable cost and with a low
radiation dosage. However, potential abuses of this approach
include superimposition of anatomical features, inappropriate
horizontal and vertical magnification, and a lack of cross-
sectional information [12]. The panoramic radiograph is less
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staggering to the patient than a series of small separate intrao-
ral radiographs, make it easy for the dentist to demonstrate the
diagnosis and curative way to the patient and is a good imag-
ing form in patients with trismus or trauma [13]. It also lower
the necessity of taking unnecessary, several periapical and
bitewing radiographs, and therefore minimize added exposure
to radiation [14]. Cone beam computed tomography (CBCT)
machines, which can scan vast anatomical dimensions in one
rotation, have emerged as a result of advancements in 3D
imaging technology. CBCT scanners with large flat plate sen-
sors are commonly used in oral and maxillofacial diagnostics
nowadays for head and neck applications. CBCTs are an al-
ternative to multi-detector computed tomography (MDCT)
scanners for 3D imaging, particularly when crisp pictures of
high-contrast bone structures or teeth are needed. However,
the amount of radiation delivered to a patient in both modali-
ties is a source of concern; in many situations, dental CBCT
scanners are replacing low-dose 2D panoramic modalities.
MDCT methods, on the other hand, have been shown to pro-
vide the greatest doses in diagnostic imaging; as a result, their
usage may be no longer acceptable if lower dosage modalities
are available [15] [16]. Multiplanar, thin-sliced images free of
superimposition are critical in CBCT [17]. The most essential
thing to remember is that CBCT scans have a significantly
higher radiation dosage and expense, therefore they should
only be used in specific circumstances [18] [19]. According
to dosimetric studies, the effective dosage of a dental CBCT
scan is greater than that of panoramic radiographs, but still
less than that of a dental multi-slice Computed tomography
(MSCT) [19] [20] [21]. Dentists were among the first to iden-
tify the hazards of ionizing radiation exposure, since pioneers
in radiographic imaging like as Edmund Kells had hand can-
cer [22]. Patient radiation doses from investigative radiology
technique found to be the largest amount of population expo-
sure for intended radiation [23]. Essentially, exposure may
be reduced in one of two ways: by lowering the CT tube’s
radiation output or by using protective techniques during the
intervention—a list. Controlling parameter setup, such as
scan duration, tube current-time product, and tube voltage,
might result in a reduced tube output. Wearing lead gear and,
if feasible, increasing the distance between the radiologist and
the radiation source are two ways to protect a radiologist. In
most cases, the quantity of radiation is only monitored for the
patient, and there are no regulated statistics on interventional
radiologists’ exposure [24]. Therefore, the attention is to gain
high-quality radiographs with minimum radiation dose to the
patient. The quality of the radiograph and its anatomical part
depends basically on the properties of the imaging system. To
reduce the risk of radiation exposure to patients, increased
focus has been placed on optimizing imaging conditions. The
dangers of X-ray radiation are based on radiobiology and
epidemiological studies that use dosimeters to determine the
radiation dosage. Radiation dosimetry has its origins in med-

ical uses of ionizing radiation, dating back to the discovery
of X-rays in 1895 [[11] - [25]]. The absorbed dose in organs
can be projected using dosimeters placed in a phantom for
in vitro or in vivo radiation dosimetry [26] [27]. In order to
reduce the quantity of radiation dosage, it is critical to employ
an intensifying screen (I.S) in the diagnosis sector of dentistry
[28].

2. Dosimeter Properties:
Accuracy and precision, linearity, energy dependency, direc-
tional dependence, spatial resolution and physical size, read-
out convenience, and ease of use are some of the greatest
features of a dosimeter [29].

Dosimetry Types Include:
1. Ionization chamber dosimetry schemes.

2. Film dosimetry.

3. Luminescence dosimetry.

4. Semiconductor dosimetry [24].

The current systematic study aims to answer two ques-
tions: 1) what radiation dosage does a person get during a
dental imaging diagnosis? 2) Is it possible to reduce the radia-
tion dose while maintaining image quality? Answering these
questions requires knowledge of how a radiation dosage is
computed. As a result, the following two elements make up
this systematic review: 1) Dosimetry of radiation; 2) Biologi-
cal consequences of radiation exposure received in dentistry
using various radiological methods.

Ionizing Radiation Exposure Measurements:
Radiation dosage is measured through exposure, which is the
simplest method. A number of radiation detection instruments
can be used to measure the ionization produced by radiation
[22]. The entrance surface dose (ESD) is a measurement
of the X-ray beam dosage absorbed by the skin at the site
of entry. The ESD may be estimated indirectly or directly
based on parameters such as current, exposure duration, kilo-
voltage, filtering, and beam collimation. This can be done
directly using thermoluminescent dosimeters (TLD) or ion-
ization chambers. Thermoluminescent dosimetry (TLD-100)
was utilized for dental dosimetry owing to the distinct prop-
erties of this type of dosimeter [6]. It is advised that these
findings be shared with dentists in order to raise awareness
about the need of having a quality assurance procedure and
not using X-rays haphazardly [6]. In 2008, the thermopile and
the densitometer optical density readings were compared. The
densitometer could only measure the optical density of X–ray
films, but the thermopile could measure the optical density of
any transparent polymer [30]. Radiation dosage is expressed
in a variety of quantities and units. The following values are

Kirkuk Univ. J. Sci. Stud. Vol. 16, Iss. 4, p 1-12, 2021



Review: Dosimetry in Dental Radiology 3

used to approximate patient dosage, from minimum to maxi-
mum biological importance: absorbed dose, equivalent dose,
and effective dose. Instead of dosage, the word ”kerma (K)”
is frequently used [30]. The International Commission on
Radiological Protection has given the quantities used for pa-
tient dose assessment [31] [32]. The International System of
Units presently describes the measurement values of radiation
quantities (SI units) [31].

Absorbed dose: For all kinds of ionizing radiation, the
absorbed dose (D) is the most important physical dosage
parameter. It is well-defined as the mean energy given by
ionizing radiation to mass matter. Gray is the specific term
for the SI unit of absorbed dosage, which is J/kg (Gy) [3] [24]
[33] [34].

Equivalent dose: It’s measured in terms of absorbed dosage
multiplied by a multiplier that varies depending on the kind
of radiation. For example, a 0.1 Gy absorbed dosage of alpha
radiation is more hazardous than a 0.1 Gy received dose of
beta or gamma radiation. The equivalent dose is used to
expose the damage caused in biological systems by various
kinds of radiation. The sievert, Sv, is the SI unit of dosage.
The equivalent dosage rate is measured in microsieverts per
second (mSv/s) or microsieverts per hour (mSv/h) [24] [35].

Effective dose: The tissue-weighted total of the equivalent
dosages in all of the body’s designated tissues and organs is
the effective dosage, E, which is measured in sievert (Sv) [22]
[31] [36].

3. Biological Effects of Radiation:
Ionizing radiation is the primary instrument in nuclear medicine,
thus it is critical for users to understand its biological con-
sequences and pathophysiological foundation. Ionizing ra-
diation’s biological effects are varied and inconsistent due
to a variety of variables [37] [38]. Early or delayed effects,
somatic or inherited effects, and stochastic or deterministic
effects are categorized depending on their kind and time fol-
lowing exposure Figure 1 [31].

3.1 Deterministic Effects:
is the direct death of cell populations that needs a substantial
dose over a short period of time and frequently only happens
after a dose level (threshold) has been reached below which no
clinical effects have been recorded. In the dosage range seen
in traditional oral and maxillofacial radiography, deterministic
effect thresholds are never achieved. They are, however, visi-
ble in dental patients who receive head and neck radiotherapy
for cancer treatment. Radiation-induced oral mucositis is a
good example of this [24] [31].

3.1.1 Deterministic effects include:
1. Acute Radiation Effect: is a non-critical effect that

occurs when the radiation dosage must be large and

the dose must be transported in a short period of time.
These effects occur only after exposure or within 24
hours of it. These are easy to treat and manage. Symp-
toms include discomfort, vomiting, headaches, high
temperatures, and skin and tissue fire.[39].

2. Chronic Radiation Sickness: develops after a month
or year after receiving a high dose of radiation. These
side effects are dangerous and difficult to cure, and
they may lead to death. These impacts do not occur
immediately and may have long-term consequences.
Chronic consequences include cataracts, cancer, and
genetic mutations [39].

3.2 Stochastic effects:
The second impact is permanent cell modification, which
generally results from cellular DNA damage. Even at very low
dose levels, stochastic effects can occur. Furthermore, given
stochastic effects, there is a no-threshold or ”safe” dosage
[31] [39]. Hereditary effects and carcinogenesis as a result of
diagnostic imaging are both unpredictable.

Figure 1. The biological effects of Ionizing radiation [40]

Despite the fact that the radiation produced by dental
X-ray devices is much lower than that produced by routine
clinical medical diagnostic X-ray tools and much lower than
that used in radiation therapy, cumulative radiation effects
may occur as a result of the late effect of low dose X-ray ra-
diation in somatic cells [41]. The most significant difference
between lumbar spine exams and intraoral testing is that the
same quantity of radiation applied to one region of the body
might be more hazardous than the same amount of radiation
applied to another. This is because the tissue-weighting factor
determines whether tissues or organs are more radiosensitive
than others [42]. Many studies were conducted years ago to
determine the level of radiation exposure and discovered a
high incidence of cancer, abortion, fetal mutagenic alterations,
cataracts, and a decrease in life span. Despite the fact that the
preceding statement is indefinite and inapplicable to diagnos-
tic dental radiography, the stochastic biological risks effect
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can still be used [43] [44]. Except for cancer, all fetal bio
effects induced by radiation are deterministic (tissue effects),
implying that they should have a dosage below which they do
not occur. Due to a mix of animal research and observational
human studies from radiologic events such as the atomic bomb
blasts in Hiroshima and Nagasaki, it is difficult to identify the
exact dosage limits [45].

4. Radiation Effects Mechanisms:
Ionizing radiation has two primary ways by which it affects
biological targets: direct and indirect 2 [40] [46] [47] [48].

Direct Effect: The direct effect hypothesis, often known
as the target theory, states that ionizing radiation works by
hitting target atoms directly. Ionizing radiation, on the other
hand, is the primary target, causing single- or double-stranded
chromosomal breakage [40] , [47].

Indirect Effect: In describing cellular radiation damage, the
direct mechanism theory was shown to be inadequate. Ac-
cording to the indirect approach, ionizing radiation exerts its
impact through radiolysis of cellular water, resulting in the
formation of free radicals [40] , [47] , [49]. Two kinds of
free radicals are generated when X-rays interact with water.
During cell irradiation, an overabundance of oxygen allows
for the production of additional free radicals. Indirect action
is thought to be responsible for around two-thirds of the bi-
ological damage caused by low linear energy transfer (LET)
radiation. High LET causes biological harm largely by direct
ionization [40].

Figure 2. The mechanisms of ionizing radiation effects [40]

5. Results and Discussion:
Google scholar was searched from 2014 to 2021 using the
following keywords: radiation dose, dosimeters in dentistry,
types of dosimeters, CBCT radiation. The references of se-
lected papers were also analyzed. To conduct a systematic
review of dental dosimetry, the search was limited to papers
written in English. A full-text reading of published publica-
tions that matched the criteria for employing dosimeters in
dental applications was chosen. As mentioned, the literature
was examined and categorized:

1. The results of various studies measured radiation dosage
using different dosimeters.

2. Radiation dosage to patients from CBCT, Panoramic,
and Intraoral devices.

Many studies have been carried out on dental radiographic
dosimetry. Organ absorbed doses of the three different devices
as the findings of this review article have been summarized
in Table 1. From this table, it can be seen that the most of
selected studies are focused on the radiation dose effect from
CBCT and panoramic devices which are the most common
used in dental radiology.
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Table 1. Number and percentages of Proteus spp in different clinical samples.

Absorbed dose of dental devices (mGy)

CBCT Panoramic Intraoral Dosimeter
used

Organ Study
number

Ref.

1.469 . . . . . .
TLD-100

(LiF:Mg,Ti)

7 [50]

1.020 . . . . . . TLD chips Brain 1 [51]
0.636 0.037 0.014 LiF

TLD-100
2 [52]

0.012 . . . . . . calibrated
Ion Cham-
ber (IC)

3 [15]

36.31 . . . . . . (LiF: Mg,
Cu, P)
TLD

4 [53]

7.775 0.622 0.803 LiF
TLD-100

2 [52]

. . . 1.028 -
2.428

0.452 TLD-100 8 [54]

5.737 . . . . . . . .
TLD-100

(LiF:Mg,Ti)

Salivary
glands

7 [50]

1.466 . . . . . . TLD chips 1 [51]
0.013 . . . . . . calibrated

Ion Cham-
ber (IC)

3 [15]

8.727 0.256 0.066 LiF
TLD-100

[52]

. . . 0.04 –
0.111

0.053 TLD-100 8 [54]

0.847 . . . . . . .
TLD-100

(LiF:Mg,Ti)

Thyroid 7 [50]

0.73 . . . . . . (LiF: Mg,
Cu, P)
TLD

4 [53]

0.08 . . . . . . TLD 5 [55]
0.043 . . . . . . (TLD)

chips
1 [51]

0.010 calibrated
Ion Cham-
ber(IC)

3 [15]

0.08 . . . . . . TLD 5 [55]
0.01 . . . . . . calibrated

Ion Cham-
ber (IC)

Eye lens 3 [15]

Continued on next page
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Absorbed dose of dental devices (mGy)

CBCT Panoramic Intraoral Dosimeter
used

Organ Study
number

Ref.

0.057 0.016 0.011 LiF
TLD-100

2 [52]

0.212 . . . . . . calibrated
Ion Cham-
ber (IC)

Lung 3 [15]

0.323 . . . . . . calibrated
Ion Cham-
ber (IC)

3 [15]

0.277 . . . . . . .
TLD-100

(LiF:Mg,Ti)

Esophagus 7 [50]

0.053 0.020 0.011 LiF
TLD-100

2 [52]

0.004 . . . . . . TLD chips 1 [51]

0.035 0.018 0.011 LiF
TLD-100

2 [52]

0.085-0.089 0.00004-
0.0006

. . .
Xi Survey detector

(solid state detector)

Breasts 6 [41]

0.009 0.015 0.011 LiF
TLD-100

Liver 2 [52]

0.009 0.018 0.009 LiF
TLD-100

Stomach 2 [52]

0.008 0.018 0.009 LiF
TLD-100

Colon 2 [52]

0.008 0.016 0.009 LiF
TLD-100

Bladder 2 [52]

0.011 0.016 0.009 LiF
TLD-100

Testis 2 [52]

6.433 . . . . . .
calibrated Ion
Chamber(IC)

3 [15]

3.776 0.268 0.318 LiF
TLD-100

Bone sur-
face

2 [52]

0.008 . . . . . . TLD chips 1 [51]
. . . 0.045 –

0.162
0.035 TLD-100 8 [54]

33.68 . . . . . . (LiF: Mg,
Cu, P)
TLD

bone mar-
row

4 [53]

0.278 0.024 0.027 LiF
TLD-100

2 [52]

Continued on next page
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Absorbed dose of dental devices (mGy)

CBCT Panoramic Intraoral Dosimeter
used

Organ Study
number

Ref.

0.022 . . . . . . TLD chips 1 [51]

1.488 . . . . . . calibrated
Ion Cham-
ber (IC)

3 [15]

0.588 0.075 0.005 LiF
TLD-100

2 [52]

0.218 . . . . . .
TLD-100

(LiF:Mg,Ti)

Skin 7 [50]

0.064 . . . . . . TLD chips 1 [51]

2.971 . . . . . . TLD chips 1 [51]
0.95 . . . . . .

TLD-100
(LiF:Mg,Ti)

Remainder 7 [50]

0.688 0.024 0.032 LiF
TLD-100

2 [52]

0.03–3.43 . . . . . .
Thermoluminescent

dosimeters

Head and
Neck 9 [56]

6.04–22.94 . . . . . .
Thermoluminescent

dosimeters

Chest 9 [56]

2.5–25.28 . . . . . .
Thermoluminescent

dosimeters

Pelvis 9 [56]

End of Table
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Based on the studies mentioned above, it can be done a
quick summary of each study and then made a comparison
between the results of the various studies. In the study 1,
Signorelli et al. [50] performed CBCT doses using a portrait
mode (17 cm FOV). Thermoluminescent dosimeter (TLD)
chips (3 × 1 ×1 mm) were implanted on selected locations
in the head and neck area of an adult male tissue-equivalent
phantom to quantify the absorbed radiation dose. The brain,
eyes, skull, salivary glands, thyroid, and spine are among the
key organs known to be susceptible to radiation. Qiang W
et al. [51] determined effective dosage in 2. The head, neck,
chest, and buttocks of the phantom are cut into 34 equal slabs,
each 2.5 cm thick. TLDs were inserted into the holes of sev-
eral phantom slabs containing representative tissue or organs.
The dental panoramic machine also included a maxillofacial
mode. In 3, Andreas Stratis et al. [15] in his comparative
study to calculate the effective doses from CBCT and MDCT
scanners on The SK 150 phantom, using Calibrated ion cham-
ber (IC). This research used the biggest FOVs accessible in
dental CBCT scanners. The findings indicated that dental
CBCT delivers lower doses for orthognathic patients, whereas
CBCT and MDCT give equivalent doses for temporal bone
operations. In 4, Sima Nikneshan et al. [52] estimated average
tissue absorbed dose and effective dose using TLD chips in a
radiation analog dosimetry phantom in Comparative dosime-
try of dental CBCT systems for important organs. The average
absorbed dosage in both FOVs varied from 0.31 mGy to 81.42
mGy. The average absorbed dosage in wider FOV varied from
0.31 mGy to 47.84 mGy, whereas the average absorbed dose
in small FOV ranged from 0.31 mGy to 115.00 mGy. In 5,
Maria Rosangela et al. [53] carried out an experimental inves-
tigation to assess the absorbed dosage in the thyroid and eye
lens when the patient wears individual protection. Imaging
Sciences International’s CBCT i-Cat Classical equipment was
used in this study. The pulsed waveform, anthropomorphic
phantoms, personal protective equipment (PPE), Monte Carlo
Stimulations, and air kerma are all used in this device. Dose
is absorbed and effective. In research 6, Anna Kelaranta et
al. [41] used the Xi R/F MAM detector to calculate the up-
per estimate of radiation exposure to the fetus and breasts of
an anthropomorphic female phantom in intraoral, panoramic,
cephalometric, and CBCT dental modalities with and with-
out lead shielding. The top estimates for foetal doses ranged
from 0.009 mGy to 6.9 mGy, whereas breast doses ranged
from 0.602 mGy to 75.4 mGy. The foetal doses with lead
shielding ranged from 0.005 to 2.1 mGy, whereas the breast
doses ranged from 0.002 mGy to 10.4 mGy. In 7, Pauwels et
al. [54] used 148 thermoluminescent dosimeters implanted in
an anthropomorphic phantom in the head and neck area down
to the sternoclavicular joint level to calculate effective doses.
On a dental CBCT equipment, dose measurements were ob-
tained with a FOV of (17 cm×12cm) and complete rotation
(360°). In study 8, Granlund et al. [55] utilized thermolu-

minescent dosimeter data on an anthropomorphic head and
neck to compute the doses supplied during digital intra-oral
and panoramic radiography using the ICRP publication 103
tissue weighting parameters to determine the absorbed dose
to the organs. Lastly in recent study 9, the organ doses were
measured using thermoluminescent dosimeters in an Alder-
son RANDO male phantom for the Elekta Synergy XVI kV
CBCT system’s head and neck, chest, and pelvic protocols.
The organ doses for head and neck, chest, and pelvic scans
were 0.03–3.43 mGy, 6.04–22.94 mGy, and 2.5–25.28 mGy,
respectively [56]. The dangers of ionizing radiation exposure
have been extensively documented in earlier research, and
they are a public health concern, especially because of the
cancer risks. One of the most common sources of ionizing
radiation is medical imaging [57]. Comparing between all
these studies it became clear that radiation doses delivered to
patients depends not only on exposure parameters, but also
on FOV in different dental devices. According to previous
research, reducing the FOV size, especially for CBCT exami-
nations to the actual region of interest, can result in significant
dose reduction [24] , [54] , [54] , [50] , [51]. Although it is
self-evident that using a wider FOV increases the dosage, the
exact relationship between FOV and doses is complicated by
interplaying variables. Based on existing evidence, it may be
assumed that the dosage will be mostly determined by the
FOV’s height and location [54]. When examining the data
in further depth, it’s crucial to consider the relative positions
of the various organs in relation to the FOV, as well as the
type of dosimeter utilized in the study. Returning to table
1, the CBCT produces the maximum dosage, followed by
the intraoral device and the dental panoramic machine. The
as-low-as-reasonably-achievable (ALARA) approach should
be used to picture selection criteria throughout any therapy
phase. As a result, the type of CBCT used should be based on
the demands of the patient. In 2019, researches shows that the
absorbed doses using CBCT of brain, salivary glands, thyroid,
lung, esophagus, breasts, liver, stomach, colon, bladder, testis,
bone surface, bone marrow, skin and other organs are 0.636
mGy, 7.775 mGy, 8.727 mGy, 0.057 mGy, 0.053 mGy, 0.035
mGy, 0.009 mGy, 0.009 mGy, 0.008 mGy, 0.008 mGy, 0.011
mGy, 3.776 mGy, 0.278 mGy, 0.588 mGy and 0.688 mGy,
respectively. It is very obvious that the area around head and
neck including salivary glands and thyroid has received high
radiation dose than others. However, testis is received high
amount of radiation because it is sensitive for radiation [58].

Conclusion:
In dental radiology, a broad variety of X-ray equipment is
utilized. As one of the dentist’s major tasks and responsibili-
ties is to reduce the ionizing danger of medical radiation, the
findings of numerous studies using different dosimeters reveal
that the CBCT dosage is significantly higher than that of other
devices; hence, CBCT use should be limited to the patient’s
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requirement. In CBCT, limiting the field of view, protecting
the thyroid, and employing a lead apron are all recommended
measures that must be used to reduce the exposure dosage.
All the above-mentioned studies using various dosimeters
concluded that with the use of specific system, the “ALARA”
principle is being followed. Therefore, it is vital to educate
both dentists and patients about the use of this evolutionary
system and its negligible effect on the excellence of life.
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