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Abstract—The COVID-19 contagious disease that spread
around the world, have a huge risk on people and already
caused millions of deaths forcing a global pandemic in 2020.
Diagnosing patients with this disease is very critical allowing
fast care response and to isolate them from public. As the virus
spread widely to millions of people, the fastest way to detect it is
by analyzing radiology images. Early studies showed irregularity
in the chest X-ray images of patients with high clinical belief
of COVID-19 infection. Hence, these studies motivated us to
investigate the use of machine learning techniques to help di-
agnosing COVID-19 patients from chest CT scans. In this paper,
we propose to use a robust feature extraction descriptor and to
apply a Random Forests classifier to predict COVID-19 disease in
a dataset of 5000 images. First, 408 texture features are extracted
using a powerful variation of Local Binary Patterns descriptor
called Rotation Invariant Co-occurrence among Local Binary
Patterns. Then, Random Forests classifier is used with 250 trees
to perform the classification task. Moreover, the performance of
our approach was improved by using a multiresolution scheme
where features are extracted from both the original image and
the subsampled image. Two metrics were used to evaluate our
approach, sensitivity and specificity. We achieved 99.0% and
91.3% for both metrics, respectively. Our results are close to
the state-of-the-art deep learning methods on the same dataset.

Index Terms—COVID-19, Random Forests, Texture Features,
X-ray Imaging.

I. INTRODUCTION

Coronavirus (SARS-CoV-2) disease caused by severe res-
piratory syndrome originated in Wuhan, China and spread
vastly to the rest of the globe [1]. The impact of this virus
led to hundreds of thousands of fatalities and millions of
infections among people globally1. The vast spread of the
virus and the increasing number of patients resulted in fo-
cusing the attention on detecting COVID-19 cases as early as
possible [2], [3]. Hence, a fast and accurate diagnosis method
is required which can be achieved using chest radiography
imaging like Computed Tomography (CT) or X-ray imaging.
These tools are easy to conduct and considered as a routine

1https://www.worldometers.info/coronavirus/

procedure for pneumonia diagnosis. The advantage of using X-
ray images is the ability to visualize indexes associated with
COVID-19 [4]. These X-ray images of COVID-19 patients
showed irregularities which can be diagnosed by experts [5],
[6]. Hence, automatic identifications of these irregularities is
important given the high rate of infected people. Machine
learning techniques can solve this problem by providing tools
to automatic recognition of COVID-19 patients [7].

In order to apply machine learning techniques to detect
COVID-19 patients, we need a dataset with enough samples
of images to be used for the training and testing purposes suc-
cessfully. Since there are very few datasets available publicly
of COVID-19 patients, the solutions to automatically recognize
COVID-19 from X-ray images are few. One of these datasets
was collected by [8] and was made publicly available for
researchers. This dataset has small number of images which
were collected from various academic publications. Later on,
Minaee et al. [7] used the same dataset to relabel the images
to only keep the images with a clear mark of COVID-19 with
the help of specialized radiologist. Then, the certified COVID-
19 images are combined with another subeset of images taken
from another dataset which is considered the negative samples
for COVID-19 detection [9]. Finally, the new dataset has
around 5,000 X-ray images called COVID-Xray-5k [7] which
we used in this paper.

In this paper, a machine learning framework was used to
classify COVID-19 from X-ray images. The framework con-
sists of texture feature extraction, feature classification, and
a multiresolution scheme to extract more features from the
input image. Texture features proved to be powerful to ex-
tract essential properties in biomedical image analysis [10]–
[12]. We employed a powerful variant of the famous Local
Binary Pattern (LBP) descriptor called Rotation Invariant Co-
occurrence among LBP (RIC-LBP) proposed by Nosaka et.
al [13]. For the classification stage, we employed the Random
Forests (RF) classifier with 250 trees [14]. The motivation
to use the traditional texture features and the classical clas-



Fig. 1. Mechanism of RIC-LBP descriptor applied on chest X-ray image from the given dataset. 408 bins are calculated from the rotated LBP cooccurences
histogram.

sification approach is to evaluate the performance of these
methods with the already applied deep learning approaches.
In addition, since there are only two classes to be predicted
and the dataset is relatively small, we can show that classical
machine learning algorithms are able to produce comparable
results to deep learning techniques.

The rest of the paper is structured as follows. The second
section details our proposed method for predicting COVID-
19. Third section provides experimental results and compar-
ison with state-of-the-art results. Finally, the fourth section
concludes our paper.

II. METHODOLOGY

In this section, we detail the machine learning technique
used in our paper. In general, a robust local texture feature
was employed to extract the features from the input X-ray
image. After that, RF classifier is applied to perform the
prediction task. Furthermore, we improved the performance
of our approach by using a multiresolution scheme to extract
more features from the input image.

A. Texture Features

For the past two decades, local texture features using
Local Binary Pattern (LBP) descriptor were used successfully
to extract essential features from digital images and used
these features in the prediction of many applications such
as palm vein recognition [15], face recognition [16], and
texture classification task [17]. After LBP was introduced,
many variants of the original descriptors were proposed to
improve its performance including the Rotation Invariant Co-
occurrence among LBP (RIC-LBP) proposed by Nosaka et.
al [13]. RIC-LBP was used to classify biomedical images
and proved that the relationships between LBP patterns are
important to enhance the recognition performance. In our

previous work, we used RIC-LBP to extract texture features
from Carbon NanoTube (CNT) forest forest classes based on
varying CNT diameter and CNT density numbers [18].

The mechanism of RIC-LBP is that it exploits the relation-
ships among the binary patterns by finding the co-occurrences
patterns among the histogram features. In addition, the his-
togram of the descriptor is represented in the form of multiple
LBP pairs where each pair will be attached with a specific
label to account for rotation invariance which makes it very
powerful to capture important texture features from the given
image. The total number of features extracted using the RIC-
LBP descriptor are 408 bins. Figure 1 illustrates the operations
of RIC-LBP.

B. Multiresolution Scheme for Feature Extraction

Texture image patterns vary among different image resolu-
tions. Capturing more patterns from multiresolution scheme
showed to generate better classification performance [17].
This can be done by downsampling the original image and
computing features on both the original and the subsampled
images. After that, the features extracted from both images are
concatenated in a late fusion mechanism and the final step is
to send those features to the classification stage. Hence, this
subsampling procedure helps to capture the texture patterns
from the farther pixel neighbors [19].

In our previous work, we used the same multiresolution
scheme to classify Human Epithelial type-2 (HE-2) im-
ages [10]. The results of concatenating features extracted from
two resolutions were better than using only the features ex-
tracted from the original image. In addition, we also used this
scheme to classify natural texture images, and the prediction
performance has also improved [11]. Figure 2 illustrates the
multiresolution scheme.



Fig. 2. Multiresolution scheme of the input image. Since chest X-ray images provided for the classification task have high resolution, when subsampling
happen, shapes of the objects inside the image will be preserved. Features are extracted from both the original and the subsampled images. In total, we get
816 bins using RIC-LBP descriptor.

C. COVID Prediction using RF Classifier

RF classifier has been used for both classification and re-
gression tasks. It is considered an ensemble learning technique
that works by making many decision trees at training time and
the output result is the class that is computed as the mode
of the classes or mean prediction if the task is finding the
regression task [14]. Therefor, RF is a divide and conquers
approach.

The training algorithm for random forests uses the general
technique of bagging or bootstrap aggregating. The number
of trees in the model is a free parameter. In general, a few
hundred to several thousand trees are used, depending on the
nature and the size of the training samples. In our experiments,
we used 250 trees to generate a high classification results. The
advantages of using RF classifier are that it handles missing
variables very well, its performance is good on large datasets,
and more importantly is it takes small time to create the
prediction model.

III. EXPERIMENTAL RESULTS

A. COVID-Xray-5k Dataset

The dataset used in the experiments is called COVID-
Xray-5k [7] which was published by Minaee et al. for the
purpose of prediction of COVID-19 disease using machine

learning techniques. The dataset is a combination of both X-
ray and CT images. The COVID-19 images for this dataset
are taken from another dataset called Covid-Chest-Dataset
publishd by Joseph Cohen et al. [8]. This later dataset is
updated continuously and it contains other data about patients,
such as age and sex. Radiologists in [7] kept anterior-posterior
images for the prediction of COVID-19 cases. The number of
those anterior-posterior images were 203 X-ray images. After
being examined by radiologist, only 184 images of COVID-
19 were approved. As a result, we are provided with a clean
labeled COVID-19 dataset.

For the Non-COVID images, there were only few number
of such samples in the [8] dataset. Hence, Minaee et al. had to
use images from another dataset called Chex-Pert dataset [9]
collected by Irvin et al. This dataset is large with over 200,000
images of chest radiographs taken from over 65,000 patients.
From this large pool of images, 2,000 Non-COVID images
were selected for training and another 3,000 images for testing.
This will bring the total images for the Non-COVID class to
5,000 images. Table I below shows the number of images used
for both training and testing stages of each class used in our
experiments. Samples of COVID and Non-COVID images are
shown in Figure 3 below.

The resolution of the images provided by this dataset vary



Fig. 3. Sample images from the COVID dataset. Samples of the first row are COVID-19 images. Samples of the second row are Non COVID-19 images.

TABLE I
TOTAL NUMBER OF IMAGES PER CLASS OF COVID-XRAY-5K DATASET. IT

IS OBVIOUS THAT WE HAVE FEWER NUMBER OF TRAINING IMAGES
COMPARED TO TESTING IMAGES.

Dataset Split COVID-19 Non-COVID
Training Images 84 2000
Testing Images 100 3000

widely. Some images have a low resolution of only 400×400
and other images have very high resolution of 1900 × 1400.
The reason for this variation is that images are collected from
multiple sources. Since we are using local texture features,
RIC-LBP descriptor will not be affected by this change. In
addition, the mulltiresolution scheme, which divides the image
by half, works well on these resolutions since the structure of
the objects inside the image will be intact.

B. Results of Experiments

In this section, we introduce our results using our framework
for feature extraction and classification. We also introduce
a comparison with the state-of-the-art approaches introduced
before in relation to the dataset. To evaluate the performance
of the RF classifier, we used both sensitivity and specificity
metrics. Since the provided dataset is imbalanced, these two
metrics are proper to be used to report the classification
performance. The equations to calculate both metrics are as
shown below:

Sensitivity =
TCC

TC
(1)

where TTC is the number of images correctly predicted as
COVID-19. TC is the total number of COVID-19 images.

Specificity =
NCC

NC
(2)

where NCC is the number of images correctly predicted as
Non-COVID. NC is the total number of Non-COVID images.

The first experiment we conducted was extracting texture
features from the original chest X-ray images and applying
the RF classifier with 250 trees. In total, we get 408 bins of
texture features for all training and testing images. Results for
this experiment are shown in Table II below:

TABLE II
SENSITIVITY AND SPECIFICITY RATES USING RIC-LBP AND RF

CLASSIFIER. 408 BINS WERE EXTRACTED FROM THE ORIGINAL IMAGE.

Model Sensitivity Specificity
ResNet18 98.0% 90.7%
ResNet50 98.0% 89.6%

SqueezeNet 98.0% 92.9%
Densenet-121 98.0% 75.1%

RIC-LBP (408 bins) 95.0% 89.3%

From this table, we observe that local texture features with
RF classifier produced a sensitivity rate of 95% which is 3%
less than the results set by state-of-the-art deep learning based
methods. In addition, specificity rate achieved good scoring
89.3% outperforming Densenet-121 [22] rate and falling short
to both ResNet18 [20] and ResNet50 [20]. Furthermore, it
falls by more than 3% to SqueezeNet [21]. As we know, the
methods used before are all deep learning approaches with
transfer learning. As a result, their performance is very high.

Figure 4 shows the confusion matrix of the first experiment
for the two classes in the dataset. Only 5 COVID samples
were misclassified as Non-COVID samples while 320 Non-
COVID samples were misclassified as COVID samples. This



Fig. 4. Confusion matrix of RF classifier using RIC-LBP applied to the
original image.

is because we need to extract more texture patterns in order
to improve the classification accuracy.

The second experiment we conducted was extracting texture
features from two levels of the input image. RIC-LBP was
first applied to the original image resolution and a total of
408 bins texture features were extracted. Then, the original
image is subsampled and the same descriptor was applied on
the new image resolution to extract additional 408 bins texture
features. A late fusion mechanism was applied to merge those
features by concatenating the two extracted features into a
single features vector. This works by adding the second set
of features to the end of the first set of features which will
generate 816 bins. The newly fused 816 bins texture features
are then fed to the 250 trees RF classifier. Results for this
experiment are shown in Table III below:

TABLE III
SENSITIVITY AND SPECIFICITY RATES USING RIC-LBP AND RF

CLASSIFIER WITH MULTIRESOLUTION SCHEME APPLIED TO THE ORIGINAL
IMAGE. 816 BINS WERE EXTRACTED FROM BOTH THE ORIGINAL AND THE

SUBSAMPLED IMAGE.

Model Sensitivity Specificity
ResNet18 98.0% 90.7%
ResNet50 98.0% 89.6%

SqueezeNet 98.0% 92.9%
Densenet-121 98.0% 75.1%

RIC-LBP (816) bins 99.0% 91.3%

Both sensitivity and specificity rates were improved by
using the multiresolution scheme in extracting the features.
RIC-LBP with 816 bins scored 99% in sensitivity and 91.3%
in specificity. We outperform all the deep learning methods
by 1% in sensitivity and score comparable result to the best
specificity rate generated by SqueezeNet architecture.

Figure 5 shows the confusion matrix of the second experi-
ment for the two classes in the dataset. Hence, the multiresolu-
tion scheme resulted in only a single COVID sample to be mis-
classified as Non-COVID. In addition, it reduced the number
of mis-classified Non-COVID samples from 320 to 259. Thus,
multiresolution approach for texture features extraction proved
to generate better results on chest X-ray images using the RF
classifier.

It is worthy to mention that the choice of the number of
trees was made based on the experiments illustrated in Figure
6. We started with a value of 25 and performed experiments
up until the value of 500 where the rates for sensitivity
and specificity dropped. The graph on the left represents
experiments performed using RIC-LBP with 408 bins. While
the graph on the right represents experiments performed using
RIC-LBP with 816 bins. The highest values for sensitivity and
specificity rates for both graphs were achieved using an RF
classifier with 250 trees.

Fig. 5. Confusion matrix of RF classifier using RIC-LBP applied to the
multiresolution scheme.

IV. CONCLUSIONS

This paper presents a simple classical machine learning
framework to predict COVID-19 disease from X-ray images.
Two stages involved in this prediction task: feature extraction
and classification. For the feature extraction, we used a pow-
erful texture features descriptor that showed high performance
to classify biomedical images called RIC-LBP descriptor.
For the classification task, we also used a strong classifier
called Random Forests (RF) with 250 trees. The proposed
framework, which includes a multiresolution scheme to enrich
the extracted features from the input image, was applied on
a benchmark dataset of 5,000 images. Results showed that
classical machine learning approaches performed good given
the small number of X-ray images provided and the fact that
we are only trying to predict two classes. We scored 99.0%
and 91.3% in sensitivity and specificity, respectively. We also
compared our results with deep learning approaches tested
previously on the same dataset and our performance using
the texture feature and RF classifier is considered comparable
with the previous work.

In the future, we intend to build our own deep learning
architecture to classify X-ray images for this task to further
improve the classification metrics. In addition, we hope in
the future, a much bigger and comprehensive COVID-19
dataset becomes available so that we can produce an efficient
classification approach with better classification results.
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