Comparison between phenotype and molecular resistance characteristic in Staphylococcus epidermidis isolates from wound infections in Al-Basrah province, Iraq

Saad S. Al-Amara

Department of Biology, College of Science, University of Basrah, Ira

ABSTRACT

Background:*Staphylococcus epidermidis* is considered the upper respiratory tract's human skin flora and mucosal membrane and displays low pathogenic capacity in healthy individuals. Drug-resistant strains can be identified as a natural result of the microflora through antibiotic therapy and are a possible cause of pathogenic strain resistance genes. **Methods:**Culture, biochemical analysis and Vitek[®]2 Utilizing for identified the One hundred and fifty swab sample was collected from different wounds infected. *S. epidermidis* strain's ability to resist antibiotics was tested using a disk diffusion method. Result of antibiotic sensitivity test was confirmed and supported by Vitek[®]2 system. Also, the PCR antibiotic resistance gene was detected.

Results: Out of 150 swab samples, twelve were positive for *S. epidermidis.*. Disc method was shown the 75%,66.7%,83.3% and 58.3% harboured highest prevalence of antimicrobial resistance against penicillin, oxacillin, cefoxitin and erythromycin respectively. While the moderate prevalence 50.7%,41.7% and 33.3% of resistance against tetracycline, clandomycin and ciprofloxacin respectively. Furthermore, lowest incidence was shown the 25% for both of resistance against rifampin, and gentamycin. The Vitek[®]2 system was confirmed and support antibiotic sensitivity test. A most frequently found antibiotic resistance genes amongst S. epidermidis strains, according to the findings, were *mecA* (91.7%), *blaZ* (91.7), *ermA* (16.7%),*ermB* (25%),*ermC* (25%), *tetM* (25%), *tetK* (33.3%) and *aacA-aphD* (41.7%) respectively. All *S. epidermidis* strain doesn't have *vanA* and *vanB* antibiotic resistance gene.

Conclusion:Frequency of resistance to antibiotic should be detected more than one method, and used the Vitek[®]2 system detected the antibiotic resistance gave better support for result. Additional PCR technique, actually very important to detect antibiotic resistance genes of *S. epidermidis* strains.

Keywords: Staphylococcus epidermidis; antibiotic resistant characteristic; resistant genes; wound infection..

Corresponding Author: Saad S. Al-Amara Department of Biology, Iraq College of Science, University of Basrah, Basrah, Iraq Email: <u>saad.mahdi@uobasrah.edu.iq</u>

1. Introduction

Staphylococci are popular bacterial colonizers of human and other mammalian skin and mucosal membranes. It major Gram-positive opportunistic bacteria that have a variety of pathogenic species [1-2]. As essential nosocomial pathogens, coagulase-negative staphylococci have been increasingly recognized [3]. Primarily *Staphylococcus epidermidis*, are associated with human skin flora and upper respiratory tract mucosal membranes, and have in stable individuals, commensals have a low pathogenic risk [4].

Even then, in immunocompromised patients, *S. epidermidis* can be responsible for some serious infection [5]. Furthermore, drug-resistant pathogens can be selected as a normal part of the microflora during antibiotic therapy and are a possible reservoir for pathogenic strains resistance genes [6-7-8-9]. Infections of the prosthetic bone, artery graft, surgical site, central nervous system shunt, operation wounds, and heart system, among other things, have been linked to *S. epidermidis* [2].

There is no clear genetic difference between pathogenic and commensal *S.epidermidis* strains, and nosocomial strains are rich in virulence and antibiotic resistance genes. It has been indicated that such genes are mobilized between and within species inside the companion genome pool [10-11]. There is few available information on the molecular epidemiology of *S.epidermidis* strains existing in Iraq. Therefore, The current study looked into the incidence rate, antimicrobial resistance properties, and the distribution of *S. epidermidis* virulence factors. Isolated wound infection strains from Al-Basrah province, Iraq.

2. Materials and Methods

Collection of specimens

One hundred and fifty swab sample was collected from surgical wounds, gunshot wound wounds, burn wounds, puncture wounds, sliced wounds, lacerated wounds, and diabetic foot infection wounds through October-2018 to December-2018 in Al-Basrah province, Iraq.

Isolation and identification

Positive swab cultured was purification by repeating sub-cultivation to acquire single colonies in pure culture, After that Gram-stain, catalase, slide coagulase test, motility test, mannitol salt agar, blood agar hemolysis, nitrate reductase and urease test was used to identifying the bacterial isolates[12]. The identification of isolates was confirmed by Vitek[®]2 system.

Antibiotic sensitivity test

Susceptibility test was carried out using the standard disk diffusion screening was performed according to CLSI guidelines [13]. Penicillin, oxacillin, cefoxitin, erythromycin, clandomycin, tetracycline, gentamycin, rifampin, vancomycine and ciprofloxacin (10µg), (1µg), (30µg), (15µg), (2µg), (30µg), (15µg), (5µg), (30µg) and (5µg) respectively. Also the result of disk test was confirmed and supported by Vitek[®]2 system.

DNA Extraction

The DNA Presto Mini g DNA Bacteria kit (Geneaid, USA) was used for genomic DNA extraction. The DNA sample was regarded pure, when the rate between 1.8 - 2.0 ng.

PCR screening of antibiotic resistance

PCR analysis was used to examine the emergence of antibiotic resistance genes in bacterial isolates table(1).

Gene	Product sizes	Reference
laZ	639 bp	[14]
necA	310 bp	[15]
rm(A)	421 bp	
rm(B)	359 bp	
rm(C)	572 bp	
anA	713 bp	[16]
anB	430 bp	[17]
et(M)	158 bp	[15]
et(K)	360 bp	
acA-aphD	227 bp	[18]

Table 1. Resistance genes that used in the present study

3. Results and Discussion

Nosocomial *S.epidermidis* strains have been known for their high susceptibility to a variety of antibiotics [19-20-21]. In this study, Just 66 (44%) of 150 clinical swabs sample was obtained from different wounds infection from October to December 2018 were positive for bacterial growth., in which 15(22.72%), 7(10.61%),9(13.63%), 6(9.1%),8(12.12%),8(12.12%) and 13(19.7%), surgical wounds, gunshot wound wounds, burn wounds, puncture wounds, sliced wounds, lacerated wounds, and diabetic foot infection wounds respectively... The higher percentages isolate were *Pseudomonas aeruginosa* 29 (44%), *Staphylococcus aureus*

14(21.21%) and *Staphylococcus epidermidis* 12(18.18%), followed by *Klebsiella pneumoniae* 5(7.58%), *Escherichia coli* 4(6.06%), *Burkholderia cepacia* 1(1.52%) and *Acinetobacteia baumannii* 1 (1.52%) figure (1).

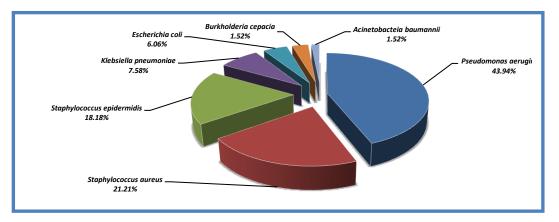


Figure 1. The bacterial species isolated frequency from studies group

The *S. epidermidis* strains were shown to be present in 12(18.18%) of wound infection samples figure (1). The result of antibiotic sensitivity test by using an antibiotic disc method was shown the 75%,66.7%,83.3% and 58.3% harboured The highest spread of antimicrobial resistance penicillin, oxacillin, cefoxitin and erythromycin respectively. While the moderate prevalence was shown the 50.7%,41.7% and 33.3% of resistance against tetracycline, clandomycin and ciprofloxacin respectively. Furthermore, lowest incidence was shown the 25% for both of resistance against rifampin, and gentamycin. Whereas the all *S.epidermidis* strain was shown a sensitive characterization against vancomycine table (1). The result of the Vitek[®]2 system that's used for detecting the antibiotic sensitivity test confirm and support the result of antibiotic disc method and also was shown approximately the same result table (2).

Table 2. Pattern of antibiotic resistance for S. epidermidis strains isolated in the current study
--

Positive samples				Antibiotic resistance pattern (%)						
for S. epidermidis	Pen. *	Oxa.	Cef.	Ery.	Clin.	Rif.	Tet.	Cip.	Gen.	Van
Surgical wound (4)	3(75)	3(75)	4(100)	2(50)	2(50)	1(25)	2(50)	1(25)	2(50)	0
Burn wound (3)	2(66.7)	2(66.7)	2(66.7)	2(66.7)	1(33.3)	1(33.3)	2(66.7)	1(33.3)	0	0
Diabetic foot wound (3)	2(66.7)	2(66.7)	2(66.7)	2(66.7)	1(33.3)	0	1(33.3)	1(33.3)	0	0
Lacerated wound (2)	2(100)	1(50)	2(100)	1(50)	1(50)	1(50)	1(50)	1(50)	1(50)	0

*Pen: Penicillin (10 μg/disk), Oxa:Oxacillin(1μg),Cef: Cefoxitin (30μg), Ery:Erythromycin (15μg),Clin: Clandomycin (2μg),Rif: Rifampin (5 μg),Tet: Tetracycline(30μg), Cip:Ciprofloxacin (5μg) , Gen: Gentamycin (15μg), and Van:Vancomycine (30μg).

Table 3. Vitek [®] 2 pattern of antibiotic resistance for <i>S. epidermidis</i> strains isolated in the	n the current study
--	---------------------

Positive samples	tive samples Antibiotic resistance pattern by Vitek [®] 2 (%)								
for	β.lactmase	Oxa.*	Cef.	Ery.	Clin.	Tet.	Rif	Gen.	Van
S. epidermidis									
Surgical wound (4)	4(100)	4(100)	4(100)	2(50)	2(50)	2(50)	1(25)	2(50)	0
Burn wound (3)	2(66.7)	2(66.7)	2(66.7)	2(66.7)	1(33.3)	2(66.7)	1(33.3)	0	0
Diabetic foot wound (3)	3(100)	2(66.7)	3(100)	1(33.3)	2(66.7)	1(33.3)	0	0	0

Positive samples	Antibiotic resistance pattern by Vitek [®] 2 (%)								
for	β.lactmase	0xa.*	Cef.	Ery.	Clin.	Tet.	Rif	Gen.	Van
S. epidermidis									
lacerated wound	2(100)	1(50)	1(50)	1(50)	1(50)	1(50)	1(50)	1(50)	0
(2)	2(100)	1(30)	1(30)	1(30)	1(30)	1(30)	1(30)	1(30)	0
*Oxa:Oxacillin, Cef:Cef	oxitin, Ery:Erytl	nromycin,	Clin:Clando	mycin, Rif	Rifampin,	Tet:Tetrac	ycline, Ger	n: Gentam	ycin, and

*Oxa:Oxacillin, Cef:Cefoxitin, Ery:Erythromycin, Clin:Clandomycin, Rif: Rifampin, Tet:Tetracycline, Gen: Gentamycin, and Van:Vancomycine.

A high expansion of people who are multi-drug resistance a part from that *S. epidermidis* was also found during their investigation. *S. epidermidis* strains have emerged in Mexico with similar increases in antibiotic resistance [22]. Antibiotic resistance prevalence in the coagulase-negative staphylococci strains were 94.20%, 89.50%, 79.10%, 53.70%, 59.50%, 58.50%, 52.80%, 39.10%, 29.50%, 26.70%, 2.30, 18.40%, and 0%, reported in the study of [23] versus penicillin, erythromycin, oxacillin, clindamycin, tetracycline trimethoprim-sulfamethoxazole, ciprofloxacin, chloramphenicol, gentamicin, ceftizoxime, teicoplanin, rifampin, and vancomycin respectively. While antibiotics has been confirmed to be 100%, 100%, 0%, 37%, 33%, 0%, 16%, 80%, 80%, 0% and 0%, reported in the study of [24] to the ciprofloxacin, amoxicillin-clavulanic acid, erythromycin,clindamycin, gentamicin, mupirocin, levofloxacin, oxacillin, tetracycline, rifampin and trimethoprim-sulfamethoxazole respectively. Furthermore, resistance of the *S. epidermidis* strains in Belgium were recoreded a similar patterns [25], Spain [26], Ireland [27] and Iran [28,21].

The current research also focuses into how resistance genes grow in *S.epidermidis* strains. According to the results, one of the most commonly identified *S. epidermidis* strains resistance genes were *mecA* (91.7%), *blaZ* (91.7), *ermA* (16.7%),*ermB* (25%),*ermC* (25%), *tetM* (25%), *tetK* (33.3%) and *aacA-aphD* (41.7%) respectively. While all *S. epidermidis* strain doesn't have *,vanA and vanB* antibiotic resistance gene table(4).

Positive	Antibiotic resistance genes (%)									
samples for <i>S. epidermidis</i>	mecA	blaZ	ermA	ermB	ermC	tetM	tetK	vanA	vanB	aacA- aphD
Surgical wound (4)	4(100)	4(100)	1(25)	0	1(25)	1(25)	1(25)	0	0	3(75)
Burn wound (3)	3(100)	3(100)	0	1(33.3)	2(66.7)	1(66.7)	1(33.3)	0	0	1(33.3)
Diabetic foot wound (3)	3(100)	3(100)	0	2(66.7)	0	1(33.3)	1(33.3)	0	0	1(33.3)
Lacerated wound (2)	1(50)	1(50)	1(50)	0	0	0	1(50)	0	0	0

Table 4. Genes pattern of antibiotic resistance in S. epidermidis strains isolated in the current study

The study of [29] was found the spread of antibiotic resistance genes *mecA*, *ermA*, *ermB*, *ermC*, *femA*,*tetK*, *tetM*, *blaZ* and *msrA* are 29.60 %, 33.10 %, 5.80 %, 21.60 %, 7.50 % 13.70 %, 28.80 %, 93.50 % and 9.40 %, among coagulas-negative Staphylococci. *S. epidermidis* isolated from clinical infection samples showed a wide allocation genes for antibiotic resistance, particularly *aacA-aphD*, *tetK*, *mecA*, and *tetM*. Clindamycin resistance was found in a wide range of *S. epidermidis* strains [30].

The *ermC* gene was found in some strains of *S.epidermidis*. The aminoglycosides resistance is more common encoded by *aacA-aphD* (69.59 %). Due to the fact that gene normally widely distributed amongst staphylococci human origin [31].According to [32], the *ermA*, *tetK*,*ermC*, *vatA*, *vatB*, *vatC* and *tetM*, *aacA-aphD* were found in 30.90 %, 76.40 %, 74.50 %, 74.50 %, 1.80 %, 0 %, 5.50 % and16.40 %, of staphylococci strains isolated from human infection. The frequency of resistance to much more seven types of antibiotics was found to be 17.39 % in a study of [21].

4. Conclusion

Frequency of resistance to antibiotic should be detected more than one method, and used the Vitek[®]2 system detected the antibiotic resistance gave better support for result. Additional PCR technique, actually very important to detect antibiotic resistance genes of *S. epidermidis* strains.

References

- Y. Yao. 'Characterization of the Staphylococcus epidermidis accessory-gene regulator response: Quorumsensing regulation of resistance to human innate host defense', *Journal of Infectious Diseases*, vol. 193, no. 6, pp. 841–848, 2006. doi: 10.1086/500246.
- [2] M. Otto. 'Staphylococcus epidermidis the "accidental" pathogen', *Nat Rev Microbiol*, vol. 7, no. 8, pp. 555–567, 2009. doi: 10.1038/nrmicro2182.Staphylococcus.
- [3] M. Sjölund.. 'Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin', *Emerging Infectious Diseases*, vol.11, no9, pp. 1389–1393, 2005. doi: 10.3201/eid1109.050124.
- [4] C. Vuong, C. and M. Otto. 'Staphylococcus epidermidis infections', *Microbes and infection*, vol. 18, no.4, pp. 481–489, 2002. doi: 10.1017/S0021859600009278.
- [5] N. Castro-Alarcon. 'Molecular typing and characterization of macrolide, lincosamide and streptogramin resistance in staphylococcus epidermidis strains isolated in a Mexican hospital', *Journal of Medical Microbiology*, vol. 60, no. 6, pp. 730–736, 2011. doi: 10.1099/jmm.0.027847-0.
- [6] S. M. K. Schoenfelder. 'Success through diversity How Staphylococcus epidermidis establishes as a nosocomial pathogen', *International Journal of Medical Microbiology*. Elsevier GmbH., vol. 300, no. 6, pp. 380–386, 2010. doi: 10.1016/j.ijmm.2010.04.011.
- [7] M. Otto. 'Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection', *BioEssays*, vol. 35, no.1, pp. 4–11,2013. doi: 10.1002/bies.201200112.
- [8] L. A. Vitali. 'Diversity of antibiotic resistance genes and staphylococcal cassette chromosome mec elements in faecal isolates of coagulase-negative staphylococci from Nigeria', *BMC Microbiology*, vol. 14, no.1, pp. 1471–2180, 2014. doi: 10.1186/1471-2180-14-106.
- [9] M. Juda, B. Chudzik-Rzad, and A. Malm. 'The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis', *Memorias do Instituto Oswaldo Cruz*, vol. 111, no. 3, pp. 155–160, 2016. doi: 10.1590/0074-02760150356.
- [10] a. Joana Rolo, b. Peder Worning, c Jesper Boye Nielsen, c Rory Bowden, D. 'crossm Evolutionary Origin of the Staphylococcal Cassette Chromosome', vol. 61, no. 6, pp. 1–16, 2017.
- [11] R. Cabrera-Contreras. 'Genomic analysis of prevalent Staphylococcus epidermidis multidrug-resistant strains isolated during eight years in a single children hospital in México City.', (November), 2019. doi: 10.7287/peerj.preprints.27693.
- [12] J. Freney, W. E. H. V. KIOOS and W. J. A. 'Recommended minimal standards for description of new staphylococcal species', *International Journal of Systematic Bacteriology*, vol. 49, pp. 489–502, 1999.
- [13] M. Balouiri, M. Sadiki, and S. K. Ibnsouda. 'Methods for in vitro evaluating antimicrobial activity : A review', *Journal of Pharmaceutical Analysis*. Elsevier, vol. 6, no2, pp. 71–79, 2016. doi:10.1016/j.jpha.2015.11.005.

- [14] A. E. Rosato. 'mecA-blaZ corepressors in clinical Staphylococcus aureus isolates', Antimicrobial Agents and Chemotherapy, vol. 47, no.4, pp. 1460–1463,2003. doi: 10.1128/AAC.47.4.1460-1463. 2003.
- [15] G. Lina. 'Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci', *Antimicrobial Agents and Chemotherapy*, vol. 43, no. 5, pp. 1062–1066, 1999. doi: 10.1128/aac.43.5.1062.
- [16] A. Azimian. 'Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a University Hospital in Northeastern Iran', *Journal of Clinical Microbiology*, vol. 50, no. 11, pp. 3581–3585, 2016. doi: 10.1128/JCM.01727-12.
- [17] S. Saadat. 'Vana and vanb positive vancomycin-resistant staphylococcus aureus among clinical isolates in Shiraz, South of Iran', *Oman Medical Journal*, vol. 29, no. 5, pp. 335–339, 2014. doi: 10.5001/omj.2014.90.
- [18] B. Strommenger. 'Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus', *Journal of Clinical Microbiology*, vol. 41, no. 9, pp. 4089–4094, 2003. doi: 10.1128/JCM.41.9.4089-4094.
- [19] A. E. Namvar. 'Clinical characteristics of Staphylococcus epidermidis: a systematic review.', *GMS hygiene and infection control*, 9(3), pp. 1–10, 2014. doi: 10.3205/dgkh000243.
- [20] W. F. Oliveira. 'Staphylococcus aureus and Staphylococcus epidermidis infections on implants', *Journal of Hospital Infection*. Elsevier Ltd, vol. 98, no. 2, pp. 111–117, 2018. doi: 10.1016/j.jhin.2017.11.008.
- [21] R. Chabi, and H. Momtaz. 'Virulence factors and antibiotic resistance properties of the Staphylococcus epidermidis strains isolated from hospital infections in Ahvaz, Iran', *Tropical Medicine and Health*. Tropical Medicine and Health, vol. 47, no.1, pp. 1–9, 2019. doi: 10.1186/s41182-019-0180-7.
- [22] R. Cabrera-Contreras. 'Antibiotic susceptibility and biofilm production and correlation to methicillin resistant genotype of Staphylococcus epidermidis strains from Mexican hospital', *Proceedings of the 110th General Meeting of the American Society for Microbiology (ASM'10)*, pp. 23–27, 2010.
- [23] X. X. Ma, 'Antibiotic susceptibility of coagulase-negativestaphylococci (CoNS): Emergence of teicoplaninnon-susceptible CoNS strains with inducible resistance to vancomycin', *Journal of Medical Microbiology*, vol. 60, no. 11, pp. 1661–1668, 2011. doi: 10.1099/jmm.0.034066-0.
- [24] M. G. Eladli. 'Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk', *Saudi Journal of Biological Sciences*. King Saud University, vol. 26, no. 6, pp. 1285–1290, 2019. doi: 10.1016/j.sjbs.2018.05.008.
- [25] S. Delgado.'Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: Potential virulence traits and resistance to antibiotics', *BMC Microbiology*, vol. 9, pp. 1–11,2009. doi: 10.1186/1471-2180-9-82.
- [26] E. M. Smith. 'Global distribution and diversity of ovine-associated Staphylococcus aureus', *Infection, Genetics and Evolution*. Elsevier B.V., vol. 22, pp. 208–215, 2014. doi: 10.1016/j.meegid.2013.09.008.
- [27] B. A. McManus. 'Comparative genotypes, staphylococcal cassette chromosome mec (SCCmec) genes and antimicrobial resistance amongst staphylococcus epidermidis and staphylococcus haemolyticus isolates from infections in humans and companion animals', *PLoS ONE*, vol. 10, no. 9, pp. 1–18, 2015. doi: 10.1371/journal.pone.0138079.
- [28] R. Sharafati-Chaleshtori., F. Sharafati-Chaleshtori, and A. Karimi. 'Antibiotic resistance pattern of staphylococcus strains isolated from orange and apple juices in Shahre-Kord, Iran', *Pakistan Journal of Medical Sciences*, vol. 26, no. 3, pp. 615–618, 2010.

- [29] N. Duran. 'Antibiotic resistance genes & susceptibility patterns in staphylococci', *Indian Journal of Medical Research*, vol. 135, no. 3, pp. 389–396, 2012.
- [30] A. M. Zelazny. 'Selection of strains for quality assessment of the disk induction method for detection of inducible clindamycin resistance in staphylococci: A CLSI collaborative study', *Journal of Clinical Microbiology*, vol. 43, no. 6, pp. 2613–2615, 2005. doi: 10.1128/JCM.43.6.2613-2615.2005.
- [31] S. Johler,F. Layer, and R. Stephan. 'Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses', *Journal of Food Protection*, vol. 74, no. 11, pp. 1852–1859, 2011. doi: 10.4315/0362-028X.JFP-11-192.
- [32] G. Adwan. 'Molecular detection of nine antibiotic resistance genes in methicillin resistant Staphylococcus aureus isolates', *Roumanian archives of microbiology and immunology*, vol. 73, no. (1–2), pp. 9–17, 2014.