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Recent Trends in Microbial Flavour Compounds: A Review on Chemistry, 

Synthesis Mechanism and Their Application in Food 

Abstract 

Aroma and flavour represent the key components of food that improves the organoleptic 

characteristics of food and enhances the acceptability of food to consumers. Commercial 

manufacturing of aromatic and flavouring compounds is from the industry's microbial 

source, but since time immemorial, its concept has been behind human practices. The 

interest in microbial flavour compounds has developed in the past several decades 

because of its sustainable way to supply natural additives for the food processing sector. 

There are also numerous health benefits from microbial bioprocess products, ranging 

from antibiotics to fermented functional foods. This review discusses recent 

developments and advancements in many microbial aromatic and flavouring compounds, 

their biosynthesis and production by diverse types of microorganisms, their use in the 

food industry, and a brief overview of their health benefits for customers.

Keywords: Aroma compounds; Biotransformation; Microbiota; Acetaldehyde; Flavour 

characteristics

1. Introduction 

Flavours and aromas play a major role in our everyday lives. They are available in food 

and cosmetics. Nowadays, demand for natural ingredients rather than a chemical is 

increasing and it is the same for flavour compounds also (Roman et al., 2017). 

Flavouring compounds in the food, perfumes, and pharmaceutical industries are widely 

used. In general, plant compounds are the main sources of natural flavour though some of 

them are also synthesized chemically. Culturing plant cells is a promising process for 

flavour and aroma production. This method is based on the biochemical, genetic, and 

totipotential capabilities of plant cells (Ayseli and Ayseli, 2016; Zakaria and Kamal, 

2016). 

On the other side, biotechnology advances make it possible to synthesize natural 

flavours economically and successfully at a commercial scale. Enzymes are used for 

biotransformation but entire microorganisms’ cells are very promising because the 
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microorganisms can easily be generated and used in the fermenters. The use of 

biotransformation systems allows biotechnology products to be labeled as natural. Market 

analysis indicates that customers prefer natural ingredients while artificial ingredients 

have many side effects like allergy, nausea, chest pain or headache and sometimes even 

detrimental consequences like cancer, negative effects of neurons, kidney damage, etc. 

(Roman et al., 2017).

Besides studying the chemical properties of natural volatile flavour compounds 

(VFCs), which cause aroma and flavours perceived, some studies have shown that their 

antioxidant, anti-cancer, anti-inflammatory, and anti-obesity activities may have potential 

applications to human health (Caron et al., 2021; Paulino et al., 2021). In addition, 

market demand shows a trend to natural goods, with the bio-generation of trade-relevant 

natural volatile aroma compounds, especially the synthesis or biological transformation 

by enzymes or whole cells in traditional aqueous solution, mainly centered within 

industry and academic sectors (Ayseli and Ayseli, 2016; Caron et al., 2021). 

There is a great deal of curiosity about natural products. This drives the fragrance 

industry to create new methods for extracting compounds with natural aromas. 

Bioconversion is another form of this natural synthesis. It is well known that the 

production of volatile aroma compounds by enzymes or microorganisms for the food 

industry provides various advantages over conventional methods (Paulino et al., 2021). 

The use of solid-state fermentation in conjunction with submerged fermentation often 

provides higher yields or superior product features with reduced costs. Furthermore, 

owing to its high boiling point and high temperature at which it evaporates, water 

impedes the isolation and purification processes as well as the process integration (Try et 

al., 2018). 

In food production, microbiological contamination can pose a health hazard by 

inducing diseases such as diarrhea, stomach cramps, vomiting, and even death. The 

intake of fresh and minimal processed foods has been seen a drastic rise in outbreaks of 

foodborne conditions in recent decades due to Enterobacter aerogenes, Escherichia coli 

O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, 

and Salmonella (Al-fekaiki et al., 2017). The in vitro studies report the antimicrobial 
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action of natural VFCs. The natural flavours of phenolic compounds enter the cell 

membrane and disrupt the lipid structure of the membrane. Theoretical abilities also 

disrupt the permeability of the membrane and impacts disrupt cellular ion gradients 

(Tometri et al., 2020).

In view of the above discussion, this study presents the current progress in several 

VFCs, their microbial synthesis as well as the high potential for commercial use in foods. 

The current review also assesses the antimicrobial potential of different flavour 

compounds from the enzymatic and microbial origin in addition to exploring their 

utilization in milk-based products, meat, and seafood processing. Figure-1 accurately 

depicts the overview of this review study.

2. Types of Microbial Flavours Compounds

Figure-2 indicates the grouping of VFCs by chemical composition. Microorganisms have 

since already been used in many foodstuffs to produce flavours. Microbes are used to 

preserve, modify, and flavour products such as wine, beer, fermented vegetables and 

milk, soybeans, pickles, and meat vinegar. Different microorganisms follow the specific 

metabolic pathway to produce specific flavour compounds as summarized in Figure-3. As 

mentioned above, microbial strains can either be used to produce VFCs in-situ or in 

suitable substrates from which VFCs are obtained and then used in various foodstuffs 

(Dan et al., 2019; Wang et al., 2020a, b; Zinjanab et al., 2021). In Table-1, the 

outcomes of various researchers for the biosynthesis of VFCs from different substrates by 

specific microbial species are compiled. The following sections discuss the most relevant 

category of VFCs used in the food industry and their microbial production:

2.1. Lactones

Lactones are internally formed cyclic esters of γ- and δ-hydroxy acids which are in 

combination with their corresponding alcohols. These lactones have a wide flavour 

composition that contributes primarily to too many flavours in dairy products, including 

buttery, coconut, creamy, fruity, nutty, or sweet flavours. Free lactones and their 

precursors come from fresh butter with a sweet fruity fragrance. In animal fats as well as 

auto-oxidized vegetable oils, δ-lactones are also found. This gives candies and pastries a 

strong flavour whereas, the weak flavour of tea, strawberry, raspberry, coconut, and 
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butter is due to the presence of 5-methylpentanolide or δ-Hexalactone (Bhari and Singh, 

2019; Kendirci et al., 2020). Table-2 discusses some of the other major VFCs of the 

lactones group with their chemical structure and food sources.

δ-Decalactone is a key lactone for the flavouring industry also called decan-4-

olide and is used as a dairy and fruit flavour. It has an incredibly strong smell and a 

creamy taste with a concentration of less than 5 parts per million (ppm). Peach fruit is the 

best source of this VFC which can be used as the aroma of apricot (Prunus armeniaca), 

peach (Prunus persica), coconut (Cocos nucifera), date (Phoenix dactylifera), maple 

(Acer spp.), pear (Pyrus spp.) and butterscotch. This VFC can be commercially 

synthesized in a biochemical reaction that is catalyzed by Candida guillermondii lipase or 

Yarrowia lipolytica by the transformation of the ricinoleic acid found in the oil of the 

castor plant (Ricinus communis). δ-Decalactone from the oil of R. communis has been 

reported to be produced by the microorganisms such as Aspergillus niger, Cladosporium 

suaveolens, and Pichia etchelisii (Prabakaran et al., 2020). Some microbial species such 

as Monilia fructicola, Rhodotorula glutinis, and Sporobolomyces odorus have been used 

to report comparatively lower product yields (Bhari and Singh, 2019). The oleaginous 

yeast (Yarrowia lipolytica) engineered recently by Marella and co-workers, in which it 

has been used by beta(β)-oxidation to hydroxylate fatty acids (FAs) and to shorten-chain 

preferentially 12 or 10 carbons (Marella et al., 2019). The engineered strains have shown 

that γ-Dodecalactone and δ-Decalactone from oleic and linoleic acid respectively yield 

fourfold higher levels than the wild strain, thereby paving the way for higher lactone 

production by fermenting available fatty feedstocks. The dairy products are particularly 

attractive for the buttery coconut, and milky flavours of these microbiologically-based 

lactones (Marella et al., 2019).

The fragrance of coconut (C. nucifera) is due to 6-pentyl-2-pyron (6-PP) which 

has been reported to be a key VFC in the cultures of Trichoderma viride. The γ-

dodecalactone and δ-Decalactone have been converted from coriolic acid and ricinoleic 

acid (Siddiquee, 2017; Khan et al., 2020). N-octanoic acid (caprylic acid) is found in 

coconut oil which has been fermented by Mortinella spp. to produce octalactones. 

Whereas, 11-hydroxy palmitic is found in sweet potatoes (Ipomoea batatas) which has 
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also been reported to produce δ-Decalactone by fermentation of yeast species 

(Vandamme and Soetaert, 2002).

Previously, De Aráujo et al.(2002)  evaluated the production of an unsaturated 

lactone 6-pentyl-a-pyrone (6-PP) with a strong coconut-like aroma, using both liquid and 

solid substrates in solid state fermentation (SSF) process where they used sugarcane 

bagasse as a substrate for growth and aroma production. In another approach, using 

mixed cultures of Lactobacillus acidophilus and Pediococcus pentosaceus, semisolid 

maize-based medium was utilized to produce flavour compounds like diacetyl, butyric 

acid and lactic acid by Escamilla-Hurtado et al. (2005).

2.2. Carboxylate esters

Natural microorganisms for ester synthesis are well known and have traditionally been 

used in food production, such as lactic acid bacteria (LAB) and yeast. Of these esters, 

volatile esters are the most important aromas in fermented foods, including beer, dairy, 

and wine products. Ester produces a pleasant, fruity fragrance at low concentrations, but 

is also considered to be off-tasting when found in significant amounts. Ethylacetate is the 

highest volatile ester in food. The concentration of such volatile ester in dairy products 

varies between ~50 and 100 mg/L (Wang et al., 2016) and in beer and wine between ~0 

and 60 mg/L (Daniel et al., 2015). There are several more volatile esters, including ethyl 

hexanoate, isoamyl acetate, and phenylacetate, but concentrations of more than 1 mg/L 

have not been observed (Dzialo et al., 2017). These amounts lying at or just above the 

threshold for identification by human beings impair the scent of food items significantly 

(Dzialo et al., 2017).  While there are some exceptions, including the mass production of 

acetate-generated yeast or wax ester production by Euglena gracilis (Inui et al., 2017), 

the amount of natural ester from microorganisms is usually small. Under anaerobic 

conditions, wax esters have been documented to accumulate as much as 65% of the dry 

cell weight (Inui et al., 2017). Ethylacetate from sugars or ethanol can be synthesized by 

yeasts including Cyberlindnera jadinii, Kluyveromyces marxianus, and 

Wickerhamomyces anomalus (Figure-4 A) (Fan et al., 2019; Zhang et al., 2020b). 

There are also other enzyme groups that can form ester but for ester synthesis, they have 

not been used widely (Xu et al., 2020).
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2.3. Alcohols

Unsaturated alcohols have been used in food ingredients with a distinctive scent. Many 

types of yeast contain complex alcohols with a long chain of organoleptic properties 

(Wang et al., 2019a). The batch of fermented wine with Saccharomyces cerevisiae was 

immobilized by Liang and coworkers with a fine cellulose material, who produced a 

rose-like scent, 2-phenyl ethanol, in a fermented wine (Liang et al., 2020). This offers an 

alternative microbial path for the synthesis of alcohol, which is usually isolated from rose 

petals or chemically synthesized. Hansenula anomala, K. marxianus, and S. cerevisiae 

have been identified for the production of 2-phenylethanin from 2-phenylalanine 

(Chantasuban, 2016). Noteworthy, K. marxianus was engineered by Kim and 

coworkers to overexpress genes that encode enzymes (such as alcohol dehydrogenase 

and phenylpyruvates decarboxylase) from S. cerevisiae that contribute to the 

overproduction of 2-phenylethanol from glucose (Kim et al., 2014). S. cerevisiae is an 

alternative ethanol synthesis microorganism to Zymomonas mobilis. The growth and 

synthesis of ethanol from four isolates were contrasted with the growth and synthesis of 

the efficient strain Z. mobilis (NRRL B-14023) at different temperatures in order to detect 

the thermotolerant strain of Z. mobilis (Xia et al., 2019). In Z. mobilis, glyceraldehyde-3-

phosphate-to-pyruvate, and pyruvate-to-ethanol pathways, the ethanol production route of 

glucose, consisting of the Entner-Doudoroff path, provides the majority of ATP needed 

for cell activity for approximately one mole of ATP per mole of glucose (Xia et al., 

2019). 

2.4. Ketones

Ketones are carbonyl molecules (=C=O) that trigger a lot of natural flavours and smell. 

Several saturated as well as unsaturated aromatic, aliphatic, and cyclic ketones have been 

reported from the cheese (Caron et al., 2021; Ianni et al., 2020). Among them, 

unusually C5-C11 numeric ketones, such as 2-alkanones along with secondary alcohols 

and free fatty acids (FFAs), which may have their distinctive aromas in Penicillium-

ripened cheese (Caron et al., 2021). Diacetyl is known as a butter-flavoured vicinal 

diketone, and is therefore used for the simulation of butter-like and other milky flavours 

(Wang et al., 2019b). It is produced in dairy foods by various microorganisms including 
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lactic acid bacteria (LAB) (Wang et al., 2016; Wang et al., 2019b). In Figure-4 B, the 

biosynthesis of diacetyl in LAB from carbohydrates is depicted. It is interesting to note 

that the metabolically engineered Enterobacter clocae provided high levels of diacetyl 

(1.45 g/L), while diacetyl and acetaldehyde were produced by yeasts Candida tropicalis 

strain D15 in the whey-based medium (Rosca et al., 2016). The essential components of 

the cooked flavour of the butter-containing baked food are methyl ketones. Methyl 

ketone precursors occur as alkanoic acids in fresh butter with no aroma features. 

However, they are converted into methyl ketones, which are the main VFCs in cooked 

and heated foods containing butter. These VFCs are formed by A. oryzae, A. niger, A. 

bisporus, Penicillium roquefortii, and T. viride. The mechanism of β-oxidation of FAs 

can be used to rapidly produce methyl ketones in microbes (Sharma et al., 2020).

2.5. Aldehydes

Vanillin is a 4-hydroxy-3-methoxybenzaladehyde and is considered a very effective VFC 

used in food for industrial purposes. The extraction of this VFC vanillin from vanilla 

pods is difficult due to labor-intensive and costly production. Due to increased consumer 

demand for natural vanillin, there is no need for chemically synthesized vanillin. As a 

result, several groups of researchers have obtained vanillin from essential oils by the 

microbial conversion of eugenol and isoeugenol (Ashengroph and Amini, 2017). 

Surprisingly, lignocellulosic obtained from agricultural residues have been discussed as a 

rich source of ferulic acid in a recently published report by Sharma and coworkers 

(Sharma et al., 2020). Furthermore, the use of ferulic acid has also been addressed in 

vanillin synthesis through microbial or enzyme transformations (Sharma et al., 2020). 

However, this procedure requires the synthesis of vanillin in which ferulic acid is 

released from lignocellulosic waste by enzyme or chemical intervention. Some bacteria 

and fungi may transform the released ferulic acid into vanilla, vanilla, and protocatechuic 

acid. The role of ferulic acid in the field of bioflavour production has therefore been 

recognized as a precursor to vanillin synthesis (Tang and Hassan, 2020; Sharma et al., 

2020). Vanillin has been biotransformed into ferulic acid by numerous microbial species 

(Tang and Hassan, 2020), including Actinomycetes spp., Amycolatopsis spp., 

Aspergillus spp. (A. niger), Bacillus spp. (B. coagulans, B. licheniformis, and B. subtilis), 

Corynebacterium spp. (C. glutamicum), Debaryomyces spp. (D. hanseni), Escherichia 
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spp. (E. coli), Halomonas spp. (H. elongata), Pseudomonas spp. (P. fluorescens and P. 

putida), Pycnoporus spp. (P. cinnabarinus), Rhodococcus spp., Rhodotorula spp. (R. 

rubra), Saccharomyces spp. (S. cerevisiae), Schizophyllum spp. (S. commune), and 

Streptomyces spp. (S. halstedii, S. sannanensis, and S. setonii). For the synthesis of cherry 

and fruity flavour, benzaldehyde is the second largest aldehyde next to the vanillin. It can 

be obtained from P. armeniaca (apricots), but the procedure results in unwanted 

hydroxycinnamic acid accumulation. Additionally, microbial synthesis of benzaldehyde 

from phenylalanine may be considered as “natural” without undesirable by-products. In 

this context, the engineered Pseudomonas taiwanensis strain has been found to 

synthesized benzaldehyde in supplemented medium of glucose or glycerol (Otto et al., 

2020). In fermented milk like yoghurt, acetaldehyde is the key flavouring compound 

formed by several Lactobacillus sp., further few types of yeast were also found to 

synthesize acetaldehyde (Dan et al., 2019; Rosca et al., 2016). In Figure-4 C, the 

biosynthesis of acetaldehyde from carbohydrates is depicted. 

2.6. Pyrazines

Pyrazines are heterocyclic molecules that contain nitrogen and produce nutty and roast 

flavours (Mortzfeld et al., 2020). The main factors for green flavours in sauvignon Blanc 

wines are 3-isopropyl-2-methoxy pyrazine and 3-isobutyl-2-methoxy pyrazine. 

Furthermore, there are also several other essential chemical compounds which have been 

considered as flavour enhancers. For example, 2,3,5-trimethyl pyrazine, 2-acetyl-3-

methoxy pyrazine, 2-methyl-3-isobutyl pyrazine, and 2-methyl-3-methoxy pyrazine 

improve the flavour of chocolate, almonds, bell pepper, and toasted corn (Mortzfeld et 

al., 2020; Guo et al., 2021). There are many available approaches used for the organic 

synthesis of pyrazine and its derivatives. Some of the proposed approaches are the oldest, 

and some are recent. The reactions used for synthesis in the oldest methods are Staedel–

Rugheimer pyrazine synthesis (1876) and Gutknecht pyrazine synthesis (1879) still in 

use, with variations in each other (Figure-5). Historically, the first microorganism 

reported for pyrazine synthesis was Bacillus subtilis (Zhang et al., 2020a). Previously, 

tetramethylpyrazine (TMP) and 2,5-dimethylpyrazine (2,5-DMP) were synthesized from 

acetoin, D-glucose, and L-threonine using the strain B. subtilis 168 (Zhang et al., 2019). 

In addition, pyrazines synthesis from amino acids (AAs) has also been reported using 
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Corynebacterium glutamicum (Eng et al., 2020). Nutty and chocolate flavouring 

chemical pyrazines have recently been synthesized by Fadel and coworkers using C. 

glutamicum grown on soyabean (Glycine max) with enriched lysine and threonine 

medium (Fadel et al., 2018). Maillard reactions can also produce pyrazines in 

conventional cooking and roasting. However, pyrazines have not been synthesized due to 

advances in cooking techniques, such as the use of microwave ovens. We can therefore 

conclude that roast flavour as food additives must be provided with natural pyrazines.

LABs are able to synthesize different flavours by catabolism amino acids. 

Initially, the amino acids are involved in dehydrogenation and transamination reactions 

and forms α-ketoacids, a compound which have a primary effect on flavour amount and 

type. Moreover, α-ketoacids are converted in aldehydes through decarboxylation reaction 

(Petrovici and Ciolacu, 2018). In one of the researches, development of 

phenylacetaldehyde (with honey-like aroma) was identified by Lb. helveticus, Lb. 

plantarum UC1001, and S. thermophilus from catabolism of methionine (Siragusa et al., 

2011). The same strains also showed synthesis of propionic acid from catabolism of 

threonine. Similarly, the biosynthesis of the diacetyl by some Lactobacillus strains from 

aspartate has been reported by Garde et al. (2007) while Zuljan et al. (2016) showed the 

formation of α-keto-β-methyl valerate from isoleucine catabolism.

3. Antimicrobial Activities and Action Mechanism of Flavour Compounds

All the antimicrobial compounds have not yet been studied for their specific mechanisms 

for action. Unlikely 2-(E)hexenal appears to behave as a surfactant but probably 

penetrates across the plasma membrane with passive diffusion. The alpha(α)- and 

beta(β)-an unsaturated movement of aldehyde while within cells react with biologically 

significant nucleophilic classes. This aldehyde movement has mostly reacted by 1.4 

additions in physiological conditions with sulfhydryl groups (Hayashi et al., 2019). 

Sulfhydryl groups are considered to play an important function in living cells in protein, 

and lower-molecular compounds such as glutathione (Li et al., 2020b). The mode of 

action of the bioactive compounds of spices, herbs, and plants are more complex to 

assume since they also have varying quantitative and qualitative ratios of essential oils. 

They may vary greatly from the target microorganisms and the minimum inhibitor 
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concentrations in their microbicidal and microstatic effects (Merveille et al., 2017). The 

techniques of analyzing antimicrobial activities and, in particular, the protocols followed 

for the extraction, diffusion, and dilution of chemical compounds may be due to certain 

inconsistencies in the bioactivity assessment of those chemical compounds. Essential oils 

are combinations of chemicals compounds that also have low water solubility and high 

hydrophobicity (Sarıcaoglu and Turhan, 2020). In the previous study, Janssens and 

coworkers evaluated Paenibacillus sp. AD87 which demonstrated antifungal activity 

because of the 2,5-bis(1-methylethyl)-pyrazine during a co-culture with Burkholderia sp. 

AD24. In addition, E. coli and mammalian cells were used to decipher a potential mode 

of action with transcriptional reporter tests. Strains of mammalian and bacterial luciferase 

reporter were also used to elucidate 2,5-bis(1-methylethyl)-pyrazine antimicrobial and 

toxicological effects. 2,5-bis(1-methylethyl)-pyrazine had a good reaction to DNA 

damage at elevated exposure levels (Janssens et al., 2019). During a 15 days storage 

time, at 4±1 °C, the mixture of vanillin and chitosan coating had an influence upon the 

microbiota composition and duration of turbot filets (Scophthalmus maximus). The 

relative abundance of the Lactobacillaceae and Pseudomonadaceae had decreased 

significantly following vanillin and chitosan treatment due to the growth inhibition of 

possible bacteria, particularly spoilage bacteria, and the rich end of storage body diversity 

(Li et al., 2020a). Moreover, Photorhabdus temperata produced benzaldehyde showed a 

strong antioxidant activity (AOA) and a maximum AOA at 8 mM compared to a control 

of 52.9 %. MIC values of 6 mM to 10 mM for bacterial strains and 8 mM to 10 mM for 

fungal strains were measured for antimicrobial activity (Ullah et al., 2015).

Strains of LAB and bifidobacteria could produce diacetyl in up to 30 mg/mL 

concentrations and had a potential to exhibit antimicrobial activities, especially against 

Gram-negative bacteria (such as i, Pseudomonas aeruginosa, Salmonella typhi, 

Pasteurella multocida, Klebsiella rhinoscleromatis, and Bartonella sp.,) as well as 

against fungi (Lew and Liong, 2013; Patel and Shah, 2014). Another direction of using 

diacetyl is related to active packaging systems where the controlled release of volatile 

antimicrobial compounds is possible through packaging material. In this context, in 

conjunction with 20% CO2, effects of diacetyl were evaluated on the quality of ground 

beef while using it in modified-atmosphere packaging. It was associated with the fresh 
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colour and odour of the products as well as a delayed spoilage of product (Williams-

Campbell and Jay, 2002).

4. Microbial Flavours Compounds in Food

Fermentation is a common way of preserving and preparing foods. In different foods, it 

can produce specific aromas and flavours. Microbial flavours are one of the food's most 

significant qualities and are closely linked to consumer product approval. In the past 

decades, the interest in the biotechnological production of VFCs has increased in various 

ways to achieve these compounds as this technique has been seen as a sustainable means 

of providing the food industry with natural additives (Dan et al., 2019; Paulino et al., 

2021). Due to their mild environments, their biotechnological synthesis of VFCs is not 

subject to possible toxic catalysts and the problems of waste treatment are considered an 

ecologically safe solution. Furthermore, agro-residues can be used as a substitute, 

ecologically as well as economically beneficial raw materials for this bioprocess. The 

waste of cellulose, lignocellulose, and starch can also be used for the synthesis of VFCs 

like aldehydes, alcohols, ketones, FAs, esters, terpenes, pyrazines, and lactones. 

Furthermore, industrial fermentation does not require extractive considerations for the 

processing of flavours (Try et al., 2018; Sharma et al., 2020). Different volatile 

compounds have been detected through gas chromatography and other combined 

treatments based on the type of fermenting microorganisms and food products (Table-3).

The following section discusses the VFCs of enzymatic and microbial origin, as 

well as the progress in their potential and commercial use in food.

4.1. In Dairy Products 

Traditional fermented foodstuffs and drinks are relatively like complex microbial habitats 

which can be used as microbial models to explain the interaction of microbes in natural 

ecosystems because of the diverse essence and patterns of the kefir fermentations 

(Misihairabgwi and Cheikhyoussef, 2017). The previous researches have revealed the 

relationship between different microorganisms and their associated pathways for 

synthesis of VFCs, and established multiple genes responsible for the alleged wellness 

related to the protection of the gut used by kefir (Walsh et al., 2016; Misihairabgwi and 

Cheikhyoussef, 2017). This knowledge can ultimately be used to refine the fermentation 
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mechanisms, flavours, and health properties of this and other fermented foods, in addition 

to providing an important fundamental insight into microbial interactions. In kefir milks 

formed from each of the three kefir grains, thirty-nine volatile aroma compounds were 

detected and semi-quantified. This included aldehydes (7), ketones (9), esters (6), 

alcohols (8), carboxylic acids (5), and sulfur-containing (2) compounds. In addition to 

acetone, butanone, heptanal, heptanol, hexanal, 1-pentanol, and pentanal, the amounts of 

all reported VFCs rose during storage time (Walsh et al., 2016).

The main routes of VFCs synthesis in cheese are due to lactate and lactose 

metabolism. The lactate may be transformed into different compounds that lead towards 

the flavour of the cheese in the first path, which completely depends on the variety of 

cheese, employed microflora, and conditions of ripening (Ianni et al., 2020). The other 

route produces fat-derived chemical compounds, such as esters, FFAs, ketones, and 

lactones, produced by lipolysis, lipid oxidation reactions with low aroma levels (Thierry 

et al. 2017). The aroma of cheese is due to VFCs produced by the action of the enzyme 

during the ripening.

Cheese from the Uyghur Autonomous Region of China, a characteristic 

handmade fermented milk food is known as Kazak cheese (Zheng et al., 2021). Recently, 

Zheng and coworkers investigated bacterial microbiota and VFCs during the milk 

fermentation of Kazak cheese. Headspace solid-phase microextraction (Hs-SPME) and 

Illumina MiSeq sequencing technologies were used in their investigation as analytical 

instrumentation coupled with gas chromatography/mass spectrometry (GC-MS). 

Dominant populations such as Lactococcus and Lactobacillus were reported during the 

fermentation of the milk. The relation between the flavour dynamics and the succession 

of the microbiome was defined based on the bi-directional orthogonal partial least 

squares (O2PLS) in which eight genera of bacteria were identified as the main functional 

microbes for the synthesis of flavour (Zheng et al., 2021).

. Since the flavour synthesis of natural milk fat, interest in the application of 

biocatalysts has gradually increased. Lipases are a class of enzyme which have been most 

studied as biocatalysts for the synthesis of flavour from bovine milk fat (Omar et al., 

2016; Kendirci et al., 2020). In earlier studies of Omar and coworkers, anhydrous milk 
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fat (AMF) and anhydrous buffalo milk fat (ABMF) were hydrolyzed using Thermomyces 

lanuginosus immobilized (TL-IM) lipase, Lipozyme-435, and Novozyme-435 (Omar et 

al., 2016). In addition, SPME and GC-MS were used to study the VFCs of AMF and 

ABMF. Omar et al. (2016) compared these VFCs at three intervals of hydrolysis. After 

the lipolysis of AMF and ABMF, the Novozyme-435 and Lipozyme-435 produced the 

highest hexanoic and butanoic acids as well as other VFCs, followed by TL-IM. 

Rancimat-743 evaluated hydrolyzed materials for oxidative stability, both of which 

showed that butter oil-treated for AMF and ABMF was relatively more stable in 

Lipozyme-435 and TL-IM compared with Novozyme-435. Lipozyme-435 was found not 

to induce additional oxidation effects indicating that Lipozyme-435 was stable during 24 

hour, at 55°C, for both AMF and ABMF butter oil-treated (Omar et al., 2016).

Calasso et al. (2017) carried out measurement of volatile compounds produced in 

Ewes’ milk cheese through gas chromatography. Authors stated that the levels of several 

volatile organic compounds were significantly (P < 0.05) lower in control cheese than in 

cell-free extracts (CFE)-supplemented cheeses. All cheeses manufactured by adding 

multiple CFEs exhibited higher scores (P < 0.05) for internal structure, juiciness, and acid 

taste than control samples. Similar to this, in a previous approach, in Pecorino Abruzzese 

cheese the analyses of volatile compounds observed the production of diacetyl, ethanol, 

and acetoin after 15 days during storage at 10 °C with important differences among the 

Enterococcus sp. (Serio et al., 2010).

4.2. In Meat Products  

More than 200 different volatile compounds have been identified from fermented meat 

items (Sharma et al., 2020). Changes in physicochemical, microbiological, and sensory 

properties are caused by storage. A range of studies has been conducted to address the 

effect of VFCs responsible for the production of ripened aroma (Sidira et al., 2016; 

Perea-Sanz et al., 2019, 2020; Silva et al., 2020).  Perea-Sanz et al. (2019) described 

short vacuum storage times and a modest nitrate reduction (15%) in fermented sausages 

linked to odor-producing compounds (2,3-pentanedione, 3-hydroxy-2-butanone, ethyl 

octanoate, and ethyl-3-methylbutanoate) and buttery/cheesy odor (ethyl-2-

hydroxypropanoate and 2,3-butanedione). While in the freshness of cured pork loins, 
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Silva et al. (2020) reported that the loss was mainly due to decreased aromatic note 

values (especially the smokiness and cure) and to the presence of spoiled characteristics, 

primarily the aroma of sauce/vinegar and acidic flavour identified. According to a 

reduced ratio of respondents, Listeria monocytogenes inoculated in the cured pork loins 

slices did not result in a reduction in the freshness of pork slices. 

In addition, the effect of Debaryomyces hansenii inoculation on the production of 

fragrance was examined to reduce the ingoing levels of nitrite (NO−2) and nitrate (NO−3) 

in dry fermented sausages. Different drying periods have been examined for 

modifications in physicochemical and microbiological parameters, flavours, and VFCs 

(Perea-Sanz et al., 2020). The reduction in NO−2 and NO−3 did not seem to affect 

microbial development, but on their metabolic function. D. hansenii inoculation, which 

led to the generation of strong compounds such as ethyl ester and 3-methyl butanal, had a 

beneficial impact on the aroma profile of sausage (Perea-Sanz et al., 2020).

High counts of LAB were mildly affected by the diameter of dry fermented 

sausages of the Milan type, whereas higher Staphylococci concentrations were found in 

small sausages. The diameter had a significant effect on the production of VFCs like 

aldehydes (mainly hexanal) and ketones (acetone, 2,3-butandione, 2-butanone, and 3-

hydroxy-2-butanone,), which showed the major variations. Even the appearance of the 

indigenous Lactobacillus sakei in the saucers inoculated with pediococci showed a less 

obvious influence on the starter cultures (Montanari et al., 2018). The starter culture has 

a direct impact on certain key process parameters (acidification and fermentation rate) 

and VFCs generation for all forms of fermented foods.

For the reason that aldehydes send out green grass, nutty, candy and cheese odor 

and have low threshold values, aldehydes are considered as essential compounds to the 

flavor development of fermentation meat (Dajanta et al., 2011).

4.3. In Sea Food Products

One of the essential quality characteristics of fermented fish is its distinctive flavour. The 

studies on the formulation in flavours of fermented fish products have been focused 
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primarily on isolation, purification, and characterization of VFCs and their biosynthesis 

process. The breakdown of protein substrates with the effect of enzymes obtained from 

both the microbes and fish have also been described to produce a specific flavour during 

the spontaneous fermentation of fish (Marti-Quijal et al., 2020). In a recent report, the 

fermentation was classified into two phases during the Mandarin fish fermentation based 

on microbiota changes: early, 1st-3rd, and late, 4th-7th, days. The typical VFCs of 

Mandarin fish fermentation were anethole, indole, linalool, piperitone, 2-methyl-3-

octanone and 1-octen-3-ol (Yang et al., 2020). The large chain protein, myosin, and actin 

were decreased during the fermentation process of Suan-zuo-yu by LAB. GC-MS showed 

a complete identification of 80 VFCs and a significant increase in aldehydes (6), alcohols 

(6), and esters (6), which mainly led to the flavour of Suan-zuo-yu (Wang et al., 2020b).

Previously, GC-MS was also used for the analysis of VFCs (Wang et al., 2016, 

2017). In 2017, GC-MS was used to identify acids, alcohols, aldehydes, esters, furans, 

hydrocarbons, ketones, and nitrogen-containing compounds (Wang et al., 2017). These 

were the main VFCs produced by the process of fermentation of fish. Wang and 

coworkers investigated fermented fish flavour and showed that S. cerevisiae 152 had 

degraded aromatic AAs (phenylalanine) and branched-chain AAs (leucine, isoleucine, 

and valine) to produce phenyl-ethanol, 2-methyl-butanol, 2-methyl-propanol, and 3-

methyl-1-butanol. Furthermore, degradation of leucine and phenylalanine were also 

reported, resulting in the synthesis of phenylethanol and 3-methyl-1-butanol from 

Lactobacillus pentococcus 22 and Lactobacillus plantarum 120, respectively (Wang et 

al., 2017).

Esters are essential VFC in Suanyu fermentation that is indirectly implicated in 

FFA metabolism, contributing to the biosynthesis of esters due to esterification and 

alcoholic response. LAB was found to encourage acetate compounds production whereas 

Staphylococcus and yeast would promote ethyl compounds production (Sidira et al. 

2016). As described above, microflora metabolic activities can produce a range of 

volatility, which can contribute eventually to the taste and consistency of metabolism of 

AAs and FAs. The addition of metabolic flexibility and microbial diversity may also 

provide the opportunity for innovative and enhanced products.
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LABs are beneficial microorganisms for fermentation which could generate 

bioactive peptides and produce vitamins in fermented foods like fishes (Şanlier et al., 

2019; Patel et al., 2013). In a study of Wang et al. (2020b), the levels of Weissella and 

Lactobacillus gradually increased from 0.311% to 46.00% suggesting that LAB play a 

vital role in fermentation of a traditional Chinese fermented fish product Suan-zuo-yu. 

Authors stated that increase in Staphylococcus was accompanied with the increase of 

esters while Macrococcus able to hydrolyze proteins and lipids was also presented 

throughout the fermentation process. In a previous study, Macrococcus was also detected 

in Chouguiyu, a kind of traditional Chinese fish product by Dai et al. (2013). Marui  et 

al. (2014) found Lactobacillus and one Weissella sp. as a predominating bacteria from 

pa-som, a traditional fermented fish product in Laos. 

Acetaldehyde plays a role in the rate of fermentation and the quality of wine. In a 

recent investigation, higher acetaldehyde levels were found in wines inoculated with 

Saccharomyces cerevisiae, exposed to high sulphur dioxide (SO2) levels, and fermented 

at higher temperatures (October, 2020). There was a direct correlation between total 

ADH activity and total acetaldehyde production of S. cerevisiae yeasts.

5. Factors Affecting Production of Microbial Flavours

The compositions of growth media (including nitrogen and carbon source types), 

temperature, mineral composition, and level of aeration have a great influence on the 

biosynthesis of flavours by any microbial strain. For an instance, Paterson and Piggott 

(2006) stated that the addition of sucrose in the culture media stimulates the flavour 

biosynthesis for LABs and yeasts. With respect to this, Di Cagno and co-workers 

(2009) supplemented the tomato juice with sucrose and subsequently subjected to LAB 

fermentation in order to encourage the flavour production and also to lessen the intrinsic 

acidic flavour of tomatoes. Earlier, Cheetham (1999) in a milk or whey medium 

supplemented with citric acid as a precursor, a high diacetyl concentrations of up to 14 

g/L have been stated for a patented process making use of  Streptococcus cremoris and S. 

diacetylactis.  
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Similarly, the presence of oxygen strongly affect the growth of microbial strain 

and hence, the flavour biosynthesis. Under aeration conditions, Lb. casei leads to higher 

biosynthesis of diacetyl in Cheddar cheese than an anaerobic starter culture (Reale et al., 

2016). On the other side, E. faecium FAIR-E 198 strain showed diacetyl biosynthesis 

only in aerobic conditions (De Vuyst et al., 2011).

The fermentation temperature strongly influences biosynthesis of flavour by 

microorganism. For example, Lb. rhamnosus ATCC 7469 biosynthesized diacetyl and 

acetoin within a temperature interval of 22–45 ˚C from citrate (De Figueroa et al., ) The 

maximum biosynthesis of diacetyl was observed in the temperature interval between 30 

and 37 ˚C within 48 h; as compared to 22˚C, the level of the diacetyl and acetoin was 4.1 

time higher at 37˚C. This effect is chiefly associated with the enzymatic activities in the 

microbial cell. 

The presence of minerals also affects flavour production in microbial cells.  In Lb. 

plantarum van Kranenburg et al. (2002) characterized two manganese transport 

systems which are implicated in mineral uptake and convert phenylalanine to 

benzaldehyde by initiation of a pyridoxal 50-phosphate-dependent aminotransferase. 

Further, in the presence of oxygen and manganese the obtained phenyl-pyruvate is further 

chemically transformed to benzaldehyde. In another research, it was observed that 

magnesium and manganese sulphate enhanced biomass and aroma development both of 

different 52 yeasts by obtaining 3.58 mg/L diacetyl for Candida globosa and 96.05 mg/L 

acetaldehyde for Candida lipolytica (Rosca et al., 2016). 

In depth knowledge of the metabolism in microorganism has led to develop 

innovative strategies for engineering microbial strains with high flavour production in 

recent years. In a fibrous-bed bioreactor running under fed batch conditions 

immobilization of Propionibacterium acidipropionici ATCC 4875 led to 72 g L-1 

propanoic acid (Suwannakham  and Yang, 2005) while in separate investigation, 

knocking out the ack gene (acetate kinase) diminished unwanted acetic acid formation by 

14% (Suwannakham  et al., 2005). 

6. Concluding Remarks
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The biotechnological synthesis of VFCs has gained popularity because of market 

demands for natural products and enhanced economic benefits. Low-cost natural 

precursors can be converted by microbes and their enzymes into costly VFCs and 

microbial synthesis methods benefit against conventional methodologies. Bacterial 

metabolisms can be used to produce different biocatalytic instruments to produce natural 

and fragrant value-added compounds and chemical synthesis from inexpensive plant 

biomass. Future directions to produce natural VFCs should be opened up by 

biotechnological advances. However, there should be solved certain concerns such as 

parent compound's toxicity, product toxicity, targeted gene expression and recombinant 

bacterial strain's physiological stability, in order to obtain costly "natural" flavours from 

genetically modified microorganisms (GMOs). Furthermore, the challenges faced by 

GMOs should also be addressed. 
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Figure-1: A graphical summary of this study of recent trends in microbial flavour 
compounds, chemistry, synthesis mechanism and their application in food.

Figure-2: Classification on the basis of chemical compositions for microbial VFCs.
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Figure-3: Biosynthesis of flavours by different microorganism in various food products.
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Figure-4: Synthesis of different microbial VFCs. (A) Ester (ethyl acetate) synthesis from 

carbohydrate through yeasts, (B) Diacetyl synthesis from carbohydrate in LAB, (C) 

Acetaldehyde synthesis from carbohydrate in lactobacilli and yeasts.
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Figure-5: Pyrazine synthesis by condensation reaction.
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suaveolens and Pichia etchelisii
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Prabakaran et 
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50 m long
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differences among the 

Serio et 

al. (2010)
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