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Abstract

The objective of this paper is to give an approach of Gosper's algorithm
that frequently used in proving combinatorial identities. We give an
approach for Gosper's algorithm by using greatest factorial factorization
(GFF) and least common multiplier (Ilcm) concepts. This approach can be
easily extends to the g-analogues. To illustrate the applicability of our

approach, example is presented.

Key word: Gosper's algorithm, hypergeometric solution, greatest factorial

factorization, least common multiplier, rational solution, universal denominator.
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1. Introduction

Sister Mary Celine is the first one
who began the subject of computerized
proofs of identities with her Ph.D.
thesis [Frasenmyer, Sister Mary Celine,
1945] at the university of Michigan in
1945. After that in [Frasenmyer, Sister
Mary Celine, 1947, Frasenmyer, Sister
Mary Celine, 1949], she developed a
method to find recurrence relations for
hypergeometric polynomials directly
from the series expansions of the
polynomials. In many parts of

mathematics and computer science

n-1
some expressions like s, =>'t, ( called

k2o
indefinite hypergeometric summation),
arise in a natural way, for instance in
combinatorics or complexity analysis.
Usually one is interested in finding a
solution for such an expression as an
expression in n, Gosper's algorithm is
an automatic procedure for evaluating
these kinds of sums of hypergeometric
terms in the form of the difference of a

hypergeometric term and a constant,
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provided such an expression exists see
for example [R.W. Jr. Gosper, 1978,
R.L. Graham et al., 1994, W. Koepf,
1995, M. Petkovsek et al., 1996]. Since
it often happens that during the analysis
of a problem in combinatorial theory
one encounters a large sum involving
factorials and binomial coefficients, one
would like to know whether or not that
sum can be expressed in a simpler way.
Gosper's algorithm is a procedure that
discovers the answer systematically.
Another aspect concerns the theoretical
foundation of a q—analogue of Gosper's
algorithm. Besides Karr's [M. Karr,
1981] approach which covers indefinite
q-—hypergeometric summation in the
of his

difference field extensions, up to now it

general frame theory of
had been a kind of a surprise that
Gosper's algorithm can be carried over
to the g—case almost word by word,;
[T.H.
1993]. In [W. Koepf, 1995], Koepf

considers the more general case and

Koornwinder Koorrnwinder,

extended version of Gosper's algorithm
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for indefinite summation. In [H.L.

Saad, 2006 2] Saad gave a q-—analogue

of Koepf's algorithm, and generalize it

to find solutions of recurrence

equations. It turns out that the new
algebraic concept of "greatest factorial
factorization" introduced by Paule [P.
Paule, 1995] provides an algebraic
explanation not only of Gosper's
algorithm, but also of its analogue for
q—hypergeometric telescoping. In [H.L.

Saad, 2006 1], Saad extended the
greatest factorial factorization to the m-
greatest factorial factorization and
presented an approach to the problem.

Let N be the set of natural

numbers, K be the field of

characteristic zero, K(n)be the field of
rational functions of n over K, Kn]
be the ring of polynomials of n over

k. If

polynomial we will denote its leading

p(n)eKm] is a nonzero

coefficient by Ic(p(n)), p(n)eKin] is
said to be monic if Ic(p(n)) =1, E be the
shift

operator i.e.

(EpXn)=p(n+1) for any peK[n],

on K[n],
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deg(p) denotes the polynomial degree

(in n) of any p eK[n1, p=0. We define
deg(0) =—1, gcd(p,q) denotes the greatest
common divisor for any polynomials
p,qcK[n]. We assume that the gcd
always takes a value as a monic
polynomial, Icm(p,q) denotes the least
common multiplier for any polynomials
p.q eK[n]. The pair (f,g) f,geKn]

is called the reduced form of a rational

function if r=—, g monic and

ged(f ,g) =1, [H.L. Saad, 2005].

A nonzero sequence t, is called a
hypergeometric term  (or  shortly
hypergeometric) over K if there exists

a rational function r(n) e K(n) such that

tn+l
=r{n).
. (n)

For any monic polynomial p(n) eKny,
and m € N, the m" falling factorial
[p(n)]" of p(n) is defined as [P. Paule,
1995]

m-—

o] =[T€ P = p@)p(n-D...p(n -1 +1)
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Let  p,P,..., Py, pek[n] then following conditions hold [P. Paule,

(P1, P»- Py ) i called a GFF-form of a 1995]:

monic polynomial p(n)eKin] if the

(GFF1) p)=[p.J[p.]--[Pc]"-

(GFF2) each p, (n) monic, and k >0 implies deg(p,)>0.

(GFF3) i <j=gcd(p ]i*,Epj):lzgcd([pi ]i*,E‘jpj).

We can use the following lemma to compute the GFF.

Lemma 1.2.1. [P. Paule, 1995] Let p(n) < K[n] be a monic polynomial with GFF-form

(1 Pas Pas--- Py ) Then

GFF (ged(p. Ep)) = (P, Psronnpe ), and  py(ny=—PM

[pz]g“'[pk ]K

In 1978, Gosper [R.W. Jr. Gosper, 1978] developed algorithm for finding the

n-1
sum s, = > t, depends on finding at first the hypergeometric term z that satisfies

k=0

z =t

Z,a— 2,

(1.1)

If we can find z,, then we will express the above sum in the simple form of a single
hypergeometric term plus a constant. Conversely any solution z of (1.1) will have

the form

Z, =2, ,+t =2, ,+t 4+t =...=Z,+ D> 1, =S

n

where z, is a constant.

Gosper showed that any rational function can be written in the form

_a(n)c(n+1)

b(n)e(n) (1.2

r(n)

73
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where a(n),b(n),c(n) are polynomials in n over K and

ged(a(n),b(n +h))=1, for all nonnegative integer h

The representation in equation (1.2)
such that equation (1.3) satisfied is
called Gosper's representation. In [M.
Petkovsek, 1992], Petkovsek proved

that Gosper representation is unique

ged(a(n),c(n)) =1,

(1.3)
which is called Gosper-Petkovsek
representation, or  shortly GP

representation, if the polynomials

b(n),c(n) are monic such that

gcd(b(n),c(n +1)) =1.

PetkovSsek gave an algorithm to
compute the GP representation. In [M.
1994],

generalized Gosper's

Petkovsek, Petkovsek
algorithm for
recurrences of arbitrary order. In [P.
1995], the

Greatest Factorial Factorization, Paule

Paule, equipped with
presented a new approach to indefinite
hypergeometric summation which leads
to the same algorithm as Gosper's, but
in a new setting. In [W.Y.C. Chen and
H.L. Saad, 2005], Chen and Saad
showed that the uniqueness of the
of

rational functions can be utilized to

Gosper-Petkovsek representation

give a simpler version of Gosper's

P (N y(n) + p,(N)y(n+1) = p(n),

74

algorithm. In [W.Y.C. Chen et al.,
2008], Chen et al. found a convergence
property of the gcd of the rising
factorial and the falling factorial. Based
on this property, they presented an
approach to compute the universal
denominators as given by Gosper's

algorithm.

Many approaches, even ours, for
Gosper's algorithm can be reduced to
find rational solutions. So in this paper,
we need to mention to the rational

solutions y(n) for the linear difference

equation

(1.4)
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where p,(n), p,(n), p(n) e K[n] are given

polynomials such that
Po(N) and p,(n) =0.
A polynomial g(n)eK[n] is called

universal denominator for (1.4) if for

every solution y(n)eK(n) for (1.4) there

exists f(n)eK[n] such that

y(n) = f(n)/g(n).

2. The Fundamental lcm Lemma
The "gcd—shift", i.e. the gcd of a
polynomial p and its  shift Ep
(gcd(p,Ep)) plays a basic role in
hypergeometric summation. In [P.
Paule, 1995], Paule gave the following

fundamental lemma of "lcm -—shift",

which is fundamental in deriving
Gosper's algorithm.
lcm (B ,EB
(1) B, = Cm(B )=E(p1'p2"'pk)'
lcm(B,EB) a2 e
(2) BlzT:pl'E p,-Ep;...E Py -

(3) ng(BO’ Bl) =1.

Proof .

From Lemma 2.1., we get

75

Lemma 2.1. (Fundamental lcm Lemma
[P. Paule, 1995]) Let p(n)eK[n] be a
monic polynomial with GFF-form

(Pu Pys-... P ). Then the lem(p,Ep) has

The "lcm-shift", i.e. the lcm of a

polynomial p and its shift Ep
(lem(p,Ep)) plays a basic role in
hypergeometric ~ summation.  The

following lemma is very important in

our approach to derive Gosper's

algorithm.

Lemma 2.2. Let B «K[n] be a monic

polynomial with GFF-form
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k+1

(1) B, = °m(B.EB) _[Ep.J [Ep,T .. [Ep, ]
0 B [pl]l[pz]zm[pk]&

_ p,(n+)p,(n)p,(n+Yp,(n)p,(n-1)...p, (N +)p, (n)...p, (N -k +1)

Pi(N)P, ()P, (N —1)...p (n)...p (N —k +1)
=E(p.(n)-p,(n)...p, (n))

@) 8, 'om@.E8)_[EnJ[En...[Ep, ]
| = E([pl]l[pz]g...[pk]k*)

_ p,(n+p,(n)p,(n+1)p,(n)p,(n-1)...p, (n+1)p, (n)...p,(n—k +1)
p,(n+Yp,(n+1)p,(n)...p, (N+1)...p, (N -k +2)

=p,(n)-E 'p,(n)-E *P;(n)...E *"p, (n).

(3) From (1) and (2), we get

gcd(B,,B,) =gcd(E (p,p, ... P, ), P.E 'P,...E “™p,).
If i<j weget

ged(Ep,,E '*p;) =E ged(p, . E 'p;) |E ged((p, ] E'p;)=1.

Then
gcd(Ep,, E7*p;) =1.
If i>j we get
ged(Ep; ,E ''p;) | ged(Ep; [p; ') =1.
Then
gcd(Ep;, E7*p;) =1.

Hence gcd(B,,B,) =1.
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3. An Approach for Gosper's
Algorithm

In this section, we present an
approach for Gosper's algorithm. Our
approach depends on finding the
universal denominator for the first-
order linear recurrence relation (3.1)
(below) by using the least common
divisor and the greatest factorial
factorization. Once a  universal
denominator is found, then it is easy to
find the rational solutions of the linear

recurrence relation (3.1) by finding the

r(n)y(m+h)-y(n)=1.

Thus, we have reduced the problem of
finding hypergeometric solution of
equation (1.1) to the problem of finding

rational solutions of equation (3.1). Let

polynomial solutions of the resulting
equation. Equipped with GFF and lcm
concepts we present an algebraically
motivated approach to the problem.

Given a hypergeometric term t, and

suppose  that there exists a

hypergeometric term z,  satisfying

equation (1.1). Let r(n)=t;+l and

n

y(n):i—". Then equation (1.1) can be

n

written as

(3.1)
(a,b), (f,g) be the reduced form of
r(n) and y(n), respectively. Then

equation (3.1) becomes

f+) oy fm o, 39
a(n)——= o(n+1) b(n)——= a(n) (n). (3.2)
Let h(n)=lem(g(n),g(n+1). Multiplying equation (3.2) by h(n), we get
h(n) h(n) _
a(n)mf (n +1)—b(n)ﬁf (n) =b(n)h(n). (3.3)

Let h (n)= Ehé”(;) i

€{0,1}. Since g(n)| h(n) and g(n+1)| h(n), then both hy(n)

and h,(n) are polynomials. Thus equation (3.3) can be written as;

a(n)-h,(n)- f(n+1)—=b(n)-hy(n)- f(n) =b(n)-h(n). (3.4)
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Now, if (p.p,....p,) is the GFF-form of g(n), it follows from
ged(h,,h,) =1=gcd(f ,g) that

he(n) | a(n) and hy(n) | b(n).

From Lemma 2.2., we get

hy(M)=E(p,-p,...p) | a(n),

and

h(n)=p,-E~*p,-E?p,...E *p,| b(n).

Hence

P, 9cd(p,Ps... P, E 'P,E *p;...Ep,) | ged(a(n —1),b(n)).
and then, we get

p, | ged@@(n —1),b(n)).

by the same way we can get

p. | ged@@(n-1),E"b(n)), for i =1,2,...,k (3.5)
This observation gives rise to a simple extract iteratively p,—multiples P such
and straightforward algorithm for that EP,| a andE~*P, | b. Hence, we
computing a multiple obtained the same algorithm obtained
v =[RJ[P.J...[P,]"0fg. For instance, by Paule [P. Paule , 1995] which can be
if P =gcd(E'a,b) then obviously stated as follows:

p,| P, . Indeed, we shall see below that

by exploiting GFF-properties one can
Algorithm 3.1. VMULT. [P. Paule ,1995, p. 253]
INPUT  : The reduced form (a,b) of r e K(n)

OUTPUT : Polynomials (R,P,....,R,) such that v =[R,J[P,]’...[P,]" is a multiple of

the reduced denominator g of y e K(n).
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(i) Compute m=min{j € N|gcd(E~*a,E*"*b) = 1for all integers k > j }.
(ii) Set a, =a , b, =b , and compute for i from 1 to m:
P, =gcd(E a4, E™, ),
a =a,/ER,
b, =b, ,/JE"P, . O

From equation (3.2), we get
a(n)g(n)f (n+1)-b(n)g(n+1f (n)=b(n)g(n)g(n+1) (3.6)
The next step is to set
g(n)=Vv ()
in equation (3.5). If equation (3.5) can be solved for f (n) < K[n], then

_fm, 3.7
Zn g(n) tn’ ( )

Is a hypergeometric solution of (1.1), otherwise no hypergeometric solution of (1.1)

exists.

n-11, 2 __ _
Example 3.1. Evaluate the following sum Zk2—2k212k
o K°(k +1)

Solution. Let

2_ —_
_(n"-2n 1)2n’

" n*n+1)°

then

r(n)—t””— 2n*(n*-2)
Tt (n+2?2(n*-2n-1)"

Hence a(n)=2n*(n’-2) , b(n)=(n+2)’(n*-2n-1), where (a(n),b(n)) is the reduced

form of the rational function r(n). Let (p,,p,....,p, ) be the GFF-form of g(n). Then
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h () = lcm(g, EQ)

o) =E(p, p,---P) | 2n*(n*-2),

h@):%: p-E™p, E7ps. . Ep | (n+2)°(n*-2n-1),
and from the algorithm VMULT, we get

P,(n) =(n*-2n-1),

and

P,(n)=P,(n)=...=P (n)=1.

Hence

g(n)=V (n)=P,(n)=n*-2n-1,

then from equation (3.6), we get

2n*-f (N+1)-(n+2)°-f (n)=(n+2)*(n*-2n-1)

Case 1 [M. Petkovsek et al., 1996] yields

deg(f (n))=4-2=2.

The polynomial f (n)=n’+2n+1=(n+1)° is a solution to the above equation. By

(3.7), we have

, ) 2
g(n) " n’
Hence

“Z‘lkz—Zk—l (2"
~ k% (k +1)° n?

Conclusions
(1) The Icm is equivalent to the gcd in deriving Gosper's algorithm.

(2) Our approaches for Gosper's algorithm are easily extended to the q -case.
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