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Abstract— Background: Hormonal ratios have analytical, interpretational importance. Our objective 
is to assess the best statistical model to interpret normality in a hormonal ratio. Methods: This 
descriptive review relied on hormonal data (testosterone T and estradiol E2) and (T/E2 and E2/T) 
from 1198 premenopausal women, through a systematic approach for testing normality, skewness, 
kurtosis, Kolmogorov–Smirnov (K-S), Shapiro-Wilk (S-W) which assume normal distribution.We 
tested the graphical methods for testing normality. Log-transformation, and correlation analyses, 
before and after adjustment for a proposed composite factor was done.ANCOVA and univariate linear 
regression tested the dependent variables and the outcome. Results: The data lacked normality 
graphically (markedly right skewed and positively leptokurtic), and on K-S and S-W. The log-
transformation decreases (not eliminate) the normality deviation, which can be proven graphically but 
not in K-S and S-W, due to the outliers. Correlation analyses gave unsatisfactory results during 
adjustment for the composite factor. Parametric tests make more rigorous normality assumptions than 
that of the non-parametric tests, and could be applied for testing. ANCOVA used a more complex 
interplay to describe normality dispersion during adjustment, to provide an explainable robust 
normality assumption. Additional descriptive results were obtained from the linear regression 
analysis, similar to correlational analysis with different significance level. Conclusion: There is no 
privilege of one test over another to evaluate normality. We can use combined approach to reach near-
normality especially in large sample data. ANCOVA and linear regression appeared to be more 
descriptive and genuine in preserving normality concept. 

Keywords: Analysis of Covariance; Kolmogorov–Smirnov; Linear Regression; Normal Distribution; 
Shapiro-Wilk. 

 

Introduction 

Any hormonal ratio is calculated by dividing a numerator (X) by a denominator (Y), which represent 
the raw values hormones. The ratio distribution depends on the mathematical position of the hormone, 
i.e., X/Y or Y/X).1 

One of the most popular reciprocal relationships is that of testosterone (T) and estradiol (E2) which 
represents the indirect expression of the aromatase enzyme activity that impacts levels of sex 
hormones and vascular, endothelial, and bone health.2-4 Typically, there is a balance between T and 
E2 with a T/E2 ratio = 10.5 

Hormonal ratios have analytical and interpretational importance. The main concerns are the 
representativeness of the ratio, its normality distribution, and statistical models for interpretations.1,6 

When the normality assumption is violated, it is typically referred to as heteroscedasticity or 
heterogeneity of variance. It leads to incorrect standard error (SE), which can cause inflated type I 
error rate or decreased statistical power. It is imperative to manage heteroscedasticity effectively 
because failure to address this may affect substantive conclusions.7,8 

The study aims to assess the best statistical approach to interpret the normality distribution in a 
hormonal ratio, using T and E2 as numerators and denominators interchangeably. 

 

Methods 

We performed a descriptive study to examine the distributions and behavior of (T), (E2), and their 
ratios, i.e., (T/E2) and (E2/T) after different adjustments in different statistical models. Exemplary T 
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and E2 actual data came from 1198 premenopausal women who attended Faiha Specialized Diabetes 
Endocrine and Metabolism Center (FDEMC)- Basrah- Southern Iraq, from January 2019- January 
2021, with different reproductive complaints. 

Various nuisance factors (outliers, normality violation, and heteroscedasticity), are encountered with 
big sample size data, and change the central tendency of the data. It is important to assess their 
robustness to mitigate their influence. 

Heteroscedasticity occurs with normality assumption when population variances differ. In contrast, 
homoscedasticity is the prerequisite assumption to warrant the accuracy of SEs and asymptotic 
covariances of parameters in general linear models (GLM). When dealing with regression, 
homoscedasticity indicates that the DV's variance does not depend on the value of the independent 
variable.7,8 

First, we perform normality (Gaussian) distribution model testing to interpret the different 
distributions of the hormonal ratios which were non-normally distributed. Our approach included: 

General Description of the Distribution 

We described the distribution of raw T, E2, and T/E2 and E2/T ratios after unifying the units (ng/dL 
to pg/mL). Then, we define the skewness (symmetry of the distribution) of each variable individually 
and in the ratio, and in which direction, i.e., positive (right-skewed distribution) or negative direction 
(left-skewed distribution). We defined kurtosis (peakedness of the distribution) of each variable 
individually and in the ratio, and in which direction, i.e., positive leptokurtic (high narrow peak and 
fatter tails), or negative platykurtic (lower broader peak and thinner tails). Then we plot the ratios 
against each other. 

Theory-Driven Normality Testing 

We used Kolmogorov–Smirnov (K-S) and Shapiro-Wilk (S-W) normality tests, which assume a 
normal distribution.Therefore, if the test is significant (p<0.05), the sample data distribution is non-
normal.9,10 The K-S statistics were corrected by (Lilliefors Significance Correction). The Lilliefors 
(LF) test is the preferred modified version of the K-S test, in which the probability of type 1 error is 
less because it adjusts the original K-S test for the population size.11 

According to the Central Limit Theorem (CLT), if the sample data are approximately normal, its 
distribution will be normal. The two tests undertaken together in SPSS provide contrasting results 
about the null hypothesis. The K-S test calculates the maximum distance between the cumulative 
frequency curve of the analyzed data set and the theoretical normal frequency curve. S-W test is 
computationally more complex, but it is more powerful for detecting departures from normality than 
LF-corrected K-S and other frequently used tests.12,13 

Normal Quantile-Quantile (Q-Q) Plots 

We used the normal (Q-Q) plots for the graphical display of the normality distribution. The normal 
(Q-Q) plot is the most commonly used and effective diagnostic tool for checking data normality. This 
scatterplot compares our actual data with a theoretical normally distributed data set. The normally 
distributed data points will closely align with the diagonal reference line. Otherwise, in non-normal 
distribution, the points will stray from the diagonal line.12 

Data Transformation and Adjustment 

The log-transformation of the data was done, with resultant (new) distributions. Age, body weight, 
and height were the proposed covariates for our distribution. We used the (Dimension Reduction) by 
Principal Component Analysis (PCA) to create a composite covariate (Composite Body Shape Factor) 
with different component matrixloadings. 

PCA resolves co-linearity and reduces the dimensions for high-dimensional data analysis. PCA 
transforms any set of potentially correlated variables to linearly uncorrelated variables.14 
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Adjustment of the DVs for this composite factor eliminates the influence of each covariate on the 
outcome as if all the cohort had the same age, body weight, and height. The dimensionality of the 
transformed data is reduced to achieve similar model fitting.15 

Then we used the parametric (Pearson’s r) and non-parametric (Spearman’s rho, Rs) partial and 
bivariate correlation analyses to test the DVs after adjustment for the composite factor. 

Analysis of Covariance (ANCOVA) 

ANCOVA was developed to reduce error variance by combining the advantages of two highly 
acclaimed procedures of analysis of variance (ANOVA) and multiple linear regression.16 

ANCOVA is a versatile and advanced regression technique. This method can compute and analyze 
any relationship between numerator and denominator even when the ratio is useless or in conditions 
when we need to standardize the numerator to the denominator.17The classic method makes several 
restrictive assumptions: (1) the regression lines are parallel; (2) for each regression line there is 
homoscedasticity; (3) the variance of the DV is the same for both groups; (4) normality; and (5) a 
straight regression line provides an adequate approximation of the true association.8 

We identified T, E2, and their reciprocal ratios as DVs to implement ANCOVA. Outcomes like 
hirsutism, female pattern hair loss, and menstrual irregularity were considered as the fixed factors. In 
this study, we used hirsutism only for simplification. We adjusted the DVs for the composite body 
shape factor to eliminate the covariates' effect. 

We applied the univariate linear regression analysis- full factorial model- to test the data during 
adjustment for the composite factor. 

Then we used Levene's test to evaluate the error distribution. Levene’s test is a unique application of 
the GLM, where the errors are correlated with known weights. The test is implemented by locating 
mean- or median-based residuals from ANOVA, developing absolute values of them, and reanalyzing 
the absolute values using the same original ANOVA tool.18 

Finally, the estimated marginal means were evaluated. This mean is a hypothetical mean which is 
unaffected and unbiased by the covariates. 

Linear Regression Analysis 

Thirdly, we examined the ordinary linear regression platform in SPSS to assess the cumulative 
parametric change in Pearson's Coefficient of the parametric DVs after adjusting for outcomes like 
hirsutism and composite factor. We had similar results to the partial correlation analysis.Simple linear 
regression is a mathematical technique in which there is a single outcome or DV and a single 
predictor or independent variable with a linear or straight-line function.19 

 

Results 

Normality (Gaussian) Distribution Model Testing 

Table 1 and Figure 1 described the distributional properties of the raw T, E2, and corresponding 
ratios. The T, E2, T/E2, and E2/T lacked normality as evident by the visual inspection of Figure 1 
(Panels A-D), with marked positive right-skewed distribution and positive leptokurtic properties. 
Different interpretations of the distribution came from both the K-S and the S-W normality tests, 
which provided additional evidence of deviation from the normality, with p<0.001. 

Figure 2 described the (Normal Q-Q Plots), which provide additional visual analysis of the data 
distribution along a diagonal reference line. The (Panels A – D) describe the data distribution of T, 
E2, T/E2 ratio, and E2/T ratio, respectively. The distribution is not a normal distribution, which 
confirmed the initial finding in Table 1 and Figure 1 (Panels A – D). 

The log-transformation of the ratios decreases the deviation from the normality of the ratio, i.e., 
minimal skewness and kurtosis. Still, both K-S and S-W reject the null hypothesis and prove that even 
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with such log-transformation, there was a statistically significant deviation from a normal distribution 
(p <0.001) in both tests (Table 1). 

In Figure 1 (Panels E and F), the data of the log-transformed ratios appeared at the first instance as 
normally distributed. Still, a careful assessment of the characteristics of the normal (Q-Q) plots in 
Figure 2 (Panels E and F) showed that the outliers in the extremes of both log-transformed ratios 
prevent the normal distribution because they did not align along the diagonal reference line. 

The relationship between the two reciprocal ratios was non-linear, preserving the position of the 
outliers in both ratios, i.e., patients with the highest T/E2 ratio ultimately had the lowest E2/T ratio 
and vice versa. The same effect was evident even after log-transformation of both ratios (Panel C and 
D). 

We created the (Composite Body Shape Factor) to adjust our data to the possible or the proposed 
covariates like age, body weight, and height together. Table 2 used both parametric and non-
parametric partial and bivariate correlation analyses, respectively, after adjustment for the composite 
factor, which provide us with different levels of significance. Although the results were satisfactorily 
descriptive, neither parametric nor non-parametric correlations after adjustment for the composite 
factor were adequate to yield acceptable results because both Pearson's and Spearman's Coefficients 
were below 0.3, which is the minimally accepted level for correlation. 

Analysis of Covariate (ANCOVA): 

In Levene's test for the quality of variance, if the p>0.05 for any DV, this meant that the variance was 
not statistically significant, and vice versa. The significance levels of both log-transformed ratios 
approach around the significance and its effect on distribution cannot be neglected. 

In Table 4, we tried to answer whether the outcome had been significantly affected by the changes in 
the DVs during adjustment for the composite factor. The answer will be yes if the p≤0.05 and no if the 
p>0.05. After adjustment, statistically significant relationships before adjustment and high observed 
power levels retained this characteristic property. All the estimated marginal means levels underwent 
some changes during the ANCOVA at different degrees. 

Table (3) described the different levels of DVs in women with a (fixed) outcome like hirsutism. To 
measure the effect of any factor or a covariate, we used ANCOVA through the univariate linear 
regression model analysis before and after adjustment for the composite factor (Table 4). 

Linear Regression 

The linear regression analysis gave identical results to that of the bivariate correlational analysis in 
Pearson's Coefficient levels, although with different levels of significance, i.e., 1-tailed level of 
significance. Some of the relationships lost their significance after further adjustment for the proposed 
covariates (Table 5). 

 

Discussion 

The interpretation of the interplay of T and E2 in a ratio is matter of debate. It is familiar to use the 
values of reciprocal ratios with different distribution in different endocrine conditions; that is why we 
tried to provide a roadmap review to address non-normality and heteroscedasticity in the hormonal 
ratios. 

Mathematically, there is no simple way to predict the mean and SD of a ratio (X/Y) given the mean 
and SD of its inverse (Y/X).20The relation between the variables in a given ratio is complex or 
paradoxical, i.e., if the relationship between the numerator and the denominator is absent, then the 
calculation of the ratio itself will generate a relationship between the ratio and the denominator. In 
that case, a ratio will be operative only when the relationship demonstrates a straight linear that 
intersects the origin.17 

The ratio (X/Y) illustrates the changes in the numerator (X) rather than the denominator (Y), with the 
assumption of linearity and normality in distribution; otherwise, the ratio will misrepresent the 
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genuine relationship between them and will render it meaningless, with unreliable or invalid 
interpretation.12,17However, a non-linear relationship does not necessarily entail no association 
between the variables.21 

Although estimated parameters remain unbiased and consistent with heteroscedasticity, the estimated 
covariance matrix among the parameter estimates will be incorrect, leading to a low statistical power 
or inflated type I error rates.7 Methods that assume homoscedasticity may incorrectly estimate the SE 
when there is real heteroscedasticity. As we consider more and more complicated designs, 
heteroscedasticity becomes an increasing concern.8,15 

To assess any random sample size for normal distribution, we can use graphical methods by the visual 
inspection (Q-Q-plots, histograms, and boxplots), descriptive numerical methods(skewness and 
kurtosis), and formal theory-driven normality tests.12,13 

However, choosing the correct study designs and proper statistical models is often challenging to 
assume the data normality and whether there is homo- or heteroscedasticity.15 The approach may fail 
because of the lack of enough power to detect violation in normality, whatever the sample size was.8 

In this article, we tested different statistical methods using real hormonal data from a large sample 
(1198 women), to have the minimal dispersion of the data. The assumption of normality is inessential 
when the sample size is large enough for the CLT to be at work.22 In large sample size settings, linear 
regression models are reasonably robust to normality violations, and hence arbitrary bias-inducing 
outcome transformations are usually unnecessary. Instead, researchers should focus on detecting 
model miss-specifications such as outliers values, high leverage, heteroscedasticity, correlated errors, 
non-linearity, and interactions, which may bias results irrespective of sample size.23 

The distributions of the original variables T, E2, T/E2, and E2/T were already slightly right-skewed 
and leptokurtic, which significantly deviates from normality. This distribution pattern is typical for 
ratio measures24,25 due to (blow-up phenomenon) since ratio values increase exponentially as the 
denominator decreased, leading to outliers in the right tail of the distribution.26 The minimal value of a 
hormonal ratio cannot be zero or negative values. In a normal distribution, skewness and kurtosis are 
equal to zero.12 

The most common normality tests in statistical software are the S-W test, K-S test, Anderson-Darling 
(A-D) test, and LF test. Each test had its conditions for normality testing.12 We used two normality 
testing, the S-W test and the K-S test with LF significance correction. These tests differ in the 
complexity of the normality, skewness, and kurtosis.27 

With our large population sample size, we overcame the minimal requirements of these normality 
tests, which were 10 for the K-S test, and 50 for the S-W test, which ultimately robust the power of 
these two tests.12In K-S and other normality tests, slight deviations from normality tend to reach 
significance with large samples1 such as the present. 

With small sample size (n=10 - 50) , normality tests lack power to detect departures from 
normality.12,13 Similarly, S-W outperforms K-S for different distributions with kurtosis >3 (leptokurtic 
distributions),12 as in Table 1. 

Although the graphical presentation in Figures 1 and 2 (Panels 1-4) illustrated the lack of normal 
distribution, it is not advised to depend solely on them to conclude the distribution of the data. The 
interpretation should include the combined results of graphical methods, formal normality testing, and 
coefficients of skewness and kurtosis in different sample sizes.9,12,28,29 

We performed three types of data transformation, algorithmic, parametric, and non-parametric. The 
data transformation is the most often recommended remedy to change the heteroscedastic distribution 
in non-normal data towards normality.22,30,31 Log-transformation in regression stabilizes the variance 
over target levels, turning it homoscedastic, and turns the measurement domain from arithmetic to 
proportional.32 In general, parametric transformations manage non-normality as informative, while 
non-parametric or algorithmic transformations manage it as a nuisance.22 



Samih A, Haider A, Abbas A 

 

By transforming a DV in a ratio, the goal is to use ordinary least-squares (OLS) estimators without 
worrying about the sensitivity of the skewness.22,30 

These misspecifications are addressed after transformation, even with the preserved linear model in 
OLS, but in a rescaled pattern.22Also, the transformation changes the original hypothesis being tested 
and the original construct that it measures,33 and alters the fundamental relationships among variables, 
and subsequently changes the errors distribution.32 

Even after the transformation, we may fail to have a normality distribution, as illustrated in Table 1 
and Figure 2 (Panels E and F). However, they demonstrated less skewness and kurtosis during the 
algorithmic transformation of both ratios in reciprocal forms.8 

The outliers were another problem because this simple approach was unsatisfactory for outliers 
management. The data transformation might decrease or increase the outliers but not mitigate the 
effect of the outliers on the final interpretation.8 

Researchers tried to transform the log-transformed parameter back to its original scale.34 The mean 
estimated from log-transformed data can be transformed back to its original scale. In the log, the mean 
becomes geometric instead of arithmetic in the original data.35 

We can transform the data using parametric and non-parametric testing, with and without adjustment 
for a composite factor. The choice between parametric versus non-parametric is generally predicated 
on the number and rigor of the assumptions (requirements) regarding the underlying study 
population.36 

Parametric tests make more rigorous, powerful, and robust assumptions of normal distribution of the 
underlying population than that of the non-parametric tests and could be applied for testing.12,36,37  The 
decision to apply a parametric versus a non-parametric test is complex, difficult, and controversial and 
depends on the original data itself.9 

It is a common problem for any data set to find outliers that may affect the outcome. This problem 
will be augmented if there was a co-linearity between variables. We cannot simply manipulate these 
outliers because this will lead to unpredictable changes in the estimated coefficients or changes in sign 
or SE inflation, leading to poor statistical power.8,15,38,39 

Figures 1-3 illustrated the outliers in the different situations during transformation. The outliers were 
constant in positions in the (long and thin) left tail of the distribution. The graphical presentation was 
illustrative for the outliers determination. The use of the mean and variance are known to be 
unsatisfactory.38 

When Pearson’s and Spearman’s rho correlations used a correct estimate of the SE, they perform well 
in type 1 errors when there is no association. Independence implies homoscedasticity. While when a 
homoscedastic method rejects, it is reasonable to conclude that there is an association, but inferring 
the nature of the association, these methods can perform poorly.8 

Another way to deal with the non-normally distributed data is by applying ANCOVA, which includes 
continuous and categorical variables as independent variables. It is a mixture model that combines the 
advantages of ANOVA and multiple linear regression model.40,16It is generally recognized that 
ANCOVA may considerably reduce the number of subjects required than an ANOVA design to attain 
the required precision and power.16 Still, it inappropriately generates a higher bias.15 

The inclusion of a covariate, which is highly correlated with response, can remove or reduce a 
considerable portion of errors. The explanation ability, significance of factors, mitigated 
heteroscedasticity is better with ANCOVA.7,40,41 

ANCOVA assumes the normality, where the type 1 error is controlled even when the model is 
misspecified, which may lead to a biased outcome. In ANCOVA, it is difficult to accurately assess 
and evaluate outcome effects given the normative presence of covariate measurement error.40-42 To 
solve this limitation, we have three (inadequate) options. First, assume normality, pretend 
nonexistence of the problem, use the OLS regression, and find unbiased results, which is not logical. 
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Second, apply blind correction methods, which may give unreliable results. And third, Use another 
statistical model, not use ANCOVA at all.42 

Hess et al. advised using linear regression to manage this problem to a certain extent. Regression and 
correlation can be easily performed with most statistical and spreadsheet software, and C.I.s and 
statistical hypothesis tests can be calculated to describe the results.43 

The main limitation of the regression model is its ability to accommodate an analysis between two 
unrelated variables in ratio, even when this ratio is useless. Yet, we cannot guarantee that the relation 
between the numerator and denominator is linear and pass the origin; otherwise, the interpretation of 
the ratio is useless.17 Also, we did not use bootstrapping in its simple and wild form, which assumes a 
less restrictive assumption of the sample representation.22 

Conclusions 

When conducting statistical analysis for any hormonal ratio of any form, the researcher must adopt 
more than one statistical method to robust the normality assumption of the distribution. There is no 
privilege of one test over another to achieve normality. However, ANCOVA and linear regression 
appeared to be more descriptive and more genuine in preserving the normality concept. 
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Tables and Figures 

Table (1): Descriptive and distributional properties of different hormonal variables in the study.

Variable
s 

Mean ± SE Range 

T 36.94 ± 0.60 0.29 - 147.20
E2 78.04 ± 1.47 4.10 - 349.00
T/E2 6.52 ± 0.16 0.23 - 44.23 
E2/T 0.32 ± 0.01 0.02 - 4.38 
   
Log 
T/E2 

0.68 ± 0.01 -0.64- - 2.74 

Log 
E/2T 

-0.68- ± 0.01 -2.74- - 1.19 

Abbreviations: E2, Estradiol; SE, Standard Error; T, Testosterone
a The negative mark of skewness indicates the left skewness. 
b p <0.001 
c Corrected by Lilliefors Significance Correction

 

Figure 1: Frequency distribution of testosterone (Panel A), 
estradiol ratio (Panel C), estradiol to testosterone ratio (Panel D), log
estradiol ratio (Panel E), and log-transformed estradiol to testosterone ratio (Panel F).

 

 

Table (1): Descriptive and distributional properties of different hormonal variables in the study.

Skewness ± 
SEa Kurtosis ± SE 

Normality Testing

Kolmogorov
Smirnov 
Statisticb,c 

147.20 1.21 ± 0.07 3.10 ± 0.14 0.065 
349.00 2.36 ± 0.07 7.57 ± 0.14 0.190 

 2.19 ± 0.07 6.74 ± 0.14 0.138 
4.98 ± 0.07 33.98 ± 0.14 0.238 
   

 -0.401- ± 0.07 0.36 ± 0.14 0.041 

 0.30 ± 0.07 2.42 ± 0.141 0.045 

Estradiol; SE, Standard Error; T, Testosterone 
The negative mark of skewness indicates the left skewness.  

Corrected by Lilliefors Significance Correction 
 

 

Figure 1: Frequency distribution of testosterone (Panel A), estradiol (Panel B), testosterone to 
estradiol ratio (Panel C), estradiol to testosterone ratio (Panel D), log-transformed testosterone to 

transformed estradiol to testosterone ratio (Panel F). 

Table (1): Descriptive and distributional properties of different hormonal variables in the study. 

Normality Testing 

Kolmogorov-

 

Shapiro-
Wilk 
Statisticb 

0.932 
0.787 
0.803 
0.543 
 

0.989 

0.974 

estradiol (Panel B), testosterone to 
transformed testosterone to 
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Figure 2: The normal (Q-Q) plots of the distribution of T (Panel A), E2 (Panel B), T/E2 ratio (Panel 
C), and E2/T ratio (Panel D). Panels E and F describe the distribution of the log
along the diagonal reference line. The outliers in both panels (in th
distribution to be non-normal distribution.
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Q) plots of the distribution of T (Panel A), E2 (Panel B), T/E2 ratio (Panel 
C), and E2/T ratio (Panel D). Panels E and F describe the distribution of the log-transformed ratio 
along the diagonal reference line. The outliers in both panels (in the red rectangles) affected the 

normal distribution. 
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Q) plots of the distribution of T (Panel A), E2 (Panel B), T/E2 ratio (Panel 
transformed ratio 

e red rectangles) affected the 

 



Samih A, Haider A, Abbas A 

 

Figure 3: Plotting the ratios against each other. Panels A and B  represent the non-linear distribution. 
The highest and the lowest values in both ratios had preserved their position in the opposite direction. 
Patients 560 and 921 had the highest T/E2 (Panel A),(44.231 and 37.625, respectively), and the lowest 
E2/T (Panel B) (0.02 and 0.03, respectively). Patients 682 and 1011 had the lowest T/E2 (Panel A) 
(0.228 and 0.259, respectively), respectively, but the highest E2/T (Panel B) (4.38 and 3.86, 
respectively). The rank within the two ratios was consistent but reversed. 

 

Table (2): Parametric (Pearson’s r) and non-parametric (Spearman’s rho, Rs) partial and bivariate 
correlation analyses, respectively.a 

Variables 

Parametric correlation Non-parametric correlation 

Pearson's coefficient 
Adjusted for the Composite 
Body Shape Factor 

2-
tailed 
sig 

Spearman's Coefficient Adjusted 
for the Composite Body Shape 
Factor 

2-tailed 
sig 

T 0.001 0.981 0.004 0.900 
E2 -0.022- 0.444 -0.062- 0.032 
T/E2 0.055 0.057 0.028 0.338 
E2/T 0.014 0.636 -0.028- 0.338 
Log T/E2 0.023 0.428 0.028 0.338 
Log E/2T -0.016- 0.572 -0.027- 0.346 

Abbreviations: E2, Estradiol; SE, Standard Error; sig, significance; T, Testosterone 
aThe negative marks in Pearson's and Spearman's Coefficient define the direction not the value. 

 

Table (3): Mean value of T, E2, and their ratios for the study group, with hirsutism as a possible 
outcome. The data were expressed as Mean ± SE. 

Dependent 
variables 

Total (n=1198) 
Hirsutisma 
(n=834) 

No Hirsutism 
(n=364) 

T 36.937 ± 0.601 37.786 ± 0.731 34.992 ± 1.043 
E2 78.035 ± 1.469 77.930 ± 1.963 78.275 ± 1.778 
T/E2 6.516 ± 0.162 6.945 ± 0.207 5.533 ± 0.237 
E2/T 0.321 ± 0.012 0.311 ± 0.015 0.342 ± 0.021 
Log T/E2 0.672 ± 0.011 0.696 ± 0.013 0.617 ± 0.018 
Log E/2T -0.678- ± 0.012 -0.700- ± 0.014 -0.627- ± 0.020 

Abbreviations: E2, Estradiol; SE, Standard error; T, Testosterone 
a any outcome can be used as a fixed factor like Female pattern hair loss, menstrual irregularity, infertility, 
etc. We used hirsutism as an example in this study. 
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Table (4): The use of ANCOVA, univariate linear regression model analysis. 

Dependent 
variables 

Significance of 
Levene's Test 
adjustment 

Significance of 
hirsutism as a 
fixed factor 
adjustment 

Observed 
power 
Adjustment 

Estimated nonadjusted  
marginal meansa 

Estimated adjusted  
marginal meansa 

Before After Before After Before After Hirsutism 
No 
Hirsutism 

Hirsutism 
No 
Hirsutism 

T 0.108 0.110 0.032 0.030 0.572 0.582 
37.786 ± 
0.719 

34.993 ± 
1.088 

37.810 ± 
0.722 

34.938 ± 
1.100 

E2 <0.001 <0.001 0.914 0.981 0.051 0.050 
77.930 ± 
1.761 

78.275 ± 
2.666 

78.058 ± 
1.770 

77.981 ± 
2.694 

T/E2 <0.001 <0.001 <0.001 <0.001 0.981 0.964 
6.945 ± 
0.193 

5.533 ± 
0.292 

6.922 ± 
0.194 

5.586 ± 
0.295 

E2/T 0.919 0.926 0.227 0.191 0.226 0.257 
0.311 ± 
0.014 

0.342 ± 
0.022 

0.310 ± 
0.014 

0.345 ± 
0.022 

Log T/E2 0.065 0.065 0.001 0.001 0.929 0.916 
0.696 ± 
0.013 

0.617 ± 
0.019 

0.696 ± 
0.013 

0.617 ± 
0.019 

Log E/2T 0.051 0.051 0.004 0.005 0.819 0.804 
-0.700- ± 
0.014 

-0.627- ± 
0.021 

-0.699- ± 
0.014 

-0.627- ± 
0.021 

Abbreviations: E2, Estradiol; T, Testosterone 
a The means were expressed as (Mean ± Standard Error) 

 

Table (5): Linear regression analysis using parametric correlation with Pearson's coefficient after 
adjustment for the hirsutism and Composite Body Shape Factor 

Variables 

Pearson's 
coefficient 
Adjusted for 
Hirsutism 

1-tailed 
significant 
level 

Pearson's coefficient Adjusted for 
hirsutism and the Composite Body 
Shape Factor 

1-tailed 
significant 
level 

T -0.062- 0.016 0.001 0.490 
E2 0.003 0.457 -0.022- 0.222 
T/E2 -0.116- < 0.001 0.055 0.029 
E2/T 0.035 0.114 0.014 0.318 
Log T/E2 -0.099- < 0.001 0.023 0.214 
Log E/2T 0.083 0.002 -0.016- 0.286 
Abbreviations: E2, Estradiol; T, Testosterone 

 


