ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267672804

A weighted finite difference method involving nine-point formula for two-
dimensional convection-diffusion equation

Article - January 2010

CITATION READS

1 381

2 authors, including:

‘ Abdul-Sattar Al-Saif
.~ University of Basrah
38 PUBLICATIONS 105 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roect Handling 2D unsolvable problem by new technique(UDDQM) View project

All content following this page was uploaded by Abdul-Sattar Al-Saif on 27 October 2015.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/267672804_A_weighted_finite_difference_method_involving_nine-point_formula_for_two-dimensional_convection-diffusion_equation?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/267672804_A_weighted_finite_difference_method_involving_nine-point_formula_for_two-dimensional_convection-diffusion_equation?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Handling-2D-unsolvable-problem-by-new-techniqueUDDQM?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Basrah?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

International Mathematical Forum, 5, 2010, no. 68, 3379 - 3398

A Weighted Finite Difference Method Involving
Nine-Point Formula for Two-Dimensional

Convection-Diffusion Equation

A. S. J. Al-Saif and Muna O. Al-Humedi

Department of Mathematics, College of Education
University of Basrah, Iraq
ajsaifd@hotmail.com
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1. Introduction

Accurate solution of the two-dimensional convection-diffusion equation is desirable.
This requires the development of numerical schemes that can remain accurate even for large
amount of computational time, several effective schemes have been proposed to achieve this
goal [1,2,6,11,12]. In the field of finite difference methods (FDMSs), there are many articles that
were carried out to numerically solve the convection-diffusion equation in both one- and two-
dimensional forms successfully [1-12].

During the last two decades, some new techniques involving weighted discretization
and modified equivalent partial differential equation have been introduced to develop FDMs.
For example, the explicit, and implicit weighted finite difference method with three-point
formula[9], and five-point formula[3,5] are used to solve the one- dimensional convection-
diffusion equation, for solving the two-dimensional convection-diffusion equation three-point
semi-implicit and implicit formula FDMs[6,11,12,8], and five-point explicit and semi-implicit
formula FDM[1] have been used successfully . The motives to present this work are: there are
perhaps only few (if there are any) papers that deal with nine-point weighted FDM for solving
the two-dimensional convection-diffusion equation, in addition to extending our previous
work[7],and to generalizing [1].
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In this paper, we extended and developed the weighted FDM. The development
reported here is nine-point weighted FDM. When compared with [1,6,11,12,8],present
numerical results are in agreement with the existing results, and show that our method is
efficient for giving accurate solution for two-dimensional convection-diffusion equation and
have reasonable stability.

2. The mathematical formulas
2.1 Governing equation

The two-dimensional convection-diffusion equation for a transport scalar function
T(x,y,t)is

Tyt | Tyt) ATyt 0Tyt Ty (1)
ot x ay X 6x2 y 8)/2

Convection terms Diffusion terms

where X,y are the distances, t is the time, u,v > 0are the constants speeds of convection in
xand y direction, «,,a, >0 are the diffusivity in xand y direction.

Equation (1) can be solved in the interior of the region0<x<a,0<y<b, t>0 of
(x,y,t) space, where a,bare constants, subject to appropriate initial and boundary conditions
defined as;

T(x,y,0)=h(x,y) 0<x<a 0<y<b} (2)

T(0,y,t) = f,(y,t) 0<y<b t>0

T(a,y,t)=f, (y,1) 0<y<b t>0

T(x,0,t) = g,(x,1t) 0<x<a t>0

T(x,b,t) =g,(x,1t) 0<x<a t>0
where h, f,, f,,g,,9, are known data.

0 "a?

(3)

2.2 The modified equivalent partial differential equation
Consider the finite difference equation (FDE)

=0 (@)

jk

n o 0%t
* ox?

N or|" or|" Or n o*r

Lz ]=— — +V— —a,——

’ ot|jixk OX|jk oYy ik oy

which is consistent with partial differential equation (1), where Lais a finite difference
operator and T = z(iAX, jJAy,nAt)is the approximation values at a set of grid points

(IAX, jAy,nAt), where 1 =11)M; -1, j=11M, -1 n=11)N -1.The distance between the

jk

points on lines which parallel to x -axis , y -axis and t are Ax = Mi,Ay Ve and At = %
1 2

respectively, where T is an optimal time and M,,M,,N are positive integer numbers. The
equivalent partial differential equation (EPDE) to equation (1), can be obtained by converting it
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to finite difference equation and then expanding the resulting equation by Taylor's series
around the grid point

Tl g f g T F S S 5
ot ax oy oxt Yoyl GEE TP et ex T ayP ©)

or Ot Ot o°r 0’ & zp: d o°r
q=0
Any (FDE) which is consistent with convection-diffusion equation(1) after
expanding each term of it in Taylor series about some fixed point in the solution domain,
has a modified equivalent partial differential equation(MPDE) of the form

—+U—+V

or o0t Ot 0%t 0’1 &L o°r
o,y +3 > Cop ot
ot ox oy OX oy o ox*oy

-0 (6)

where, the term under the summation signs form is the truncation error.
A (FDEs) for solving (1) is said to have accuracy of r" order if Cypq=0forg=0@Q)p
is valid, for all p=2,...,r ,where at least Crarag?z00=0L..,r+1. Using the weighted

difference method is useful to develop the FDMs to obtain high accurate numerical solution [1-
10].

3. Accurate (FDEs) by weighted-differences

Using weighted differencing in order to construct higher-order schemes weights

are used to eliminate from the MEPDE as many as possible of the terms containing the
p

L. o°r
derlvatlvesm ,
X

q=11)p-1, p=2.3,---to develop FDMs to higher order of accuracy

than conventional methods.

For the stencil of Figure (1a), the first-order derivatives of 7(X,Y,t) can be

approximated by using three-point formulas (3pt.) at (j,k, n)th as follows

n n n n n n
T, — T or T~ T
% — j,k ],k—l +O(AX) & — Lk AX] l,k +O(AX)
_ Ay .
ik jk
n+1 n
n T. =T
gelm _dk 1K o
ot ik At

These approximations are called forward scheme (FS) and backward scheme (BS).
For the stencil of figure (1b), the first -order and the second-order derivatives of (X, Y,t) can

be approximated by using nine-point formulas (9pt.) at (j, K, n)th as follows
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o (n+1) time level —> o

k+1

(b)

Figure (1). The stencil in (x,y) plane for : (a) three-point (b) nine-point.

n

” ~ Ti 4y +360] 5 +686r],, —6524],, +6524],, —686r],,, —36r],5 — 7] +0(AX®)

1008Q(AX)

ﬁ
OX

j.k

n

z n . T?,k—4 + 361-?“(73 + 6862’?“(72 - 6524‘[;]*71 + 6524T?’k+1 - 686[?,k+2 - 36TF,k+3 - Tj,k+4 + O(AyB)
oy, 10080(Ay)
Raal _ Tk 4874, ~13727], +260961], —493507], +260967].,, —1372r],, —487] 5, — 7., +0(AX)

ox|, 2016GAX)°

o :_f;’k_‘l_48fj‘yk_3—13727;‘1k_2+26096r;‘1k_1—49350r;"k+26096r;"k+1—13722';‘1k+2—48f;1k+3—f;ym+O(A /)
oy, 201604y)?

These approximations are called central scheme (CS). We can approximate all the derivatives
in equation (4) with weighted or non-weighted discretization as the following formulas;
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3.1 The forward time- central space scheme with nine-point formulas (FTCS 9pt.)

Using a first-order forward difference approximation equation for the time derivative and
eighth-order central difference approximation for the first and second spatial derivatives to
approximate equation (4), leads to a new formula as,

C S C. S 343 , 1631
S x4 X" 4 X C.+S.)" C,+2S 7]
I (10080 20160) Ik (280 420) I3k 5040( ST 252 ( T
4935 1631 343 c
+(1- C,-2S C + _ S
( 201 6( )) Jk 25 20( )Tj+lk 504 O( X )TJ+2k (280 420 J+3k
C S C, s, c, S, 343
+ LS. x V"o — + ! + C,+S)r
(10080 20160) Jrak (10080 20160) B (280 420) b3 5040( D752
1631 ) 1631 343 c, S, -
+ ﬁ(cy + 2Sy)z-j,k—l 2520 (C -23 )T] ka1 T 5040 (Cy S )TJ ke2 T (280 420 ] k+3
( Cy Sy n
10080 20160 '+
(7)
UAL vAt o, At a At . ]
where C, = ™ C, = = S, = (AX . S, = (Ay . are the Courant numbers and diffusion
X y X y

numbers respectively.

The MEPDE of finite difference equation (7) is equivalent to equation (6), and it has the
coefficients of the leading (first-order) error terms given by

AXC VvAYC
C,, ZUTX’ C,=WAL, C,, =2

This implies that the FTCS 9pt. method introduces numerical diffusion in both the x -and y -
directions. The stability of equation (7) can be established by using the Von Neumann method,
where the Von Neumann amplification factor of equation (7) is given by

G|" ~1=f (), x e[-11]
where f(;()=b0+b1;(+b2;(2+b3;(3+b4;(4+b5;(5+b6;(6+b7;(7+b8;(8 (8)

in which y =cos(B),( B=B, =B, ,here B, =zm Ax, B, =zm Ay and (mx,my) Fourier
components)and the coefficients

b, = (4.624)*S? —9.248 S +(2.603)>C? b, =0.025S% —0.045C?

b, = -4.811S” +10.413S - 2.826C* b, =3.175x10°S% - 6.702x10°C?
b, =32.1265% -1.086S —7.074C* b, =1.209x107*S* ~3.628x107“C?
b, =-5.300S* —0.076 S +2.872C? b, =2.519x107°S? -1.008x10°C?

b, =—-0.3535° -3.175x10°S +9.524x10°°C"
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Here and in the next stability analysis, we settingC, =C, =C and S, =S,  =S.

To satisfy the stability criterion of equation (7), we require f(y)<0 ,for —1< y <1.Thus, If
x =0, then for f (0) <0 ,we have

0<S< ﬂ[5826 + —\/14968543 —1043606 C ]

(2913 )2

This is appliedto 0<C <1.198 . and if y =-1,then for f(-1) <0,yields

63

<S< —[13024+\/169624576 M

c?y.
(630)2

2347552

This condition is applied to C > 0.

3.2 The Upwind difference scheme with nine-point formulas (UDS 9pt.)
In this section, we use the first-order forward and backward approximation of the first

time and spatial derivatives, while the second spatial derivatives are approximated by the
eighth-order central difference. Thus, a new formula can be obtained as,

S S ) 343

Tik = _201X60 (7] T T an) — 42XO (75 sk Tj+3,k)_%sx(f?_zyk +7701)
1631 4935 1631
+(C, + 1260 S) 1, +0-C,+C —2—(3 +S,)7 Jk+12605xfj+1,k
" " S .y 343
B 201y60 Tik-a + Tj,k+4) 42y0 (Tj k-3 T Tj,k+3) 5040 y(Tj k-2 +z—] k+2)
1631 1631
(C + 126083’)2—] k1T 1260 SyTj,k+l

©)

The MEPDE of this FDE has the coefficients of the leading (first- order) error with coefficients
given by

vAy(l—Cy)
—== ,C11=wAt ,Cogp=——""—""
5 11 0,2 >
We noted that the coefficients C,, , C,,, C,, are not equal to zero , therefore the upwind
method introduced numerical diffusion in both the x- and y-directions.

The application of Von Neumann stability analysis shows that the equation (9) has the
amplification factor G with f () having the same form in equation (8) with the coefficients:
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b, = (4.624)°S? +(18575C —9.248S +4C? b, =0.0255% —6.349x10°C?
b, =-4.810S* +(10.413-39.321C)S +4C —8C° b, =3.1755°

b, =32.12657 + (11.498C —1.086)S b, =1.209x10™S?

b, =-5.3005° - (0.076+ 2.095C)S b, =2.519x107°S°

b, =-0.3535° —(3.175x10°° +0.149C)S
The stability criterion

1260

(2913)
for 0 <C <0.9 when f(0)<0, and for 0 <C <0.1when f(-1)<O0is

27763319

c?
441

0<S<

[(~11702C + 5826) T \/33942276 ~13635170C +

630 675459848
2347552 (630) 2

Note: these schemes (FTCS 9pt.) and (UDS 9pt.) are unconditionally stable if y =1for
allS,C>0.

0<S< [(~44948C +13024) F \/169624576 —~1152052088C + c?]

3.3 Weighted finite difference scheme with nine-point formulas (WFDS 9pt.)

To get this scheme, when discretizing equation (4) at the grid point( j, k, n)th, we used
weights 0 < ¢, <1 in the approximation
g~¢x BS+(1-¢)xCS, %~7x BS+(1-y)xCS

with the forward time difference approximation for time derivative and eight-order

27 27
o 0 0 .
central-space approximation for 5 and 5 the resulting (WFDE 9pt.) was
OX ay
oo C-¢), S Cd-9) , 343
= (= X X C(l-¢)+S
Clooso T 201607~ T og0 420 ¢ “50a0 D+ S
1631 4935 )
+(Co+ E(C (1-¢)+28S, ))f, L TA-Cg- ny—m(s +S 7],
1631 ) C,(l-¢) S,
_ﬁ(c (1 ¢) 28 ) J+1k (Cx(1_¢) - S><)Tj+2,k +( 280 420) j+3,k
+ (Cx(1_¢) Sx ) (Cy(l 7/) Sy ) (Cy(l_}/) Sy )
10080 20160° *** ~\ 10080 20160 Pik-s 280 420" 1
343 ) 163 ) 1631 )
_M(C Q=) +3S))7] +(Cy7+m(cy(l_]/)+28 )Tk — 2520(C A=7)-2S))7]\ 4
C,dl-») S, C,-») S
7 (C S n e y y
5040( A=7) =87+ 50— = 200 s+ Clonao ~ 20160 7+

(10)
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The finite difference equation has MEPDE with coefficients, which are the same as those of
equation (6). Therefore, equation (10) has the first-order truncation error with coefficients
_ UAX(¢—Cx) vAy(y —Cy)

C =
2,0 5

, C11=uvAt , Cpp =-

The diffusion that numerical introduced by the first and last of these equations may be
eliminated by setting ¢ =Cy and y = Cy, but there remains a first-order error term involving

821

. The Von Neumann amplification factor G with f () has the same form in equation (8)

with the coefficients

by = (4.624°S? +(9.28TC(+7) 9.248S +(L309°C*(2—p—7)* + 260322~ P~ 1) (p+ 1) + 2CH(#F + 1)

by =—4.8105” +(10413-19660C(¢+))S —0.707C*(2— p—y)* —0542C*(2—p—»)*(¢+7) + 2C(¢+y) —2C*(¢+7)’
b, =321265° +(5.749C(¢+7) ~108§S —1.769C*(2— ¢ )’ —26603C*(2— ¢~ ) ($+7)

b, =-530175% —(0.076-1.048C(#+7))S +0.718C*(2—p—7)* +0539C*(2— ¢ 1) (#+7)

b, =—0.3535” —(3.175<10° +0.075C(¢+7))S +2.381x10°C*(2—¢—»)° +0.057C*(2— p—7) ($+7)

b, =0.0255°~3.175<10°S C (¢+7)—0.011C*(2—¢—y)* +3.175<10°C*(2—p— ) (¢+7)

b, =3.175¢10°S* —1675<10°C*2—$—y)’

b, =1.209x10*S* ~9.070x10°C*(2— ¢~ )’

b, =251%10°S° ~2519%10°C*(2—¢—y)’

To satisfy the stability criterion of equation (10), we require f(y) <0 for —1< y <1. Thus if
x =0, then for f(0) <0, we have

0<S< 1260 [(5826—11702C2) - \/33942276— 60232536C2 N 4700628OC3 N 33206151704]
(29132 441 441 441
This is appliedto 0<C < 2. If x=-1, then for f(-1) <0 we have
0<s<—80 13004 _ 44048 C?) 7
2347552
169624576 -+ 1319191:8 c? 1814169202 coL 4222121225 ch_ 1284580456 C°]
630) (630) (630) 630

this condition is applied to 0 < C <0.77.
Note: these schemes (WFDS 9pt.) are unconditionally stable if » =1 forall S,C>0.

So, we can say that equation (10) is a generalization to the pervious schemes. We show now
how this equation reduces to some well-known finite difference equation when it contains
values of ¢ and y are chosen. If substituting ¢ = y = 0,in equation (10),we
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get (FTCS 9pt.)equation (7).1f we put ¢ =y =1 in equation (10) UDS 9pt. is obtained,
equation (9). If ¢ = y =C, we get weighted Difference scheme of nine points.

3.4 Modified weighted finite difference scheme (MWFDS. 9pt)

To obtain FDMs. of greater accuracy, more grid points must be used in order to introduce
weights so that more terms in the truncation error of the MEPDE may be eliminated. Adding
four extra grid points (j—Lk-1,n),(j-Lk+1,n),(j+1Lk-1n),(j+1k+1n) on the stencil

2
of Figure (1b) and the error terms involving % in the MEPDE of (10) may be eliminated by
X
using the approximation
821 n
axay‘jk h 4AXAY

1
(_T?—l,kﬂ + T?+1,k+1 + T?—l,k—l - T?+1,k—1) (11)

which has a truncation error of O{(Ax)z,(Ay)Z}. The method of obtaining a more accurate

FDE through the replacement of error terms in the MEPDE has been described for the one-
dimensional case by [5]. Consider the finite difference equation (10). Written in the form

L.[7«]1=0 (12)
where
L, [T?,k] = 7?,? - a—4,07?—4,k - afs,of?f?,,k - afz,of?fz,k - a—l,OTF—l,k - ai,OTF+1,k -
az,of?+2,k - a3,07?+3,k - a4,07?+4,k - aO,OT?,k - aO,—AT?,k—A - aO,—BT?,k—S (13)
- ao,fzf?,kfz - aO,—lT?,k—l - aO,lz-?,k+1 - ao,zf?,mz - aO,ST?,k+3 - a0,47?,k+4
in which

a‘—4,0 ! a‘—3,0 ! a—Z,O ’a‘—l,O ' ai,O ' a'Z,O’ a3,0’ a4,0 ' a0,0’ aO,—47aO,—S’aO,—ZfaO,—l’aO,l’aO,Z’aO,B and a0,4 are
the corresponding coefficients in (10). Using the results of MEPDE in (10) with Cy = ¢ and
Cy = y the alternative differential form may be written as;

n

2 2 2
LA[r;"k]EAt[g+uﬁ+vﬁ—axa—2—aya—2+uvAt o +-+1 (14)
T R
2

Subtracting the error term uv(At)2 % from (14) is equivalent to subtracting from (15) the
X

term
n n n n
Cny (_Tj—l,k+l tTakn T Tjaka — Tj+l,k—1)/4

The largest error terms in the brackets on the right-hand side of (14) are now O{(Ax)2 , (Ay)2}.
Rearrangement gives the second-order FDE
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n+1 Zzap qTJ+p k+q (15)

p=—4q=—4
Inwhich a,, =0for p=q=-41)4, except a,,a,, and

a—l,—l(Cx1Cy) = _a—l,l(cx’cy) = al,—l(cx’Cy) = al,l(CX’Cy) = CXCy /4

The MEPDE of equation (15) contains no first-order error terms and has the following
coefficients of the second-order error terms:

2

2
Cy,2 =—AxCyary - (&) U(Cy)2
2 2

A
C4,0 =5 axCx (“X+ AxCy) Cz,zﬁxcxcyaxaww) (CX)Z“W(A?‘CV) o
C3,1=AXAyCXCan C2,1:—AyCy(ZX—(AX) v(Cy )

Ay 2
Co = a0, (1 +49C) C30 =12 u(ey - (€02 - axcxay

Setting S, =S, =S, C, =C, =Cand carrying out a numerical stability analysis yields the

stability of second order weighted difference scheme which is identical to the stability of
WEFDS 9pt. equation (13).

4. Adjacent boundary domain

When applying the difference schemes which depend on formulas of the nine-point to solve
the two-dimensional transport equation (1), we find that there are difficulties in computing the
values of the numerical approximation for the transport variable T(x, y, t) at the adjacent points
of boundaries Figure (2). We cannot use the formulas of these schemes directly to compute
these values, so the method of computing the approximate values of the transport variable in
equation (1) has been done on two stages, the first stage is done by using the formulas of
schemes explained previously (for the bounded area by S,W,N, E), whereas the second stage

Is by computing the approximate values for the transport variable at the adjacent points of the
boundaries in(N,E,S,W,NS,SE,SW,NW). It is suggested that there may be an implicit

scheme resulting as an idea that the value of the function at any point is equal to the average of
the function value at the adjacent points to it when Ax = Ay .This scheme will be illustrated in

the following algorithms.
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Known values function
for timelvel n+1

01 2 3 M-3M-2M1 M, X

Figure (2) Stencil of Adjacent points of boundary

Algorithms for computation of adjacent boundary points

For region of boundary layers Eand W:

For the time level n+1;n=0,1,2....
do k=4,5,.... M, -4
To compute values function at grid of layers E & W
do j=3,2,-1

n+1 n+1 n+1 . n+1 n+1 n+1
Tik = 2Tj+1,k “ Tk Tk T ZTMl—(j+1),k UM, -(j+2)k
enddo
s F . n+l _ n+1 n+1
for j=1 or j=M,-1 ¢\ =(cj, +7]5,)/2

enddo
For region of boundary layers at the corners SW and NW :

For the time level n+1;n=0,1,2....
do k=3,1,-1
To compute values function at grid of layers SW & NW
do j=3,2,-1

n+1l n+1l n+1 . n+1l n+1l n+1l
Tik = 2Tj+1,k — Tk AV 2TM1—(j+1),k ~TM,—(j+2)k
enddo
for j=1 or j=M,-1 0l =(c{T +7i00)/2

enddo
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A similar procedure can be used for other regions N,S, NE,and SE . These algorithms were
applied to compute the adjacent points of the boundaries in the nine-point (weighted and non-
weighted) finite difference schemes .These schemes can be regarded as general ones that can be
applied to treat the same problems that occur when the five-point finite difference schemes are
used . This procedure may be a useful tool to treat other schemes.

5. Discussion of numerical results

In this section, we test our difference method, which depend on the formulas of the nine-
point (with weighted and without weighted) to solve unsteady two-dimensional convection —
diffusion problem, in order to demonstrate the validity and effectiveness of this method.
Results are presented for two problems.

Problem 1.

The first test for our propose method is the diffusion problem in the unit square [0,1]x [0,1],
which is obtained by settinga, = @, =1and u=v=_0in the equation (1). The exact solution of

this problem is given by; u(x, y,t):e’z”ztsin(ﬂx)cos(ny). This problem is given in[12].The
initial and boundary conditions(2-3) are directly taken from this solution. Computations were
carried out at different times over the problem domain [0,1]. The results are documented in
Table 1 and 2. L, norm error of our method is documented att =0.125 in table 1 for various

mesh size, and at t =0.25in table 2 and figure 3 for various time step size. We conclude that
the accuracy of present method is increased with increasing number of gird points in space and
levels in time respectively. The present simulation exhibited more accurate results comparison
to the rival Tain and Ge method [12]. Figure 4 show that the FD9pt. method has a good
solution agreement with the exact solution. All comparison shows that the current method
offers better results than the other methods.

3.00E-012 ‘ ‘

—— At =0.0025

,,,,,,,,,,, At =0.00625
At =0.00312%

2.50E-012 +——

2.00E-012 —

1.50E-012

1.00E-012

L, norm error

5.00E-013

0.00E+000

0.0 0.2 0.4 0.6 0.8 1.0

X
Figure(3)L,norm errors at diagonal of a square region [0,1]x[0,1] for t=1.25
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Figure(4) Comparison between exact solution and approximation
contours plots of;

solution at t=0.125,

(a) Exact solution with 11x11grids  (b) Numerical solution with 11x11 grids
(c) Exact solution with41x 41grids  (d) Numerical solution with41x 41 grids

Table-1:- L, norm error at t = 0.125 with At = (Ax)®

3391

Grid Tain&Ge [12] FD9pt. method
L, norm error L, norm error
11x11 8.55134E-05 3.066732E-08
21x21 5.19160E-06 1.142410E-09
41x41 3.17475E-07 2.777872E-10

Table-2:- L, normerror atAx=Ay =0.1, t=0.25

At Tain&Ge [12] FD9pt. method

L, norm error L, norm error

0.0025 2.64692E-05 4.017735E-12

0.00625 5.40813E-06 1.032878E-12

0.003125 7.18040E-07 2.515195E-13
Problem 2.

An analytic solution in [1,12,8] of the problem is applied to this numerical test given by

, t>0

T(X,y,t):1exp(_(X—O.S—ut)2_(y_o_5_vt)2)

4t +1 ay(4t+1) ay(4t+1)
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The initial and boundary conditions (2-3) are directly taken from this solution.

It is noticed that when comparing the altitude of Gauss pulse, it has the largest numerical
approximation to T(x, y, t) with Gauss pulse height Figures (5 a-f), explained also by contour
drawings of the Figures (6 a-f). The WFD 9pt. and MWFDS 9pt. produces an approximate
value identical to the analytic value and better than the schemes FTCS 9pt. and Upwind 9pt.
The main reason for this can be attributed to the fact that the effect of the numerical diffusion in
WFDS 9pt. scheme is small and in the MWFDS 9pt.scheme there is no numerical diffusion.

Table (3) explains the average error and the maximum error for the nine-point finite difference
schemes at time

t=125, u=v=08,C, =C, =02, S, =S, =01and At=0.00625 .
Figures (5,6 ), and Table (3) show that the weighted modified difference schemes for the nine-
point (MWFDS 9pt.) are better than other schemes because of their second-order accuracy, and

their having absolute error less than the other schemes since the value of the numerical solution
is approximate to that of the analytic one Figures (5 a,b)
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Figure(5) The surface plots of (a) exact solution ,(b) (MWFD 9pt.), (c)(WFD 9pt. ¢ =y =C), (d)
(FTCS 9pt.), (e) (Upwind 9pt.) and (f) (WFD 9pt. ¢ = » =0.5) att =1.25in plane [1,2]
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Figure(6) The contours plots of (a) exact solution ,(b) (MWFD 9pt.), (c)(WFD 9pt. ¢ =y =C ),(d)
(FTCS 9pt.), (e) (Upwind 9pt.) and (f) (WFD 9pt. ¢ =y =0.5) att =1.25in plane [1,2]

and this is clear from contour drawings as Figures (6 a and b), Furthermore , when compared to
the other schemes found in this table with  MWFDS 9pt., it is noticed that all these schemes
have first-order error accuracy . Generally, it is clear that one kind of nine-point schemes, is
identical in identifying that the absolute error value and the WFDS are the most accurate when
¢ =y =C and they have less error than the other schemes in terms of average absolute error

and maximum absolute error.Table (4) explains the efficiency of these schemes for solving the
two-dimensional transport equation (1) when taking different values for Reynolds number

(R :%) following its difference in dimension steps AX, Ay and time step Al noticing that

the accuracy of these schemes on the behavior of the numerical solution becomes better
gradually through values changeability of these parameters.
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Figures (7 a, b) show the drawing of average absolute errors curves against the time for every
new FDS suggested in this study. From Figure (7 a), we notice that the error average of WFDS
9pt. for all the time-level with the weight ¢ = y = C is better than the other schemes which are

based on the nine-point formula. Figure (7 b) explains the drawing of average absolute error for
the MWFDS 9pt. From this Figure, we can notice that the MWFDS 9pt. with the weight has
¢ =y =C less error average for all the time-levels than the other schemes. Generally, it is

observed that FDS based on the weights ¢ =y =C has less errors average than the other
schemes.

Table-3:- Error measurements at t =1.25with At =0.00625 u=v=0.8,and C, =C, =0.2

The Method  Average |error]| Maximum |error|  Type of formula  weight

values

Upwind 9pt. 9.787177E-05 4.420168E-03 first —order ~ -----

FTCS 9pt. 5.826575E-05 1.418220E-03 first —order  -----

WFDS 9pt 4.925594E-05 1.067123E-03 first — order ¢=y=0.
2.794456E-05 1.607237E-04 first — order ¢p=y=C

MWEFDS 9pt.  9.054745E-06 2.557348E-05 Second —order ¢p=y=C

C
Table-4:- Error measurements at t = 1.25with different R = S , At and A = Ax = Ay

The Method Average |error]  Maximum |error| At A R
Upwind 9pt. 9.787177E-05 4.420168E-03 0.00625 0.025 2
2.828835E-04 8.997762E-03 0.0125 0.05 4
7.431901E-04 1.225278E-02 0.025 0.1 8

1.661878E-03 2.684112E-02 0.0375 0.15 12
FTCS 9pt. 5.826575E-05 1.418220E-03 0.00625 0.025 2
3.283737E-04 1.442082E-02 0.0125 0.05 4
3.586615E-03 1.669250E-01 0.025 0.1 8

3.586615E-03 1.669250E-01 0.0375 0.15 12
WEFDS 9pt. 2.794456E-05 1.607237E-04 0.00625 0.025 2
1.128239E-04 5.783730E-04 0.0125 0.05 4
5.630792E-04 3.575699E-03 0.025 0.1 8

1.378246E-03 1.946828E-02 0.0375 0.15 12
MWFDS 9pt.  9.054745E-06 2.557348E-05 0.00625 0.025 2
3.419029E-05 1.195652E-04 0.0125 0.05 4

2.819292E-04 1.335344E-03 0.025 0.1 8

1.392667E-03 1.966503E-02 0.0375 0.15 12
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6. Comparisons with the results of other researchers

Confidence in the present results is gained by the comparison of the results obtained using
the present numerical methods with those previously published in the literature. These
comparisons are given in the study of error measurements (average absolute error and
maximum absolute error), type of formula and number of weights given in tables (5) and (6).
Table (5) shows a comparison of the explicit finite difference schemes of three , five and nine
points formula kind at timet=1.25, when At=0.0125, u=v=08, C, =C =04 and

ay =ay =0.01. This table reveals that the results of MWFD 9pt. and WFDS 9pt. are better in

accuracy than the other researcher's schemes .

Table (6) illustrates a comparison of explicit FDS and implicit for a formula including three,
five and nine points when At =0.00625 , Cy :Cy =0.2, noticing that the MWFD 9pt. is
better than the others in accuracy. The new suggested schemes in this study are better in the

measurement errors than that of the traditional and suggested schemes by other researchers.
Based on these results, our conclusions are made in the next section.
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Figure (7)Comparison between average absolute error for (a) WFD 9pt. (b) MWFD 9pt.

125
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Table-5:- Errors at t =1.25with At =0.0125 ,u=v=0.8,and C, =C, =04
The Method Average lerror]  Maximum |error| No. of weights

FTCS 3pt. 3.94E-03 112600 -
FTCS 5pt. [1]  2.22E-03 8.00E-02 -
WDF 5pt. [1]  3.88E-04 3.64E-03 4
Noye [6] 3.33E-04 6.03E-03 2
WFDS 9pt.  3.17E-04 5.47E-03 2
MWFDS 9pt.  7.31E-05 3.53E-04 2

Table-6:- Errors at t =1.25with At =0.00625 u=v=0.8,and C, =C, =0.2

The Method” Average |error| Maximum |error| No. of weights
Upwind 3pt. 2.65E-03 6.63E-02 -
Upwind 5pt.[1] 2.62E-03 6.69E-02 -

ADI [11] 9.22E-06 593E-06 -
EC-ADI [12] 9.66E-06 6.19e-05 -

Dehghan&Mohebbi[8]  9.48E-06 247E-04 -
Noye [6] 1.43E-05 4.84E-04 8
WFDS 9pt. 2.79E-05 1.61E-04 2
MWEFDS 9pt. 9.05E-06 2.56E-05 2

* The methods in [6,11,12,8] are implicit type.

7. conclusions

From the numerical results, we can conclude the following:

The WFDS have been used successfully with ¢ and » to introduce explicit new

schemes with high accuracy and the results were better at error measurements. It is preferable
to choose ideal values for the weights to give us numerical results with high accuracy to solve
the two-dimensional transition equation compared with the other schemes explained in
Figures(7) and Tables (5)and (6).The numerical accuracy depends on the number of the
selected points. The tables and Figures show that increasing the number of the grid points
gives more accurate results. We notice that’s the MPDE method has been successfully used
with weighted to develop several new explicit finite difference method for solving transport
equation, and the use of the modified equivalent equation permits a proper determination of
the accuracy order of the finite difference method. We have developed an improved finite
difference schemes with weighted by the MEPDE, since it is allowed to apply two equations of
finite equation which have the same order to give high order and more accurate schemes.
Numerical treatment for the adjacent boundary is useful and successful to handle difficulties
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which appear through using new methods for solving two-dimensional transport equation.
Moreover, it is applicable to obtain excellent results in the accuracy and the stability. The new
explicit FDS based on nine-point formula with weights (¢, ) have produced better results

compared to other results of other researchers. Further study is apply WFDS to solve Navier-
stokes equations.

Acknowledgment: The authors would like to thank prof. Majeed H.Jasim (Ph. D in English
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