
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267672804

A weighted finite difference method involving nine-point formula for two-

dimensional convection-diffusion equation

Article · January 2010

CITATION

1
READS

381

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Handling 2D unsolvable problem by new technique(UDDQM) View project

Abdul-Sattar Al-Saif

University of Basrah

38 PUBLICATIONS   105 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Abdul-Sattar Al-Saif on 27 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/267672804_A_weighted_finite_difference_method_involving_nine-point_formula_for_two-dimensional_convection-diffusion_equation?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/267672804_A_weighted_finite_difference_method_involving_nine-point_formula_for_two-dimensional_convection-diffusion_equation?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Handling-2D-unsolvable-problem-by-new-techniqueUDDQM?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Basrah?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Sattar-Al-Saif?enrichId=rgreq-068f4cfe2a1c6c5a121a36f711b41c64-XXX&enrichSource=Y292ZXJQYWdlOzI2NzY3MjgwNDtBUzoyODkxOTczNjY3NTk0MjVAMTQ0NTk2MTQzMzc2Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 
International Mathematical Forum, 5, 2010, no. 68, 3379 - 3398 

 
 
 

A Weighted Finite Difference Method Involving 
 

 Nine-Point Formula for Two-Dimensional  
 

Convection-Diffusion Equation 
 
 

A. S. J. Al-Saif and Muna O. Al-Humedi 
 

Department of Mathematics, College of Education 
University of Basrah, Iraq 

ajsaif9@hotmail.com
 
 

Abstract: New issues of finite difference method are proposed in this paper. Successfully, we 
have generalized and extended the works in [7] and [1], respectively.  By a new version" nine-
point finite difference formula" more accurate results are obtained than those in the literature. 
 
Mathematics Subject Classifications: 65M06, 65M12 
 
Keywords: Accuracy, Convection-diffusion equation, Weighted-nine-point finite difference 
formula. 
 
 
1. Introduction 

 
Accurate solution of the two-dimensional convection-diffusion equation is desirable. 

This requires the development of numerical schemes that can remain accurate even for large 
amount of computational time, several effective schemes have been proposed to achieve this 
goal [1,2,6,11,12]. In the field of finite difference methods (FDMs), there are many articles that 
were carried out to numerically solve the convection-diffusion equation in both one- and two-
dimensional forms successfully [1-12]. 

During the last two decades, some new techniques involving weighted discretization 
and modified equivalent partial differential equation have been introduced to develop FDMs. 
For example, the explicit, and implicit weighted finite difference method with three-point 
formula[9], and five-point formula[3,5] are used to solve the one- dimensional  convection-
diffusion equation, for solving the two-dimensional  convection-diffusion equation  three-point 
semi-implicit and implicit formula FDMs[6,11,12,8], and five-point explicit and semi-implicit 
formula FDM[1] have been used successfully . The motives to present this work are: there are 
perhaps only few (if there are any) papers that deal with nine-point weighted FDM for solving 
the two-dimensional convection-diffusion equation, in addition to extending our previous 
work[7],and to generalizing [1]. 

mailto:ajsaif9@hotmail.com
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In this paper, we extended and developed the weighted FDM. The development 

reported here is nine-point weighted FDM. When compared with [1,6,11,12,8],present 
numerical results are in agreement with the existing results, and show that our method is  
efficient for giving accurate solution for two-dimensional convection-diffusion equation and 
have reasonable stability. 
 
2. The mathematical formulas  

 
2.1 Governing equation 

The two-dimensional convection-diffusion equation for a transport scalar function 
is  ),,( tyxT
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where x , y are the distances,  is the time, are the constants speeds of  convection  in t 0, >vu
x and y  direction,   0, >yx αα  are the diffusivity in x and y  direction.  
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2.2 The modified equivalent partial differential equation 
               Consider the finite difference equation (FDE) 
 

                  0][
,

2

2

,
2

2

,,.
, =

∂
∂

−
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

=Δ

n

kj
y

n

kj
x

n

kj

n

kj

n

kj

n
kj yxy

v
x

u
t

L ταταττττ                              (4) 
 
which is consistent with partial differential equation (1),  where is a finite difference 
operator and  is the approximation values at a set of grid points 

, where ,  .The distance between the 

points on lines which parallel to x -axis , y -axis and t are   

respectively, where Τ  is an optimal time and  are positive integer numbers. The 
equivalent partial differential equation (EPDE) to equation (1), can be obtained by converting it  
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to finite difference equation and then expanding the resulting equation by Taylor's series 
around the grid point 
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 Any (FDE) which is consistent with convection-diffusion equation(1) after 
expanding each term of it in Taylor series about some fixed point in the solution domain, 
has a modified equivalent  partial differential equation(MPDE) of the form  
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where, the term under the summation signs form is the truncation error. 
       A (FDEs) for solving (1) is said to have accuracy of  thr  order if  for0, =−qpqC pq )1(0=  
is valid, for all ,where at least rp ,....,2= 01,1 ≠−++ qrrC 1,...,1,0 += rq . Using the weighted 
difference method is useful to develop the FDMs to obtain high accurate numerical solution [1-
10]. 
 
 
3. Accurate (FDEs) by weighted-differences         

 
Using weighted differencing in order to construct higher-order schemes weights          

are used to eliminate from the MEPDE as many as possible of the terms containing the 

derivatives ,qpp

p
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∂ τ    L,3,2,1)1(1 =−= ppq to develop FDMs to higher order of accuracy 
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For the stencil of Figure (1a), the first-order derivatives of ),,( tyxτ  can be 

approximated by using three-point formulas (3pt.) at   as follows  thnkj ),,(
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These approximations are called forward scheme (FS) and backward scheme (BS).  
For the stencil of figure (1b), the first -order and the second-order derivatives of ),,( tyxτ  can 

be approximated by using nine-point formulas (9pt.) at   as follows thnkj ),,(
 



3382                                                                                   A. S. J. Al-Saif and M. O. Al-Humedi 
 
 
 

j

1+k
k

)(b

3+k
2+k

1+k
k

1−k
2−k

3−k

3−j 2−j 1−j j 1+j 2+j 3+j

leveltimen )1( +

4−k

4+k

4−j 4+j

leveltimen)(
),,( nkj

1−j 1+j
1−k

)(a

 
                        Figure (1).  The stencil in  plane for : (a) three-point (b) nine-point.  ),( yx
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These approximations are called central scheme (CS). We can approximate all the derivatives 
in equation (4) with weighted or non-weighted discretization as the following formulas;  
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3.1 The forward time- central space scheme with nine-point formulas (FTCS 9pt.) 
 
      Using a first-order forward difference approximation equation for the time derivative and 
eighth-order central difference approximation for the first and second spatial derivatives to 
approximate equation (4), leads to a new formula as, 
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ere and in the next stability analysis, we setting

 
 
H  and SSS yx == . CCC yx ==
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      In this section, we use the first-order forward and backward approximation of the first 
time and spatial derivatives, while the second spatial derivatives are approximated by the 
eighth-order central difference. Thus, a new formula can be obtained as, 
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 of this FDE has the coefficients of the leading (first- order) error with coefficients The MEPDE
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We noted that the coefficients 2,01,10,2 ,, CCC  are not equal to  zero , therefore the upwind 
method introduced numerical diffusion in both the x- and y-directions. 
 
The application of Von Neumann stability analysis shows that the equation (9) has the 

G )(χfa having the same form in equation (8) with the coefficients: 
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The finite di
equation (6).

fference equation has MEPDE with coefficients, which are the same as those of 
 Therefore, equation (10) has the first-order truncation error with coefficients 
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    So, we can say that equation (10) is a generalization to the pervious schemes. We show now 
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et (FTCS 9pt.)equation (7).If we put 

 
 
 

  in equation (10) UDS 9pt. is obtained, g 1== γφ
equation (9). If C== γφ , we get weighted Difference scheme of nine points. 
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Setting SSS yx == , CCC yx == and carrying out a numerical stability analysis yields the 
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stability of second order weighted difference scheme which is identical to the stability of 
WFDS 9pt. equation (13).  
  
                                                                                                                                                            
4. Adjacent boundary domain 
 
      When applying the difference schemes which depend on formulas of the nine-point to solve 
the two-dimensional transport equation (1), we find that there are difficulties in computing the 
values of the numerical approximation for the transport variable T(x, y, t) at the adjacent points 
of boundaries Figure (2). We cannot use the formulas o hemes directly to compute 
these values, so the method of computing the approximate values of the transport variable in 
equation (1) has been done on two stages, the first stage is done by using the formulas of 
schemes explained previously (for the bounded area by ENWS ,,, ), whereas the second stage 
is by computing the approximate values for the transport variable at the adjacent points of the 
boundaries in ,,,,( NSWSEN ),,, It is suggested that there m
scheme resulting as an idea that the value of the function at any point is equal to the average of 
th yx Δ=Δ  .This scheme will be illustrated in 

e following algorithms. th
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  A similar procedure can be used for other regions SEandNESN ,,, . These algorithms were 
applied to compute the adjacent points of the boundaries in the ni

    A. S. J. Al-Sa

ne-point (weighted and non- 
eighted) finite difference schemes .These schemes can be regarded as general ones that can be 

pplied to treat the same problems that occur when the five-point  finite difference schemes are 
to treat other schemes. 

 

 
e method, which depend on the formulas of the nine-

oint (with weighted and without weighted) to solve unsteady two-dimensional convection –
em, in order to demonstrate the validity and effectiveness of this method. 
sented for two problems. 

w
a
used . This procedure may be a useful tool 

 
5. Discussion of numerical results 

       In this section, we test our differenc
p
diffusion probl

esults are preR
 
Problem 1. 
 
        The first test for our pr roblem in the unit square [ ]opose method is the diffusion p [ ]1,01,0 × , 
which is obtained by setting 1== yx αα and 0== vu in the equation (1). The exact solution of 

this problem is given by; )cos()sin(),,(
22 yxetyxu t πππ−= . This problem is given in[12].The 

initial and boundar itions(2-3) are directly taken from this solution. Computations were 
carried out at different times over the problem domain [0,1]. The results are documented in 
Table 1 and 2. 2L norm error of our method is documented at 125.0

y cond

=t  in table 1 for various 
mesh size, and at 25.0=t in table 2 and figure 3 for various time step size. We conclude that 
the accuracy of present method is increased with increasing number of gird points in space and 
levels in time respectively. The present simulation exhibited more accurate results comparison 
to the rival Tain and Ge method [12]. Figure 4 show that the FD9pt. method has a good 
solution agreement with the exact solution. All comparison shows that the current method 
offers better results than the other methods. 
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             (a) Exact solution with grids      (b) Numerical solution with  grids  
ith um rical solution with  grids 

 
Ta r a

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure(4)  Comparison between exact solution and approximation solution at t=0.125, 
                contours plots of; 
  1111× 1111×
               (c) Exact solution w grids     (d) N e4141× 4141×

ble-1:- 2L norm erro t 125.0=t  with 2)( xt Δ=Δ  
 Grid                          Tain&Ge [12]                                           FD9pt. method 
                                  2L  norm error                                          2L  norm error 
11x11                          8.55134E-05                                              3.066732E-08 
21x21                          5.19160E-06                                              1.142410E-09                      

41                          3.17475E-07                                              2.777872E-10 41x
 
         
  Table-2:- 2L  norm error at 1.0=Δ=Δ yx , 25.0=t  

 tΔ                              Tain&Ge [12]                                          FD9pt. method 
                                   2L  norm error                                       2L  norm error 
 0.0025                        2.64692E-05                                             4.017735E-12 
0.00625                       5.40813E-06                                             1.032878E-12  

                 7.18040E-07                                             2.515195E-13                       0.003125    
 
Problem 2. 

c solutio n [1,12,8] of the problem is applied to this numerical test given by      An analyti n i
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 small and in the MWFDS 9pt.scheme there is no rical diffusio

 
 
The initial and boundary conditions (2-3) are directly taken from this solution. 
      It is noticed that when comparing the altitude of Gauss pulse, it has the largest numerical  
approximation to T(x, y, t) with Gauss pulse height Figures (5 a-f), explained also by contour 
drawings of the Figures (6 a-f). The WFD 9pt. and MWFDS 9pt. produces an approximate 
value identical to the analytic value and better than the schemes FTCS 9pt. and Upwind 9pt. 
The main reason for this can be attributed to the fact that the effect of the numerical diffusion in 
WFDS 9pt. scheme is nume n. 
Table (3) explains the average error and the maximum error for the nine-point finite difference 
schemes at time   25.1=t , 8.0== vu , 2.0== yx CC , 1.0== yx SS and 00625.0=Δt  . 
Figures (5,6 ), and Table (3) show that the weighted modified difference schemes for the nine-
point (MWFDS 9pt.) are better than other schemes because of their second-order  accuracy, and 

igure(5) The surface plots of (a) exact solution ,(b) (MWFD 9pt.), (c)(WFD 9pt. 

their having absolute error less than the other schemes since the value of the numerical solution 
is approximate to that of the analytic one Figures (5 a,b) 

F C== γφ ), (d)  
                 (FTCS 9pt.), (e) (Upwind 9pt.) and  (f) (WFD  9pt.   5.0== γφ )  at in plane  [1,2] 25.1=t
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igure(6) The contours plots of (a) exact solution ,(b) (MWFD 9pt.), (c)(WFD 9pt. 
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C== γφF ),(d)  
                  (FTCS 9pt.), (e) (Upwind 9pt.) and  (f) (WFD  9pt. 5.0== γφ  )  at in plane  [1,2] 

have first-

25.1=t
 
 
and this is clear from contour drawings as Figures (6 a and b), Furthermore , when compared to 
the other schemes found in this table with  MWFDS 9pt., it is noticed that all these schemes 

order error accuracy . Generally, it is clear that one kind of nine-point schemes, is 
identical in identifying that the absolute error value and the  WFDS are the most accurate when  

C== γφ  and they have less error than the other schemes in terms of average absolute error 
a ximum absolute error.Table (4) explains the e y of these schem  for solving the 
two-dimensional transport equation (1) when taking different values for Reynolds number 
(

nd ma fficienc es

S
CR = ) following its difference in dimension steps yx ΔΔ ,   and time step tΔ ,  noticing that 

the accuracy of these  schemes on the behavior of the numerical solution becomes better 
gradually through values changeability  of these parameters. 
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ge absolu

 
 
 
Figures (7 a, b) show the drawing of avera te errors curves against the time for every 
new FDS suggested in this study. From Figure (7 a), we notice that the error average of WFDS 
9pt.  for all the time-level with the weight C== γφ  is better than the other schemes which are 

he nine-point formula. Figure (7 b) explains the drawing of average absolute error for 
the MWFDS 9pt.  From this Figure, we can at the MWFDS 9pt. with the weight has 

C==

based on t
h notice t

γφ  less error average for all the time-levels than the other schemes. Generally, it is 
bserved that FDS based on the weights C== γφ  o has less errors average than the other 
chemes. 

 
  T

s
 
 

able-3:- Error measurements at 25.1=t with 00625.0=Δt  8.0== vu , and 2.0== yx CC  
The Method     Average |error|       Maximum |error|       Type of formula      weight 
values  
Upwind  9pt.        9.787177E-05          4.420168E-03               orderfirst −                 ----- 
FTCS    9pt.         5.826575E-05          1.418220E-03               orderfirst −                 ----- 
WFDS    9pt        4.925594E-05          1.067123E-03               orderfirst −            φ =γ =0.5 
                            2.794456E-05          1.607237E-04               orderfirst −            φ =γ =C 
MWFDS 9pt.      9.054745E-06          2.557348E-05             orderSecond −          φ =γ =C 

 
 

  T

 

able-4:- Error measurements at 25.1=t with different yxandtcR Δ=ΔΔΔ=  s
=,

The Method         Average |error|      Maximum |error|              tΔ                   Δ                 R 
Upwind  9pt.          9.787177E-05          4.420168E-03                 0.00625           0.025             2 
                               2.828835E-04          8.997762E-03                 0.0125             0.05               4  
                               7.431901E-04          1.225278E-02                 0.025               0.1                 8  

 

                             3.586615E-03          1.669250E-01                 0.025               0.1                 8 
 

                            5.630792E-04          3.575699E-03                  0.025               0.1                 8    
 

                              2.819292E-04          1.335344E-03                  0.025               0.1                 8  
                              1.392667E-03          1.966503E-02                  0.0375             0.15               12 

                               1.661878E-03          2.684112E-02                 0.0375             0.15               12
 
 FTCS  9pt.            5.826575E-05          1.418220E-03                 0.00625           0.025             2 
                               3.283737E-04          1.442082E-02                 0.0125             0.05               4 
  
                               3.586615E-03          1.669250E-01                 0.0375             0.15               12
 
WFDS 9pt.            2.794456E-05          1.607237E-04                 0.00625           0.025             2 
                              1.128239E-04          5.783730E-04                  0.0125             0.05               4 
  
                              1.378246E-03          1.946828E-02                  0.0375             0.15               12
 
 MWFDS 9pt.       9.054745E-06          2.557348E-05                  0.00625           0.025             2 
                              3.419029E-05          1.195652E-04                  0.0125             0.05               4 
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umber of w ghts given tables (5) and
Table (5) shows
points formula 

 
 
6. Comparisons with the results of other researchers 
 
        Confidence in the present results is gained by the comparison of the results obtained using 
the present numerical methods with those previously published in the literature. These 
comparisons are given in the study of error measurements (average absolute error and 
maximum absolute error), type of formula and n ei in  (6). 

 a comparison of the explicit finite difference schemes of three , five and nine 
kind at time 25.1=t , when  0125.0=Δt , 8.0== vu , 4.0== CC  and yx

01.0== yx αα . This table reveals that the results of MWFD 9pt. and WFDS 9pt.  are better in 
accuracy than the other resea es . 
    Table (6) illustrates a comparison of explicit FDS and implicit for a formula including three, 
five and nine points when 00625.0=Δt  , 2.0

rcher's schem

== yCxC , noticing that the  MWFD 9pt. is 
better than the others in accuracy. The new suggested schemes in this study are better in the 

easurement errors than that of the traditional and suggested schemes by other researchers. 
ased on these results, our conclusions are made in the next section. 

e (7)Comparison between average absolute error for (a) WFD 9pt. (b) MWFD 9pt. 
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         T

 
 

able-5:- Errors at 25.1=t with 0125.0=Δt  , 8.0== vu , and 4.0== y  x CC
The Method    Average |error|      hts  Maximum |error|    No. of weig
 FTCS 3pt.           3.94E-03                 1.12E-01                         ----- 

 

 WFDS 9pt.        3.17E-04                  5.47E-03                            2 
 MWFDS 9pt.    7.31E-05                  3.53E-04                            2 

 FTCS 5pt. [1]     2.22E-03                 8.00E-02                         -----
 WDF 5pt. [1]     3.88E-04                  3.64E-03                           4 
 Noye  [6]           3.33E-04                  6.03E-03                            2 

 
 
 
         Table-6:- Errors at 25.1=t with 00625.0=Δt  8.0== vu , and = 2.0= yx CC  

The Method *                Average |error|    Maximum |error|    No. of weights  
  Upwind 3pt.                      2.65E-03              6.63E-02                     ----- 
  Upwind 5pt.[1]                 2.62E-03               6.69E-02                     ----- 
  ADI [11]                           9.22E-06               5.93E-05                     ----- 
  EC-ADI [12]                    9.66E-06               6.19E-05                     ----- 

- 

  WFDS 9pt.                       2.79E-05               1.61E-04                       2 
        2.56E-05                        2 

Dehghan&Mohebbi[8]       9.48E-06               2.47E-04                     ----
  Noye [6]                           1.43E-05               4.84E-04                       8 

  MWFDS 9pt.                    9.05E-06      
 
* The m thods in [6,11,12,8] are implicit type. 
 

 

 
: 

  

e

 
 

                                                    7. Conclusions 

From the numerical results, we can conclude the following

           The WFDS have been used successfully with γφ and  to introduce explicit new 
schemes with high accuracy and the results were better at error measurements. It is preferable 
to choose ideal values for the   weights to give us numerical results with high accuracy to solve 
the two-dimensional transition equation compared with the  other schemes explained in 
Figures(7) and Tables (5)and (6).The numerical accuracy depends on the number of the 
selected points. The tables and Figures show that   increasing the number of the grid points 
gives more accurate results. We notice that’s the MPDE method has been successfully used 
with weighted to develop several new explicit finite difference method for  solving transport 
equation, and the use of the modified equivalent equation permits a proper determination of 
the accuracy order of  the finite difference method. We have developed an improved finite 
difference schemes with weighted by the MEPDE, since it is allowed to apply two equations of 

nite equation which have the same order to give high order and more accurate schemes. fi
Numerical treatment for the adjacent boundary is useful and successful to handle difficulties  
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d on nine-point formula with weights  

 
 
 

 which appear through using new methods for solving two-dimensional transport equation. 
Moreover, it is applicable to obtain excellent results in the accuracy and the stability. The new  
explicit FDS base ),( γφ  have produced better results 
compared to other results of other researchers. Further study is apply WFDS to solve Navier-
tokes equations. 
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