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Abstract

The aim of this paper is to employ the fractional shifted Legendre polynomials
(FSLPs) in the matrix form to approximate the fractional derivatives and find the
numerical solutions of the one-dimensional space-fractional bioheat equation (S-
FBHE). The Caputo formula was utilized to approximate the fractional derivative.
The proposed methodology applied for two examples showed its usefulness and
efficiency. The numerical results showed that the utilized technique is very
efficacious with high accuracy and good convergence.

Keywords: Collocation method, Space-Fractional bioheat equation, Fractional
shifted Legendre polynomials, Numerical accuracy.
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1. Introduction

Many problems in various fields can be successfully modeled by the ordinary, partial or fractional
differential equations. Fields of application include, for example, biomedical engineering, physics,
viscoelasticity, biology, and fluid mechanics ,etc. In many cases, finding the exact solutions for these
equations is difficult or impossible. Therefore, researchers used approximate or numerical solution
methods [1-5].
The fractional calculus is utilized to improve the modeling accuracy of many phenomena in natural
sciences. The most important merit of utilizing fractional differential equations is their non-local
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property. This means that the next case of a system depends not only upon its current case but also
upon all of the non-local properties. These are more factual and represent an important cause of
making the fractional calculus more popular. In medicine, the fractional order model may be the
proper one for modeling of dynamic systems [6].

Heat distribution in biological tissues is typically expressed as a bioheat equation. It involves
thermic conduction, perfusion of blood, convection and metabolic temperature generation in human
tissues [7]. The pioneering work of Pennes in 1948 was the cornerstone of the mathematical modeling
of temperature distribution in tissues, with the bioheat equation still being extensively used [8]. The
temperature distribution in the skin tissue is very important for medical application such as skin
cancer, skin burns ,etc [9]. The fractional bioheat model has attracted the focus of the researchers and
it contributes to a significant rate of the ongoing research [10-18].

In this work, we introduce a numerical approach for solving the one-dimensional S-FBHE based on
FSLPs.
2. Governing Equation

The space-fractional version of the one-dimensional unsteady state of bioheat equation can be

obtained by replacing the space derivative with a derivative of arbitrary positive real order € (1,2] ,

which takes the form of:

aT;JZ,t) - k* ? ;(;'t) + Wbe (T(x; t) - Ta) = Qext + Qmet' t> 0' 0<x< R' (1)

where p,c, k., T, t,x, T, , Wy, = ppWp, Qexr and Qmer Symbolize density, specific heat, thermal
conductivity, temperature, time, distance, artillery temperature ,blood perfusion rate, metabolic heat
generation in skin tissue, and external heat exporter in skin tissue, respectively. The units and values
of the symbols expressed in this equation are demonstrated in table 10.

Table 1-The units and values of the symbols expressed in the space-fractional bioheat equation.

Symbol T, p and p, cand ¢y k. wy, Quet
Unit °C kg/m’ JIkg°C W/m°C m’/s/ m® W/m?
value 37 1000 4000 0.5 0.0005 420

The initial and boundary conditions are
T(x,0) =T, (2)
. oT B 3)

“0xl—g qo:

k or =0 (4)

"0xly—p

where, Qo is the heat flux on the skin surface.

3. Preliminaries and Notations

In this section, we recall the essential principles of the fractional calculus theory that will be used in
this article.
Definition 1 The Riemann-Liouville fractional integral operator of order @ > 0 is defined as follows
[19, 20]:
I°T (x) ! fx( )L T (s)d > 0

x @ 0x s s)ds, a , )
I°T (x) = T (%)

Definition 2 The Riemann-Liouville definition of fractional differential operator is given as follows
[21]:

fx | (S) d >0 1< <
a _ rn—a) dt"J, (x —s)entt S, a n <« n,
DT (x) = 0

dx™
Definition 3 The Caputo definition of fractional differential operator is defined as below [22]:

(6)

,a = n.
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1 x  TM (s)
1) —-5 ds, n—1<a<mn,
DTE) =y ey @
,a = n.

dxn
The relation between the Riemann-Liouville operator and Caputo operator is given by the
following expressions [23]:
D¥I* T(x) =T (x),

n-1
8
1°D% T (x) = T (x) —ZT(") (0+) ®
Fora = 0, v = —1, and the constant C, Caputo fractional derivative has some basic properties
which are needed here, as follows [24]:
i) D*C =0,
0 forv e Nyand v < [a]
i)p*xv={ I'wv+1)
mx , forve Nyandv = [a] 9)
n n
iii) D¢ (Z Ci Ti(x)> = 2 c;D*T;(x), where {¢;}]~, are constants
i=0 i=0

Definition 4 (generalized Taylor’s formula). Suppose that D'*T(x) € C[0,1]for i = 0(1)(n — 1),
then one has
ia na

X i + X na

where 0 < & < x,Vx € [0,R]. Also, one has
S xi@ .
o +

T (x) ;r(m DT
and M, = |[D™T (§)].
In case @ = 1, the generalized Taylor’s formula (10) is the classical Taylors formula [25].
4. Fractional Shifted Legendre Polynomials

Define the FSLPs by introducing the change of variable x = x* and n — 1 < @ < n on shifted
Legendre polynomials. The FSLPs L, (x%) is symbolized by FIf(x). The FSLPs are a particular
solution of normalized eigenfunctions of the singular Sturm-Liouville problem [21].
((x = xM™OFIF(X) + a?i(i + DxIFIF(x) =0, x € [0,1]. (13)
Then FI{(x) can be obtained as follows:

na

x
< Me F'na + 1) (12)

2i + 1)(2x*—1) i _
FIf,(x) = 1 FIf(x) — I FIf ,(x),i = 1,2,... (14)
We can derive the analytic form of FI* (x) of degree ia as follows:
Flf(x) = Z bg; x5%, (15)

where by; = % and FIL*(0) = (—1)¢ , FI%(1) = 1.
Theorem 1 If FSLPs are orthogonal with the weight function w®(x) = x%~1 on the interval [0,1],
then the orthogonal condition is

1

2n+ Da Onm (16)

j FIE () FIg,(x) of (1) dx =
0
Proof. With fol Ly(x) Ly () w0, (x)dx = D

weight function w;(x) = 1, let x = x%, then we have
1 1

Snm » Where 6, is the Kronecker function and the

JLn(x) Ly (%) w;(x)dx = an(x“) Ly (x%) ax® 1dx

0 0
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1

~ G O
1 1
an(x“) Ly (x%) ax® ldx = fFl%(x) FI%(x) ax* ldx
0 0
= ! o) 17
T @2n+1n M 17)

1

a a a-1 —
fFln (x) FI%,(x) x*tdx = —(Zn T Da Onm-

0
Then the theorem is proved.

A temperature function T'(x) square integrable in region 0 < x < 1 can be expressed in terms of
FSLPs as

T(x) = Z ¢ FI%(x) (18)

=0
where the coefficients c; are obtained by
1
ci=ai+1) f FIF ()T (x) of (x)dx, i=012,.. (19)
0
Consider a truncated series when (n + 1)-term FSLPs in (18), then we get
n

TG ~ Ta@) = ) 6 FIf () = €O (20)

i=0
where the fractional shifted Legendre coefficient vectors C and @(x) are given by
C = lco,cq, s Cnl, B(x) = [FIG (), FIF (x), ..., FIy ()]

Theorem 2. Suppose that D¥@T(x)€ C[0,1]] for i=0(1n, 2n+1)a>1 and
P% = span{FI§(x), FI{(x), ..., FI§(x)}. If T,(x) = C'@(x) is the best approximation to T(x) from
P$, then the error bound is presented as follows:
IT(x) — T ()l
. M 1
“T'na+1) |Cn+ Da’
where M, > |D™*T(x)|, x € [0,1].
Proof. Consider the generalized Taylor’s formula

(21)

na

n .
xla ) X
— 1404 + na
T(x)_zor(ia+1)D O+ g s 2" T 22)
1=
where 0 < & < x, Vx € [0, 1]. Also, one has
na

n tia ) N
T(x)—;mD f(0%) “ e + D) (23)

Since T,(x)=C'®(x) is the best approximation to T(x) from P% and
?zo( X )Di“f(0+)eP,‘;‘,hence

r'ia +1)
n ia
T(x) - zx—Di“T(O+)
/ OF(ia' + 1)
i=

Mg
ST
(F(na + 1)) 5
Mg
= 2
(F(na + 1)) 2n+ Da

<M

2

IT () = Ta(II% <

w

fxzn"‘ x% ldx, (24)
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Now, by taking the square roots both sides, the theorem is proved.
A temperature functlon T(x,t) € L?([0,1] x [0,1]) can be expanded as in the following equation:

T(x,t) = cij FIF (x)Li(t) (25)
R
where
11
cj=QRi+1DE2j+ 1)af f T(x,t) FIf (x)L;(t)w{ (x)dxdt, i,j=0,1,.. (26)

Theorem3. If the series Z ZoXj=0Cij FI¥(x)L;(t) converges uniformly to T(x,t) on the square
[0,1] x [0,1], then we obtain the equation (26).

Proof. By multiplying w{*(x)FL;(x)L,,(t) on both sides of (25), where i and j are fixed and
integrating term-wise with regard to x and t on [0, 1] [ 1], then
11

f f T, £) FI% (6) Ly (D)0 (x)dxdt—ZZcU f f FIE (L (OF 1900 L (D 0f () dxd
00 i=0 7=
= Y0 X T=0Cij fo a)f‘(x) FIF(x)F1%(x)dx fo Li(®)Ly, (t) dt

= ¢ J; ff () [FIE (0)Pdx f, [L;(0)]” dt 27)
1 1

Y i+)a (2j+1)

Theorem4. If the function T(x,t) is a continuous function on [0,1] x [0,1] and the series FL =
i=0 X j=o Cij FII (x)L;(t) converges uniformly to T'(x, t), then FL is the FSLPs expansion of T(x;, t).

Proof. Using the contradiction, let

T(x,t) = z Z Cij Flf‘(x)Lj(t).]

i:O j0=00 ? (28)
T(x,t) = Zzg FLCIL O,

Then there is at least one coefficient such that c,,,, # gnm, however
11

Cam = 2n+1)(2m + 1)af f T(x,t) FIF(x)L,,(O)w(x)dxdt = gnm

00
Theorem 5. If the two continuous functions defined on [0,1] x [0,1] have the identical FSLPs
expansions, then these two function are identical.

Proof. Suppose that T'(x, t) and f(x, t) can be expended by FSLPs as follows:

Te0 = )Y cy FIEL (D, 29)
i=0 =0

F0 =Y o FIR@L®. (30)

By subtracltTr?gj Zguation (30) from (29), we obtain

T(x,t) — f(x, ) = Xito Xieo(cij — cij) FIF()L;(t) =0 (31)

Theorem 6. If the sum of the absolute values of the FSLPs coefficients of a continuous function
T (x,t) forms a convergent series, then the FSLPs expansion is absolutely uniformly convergent and
converges to the function T (x, t).

Proof. Consider that
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0

iZ% FIF ()L ()| <
i=0j

> D lel LGl @)

j=0

'MB':',M8
s

< || (32)
i=0 j=0
Suppose a truncated series in (25), which satisfies
n m
T(x,t) ~ Z Z cij FIE(0)L; (1)
i=0 j=0
=0'(x)CO(t), (33)

where
D) = [FI§ (0, FIF (), oo, FIFE]5 0() = [Lo(0), Ly (8), o) L (D] and € = {e}7 7
5. Two-Dimensional Fractional Shifted Legendre Operational Matrix of Fractional

Differentiation
The derivative of the @(x) can be approximated as follows

0™ (x) ~ D*@(x), (€2
where DV is called the FSLPs in the matrix of space derivative.

Theorem 7. Suppose that the Caputo fractional derivative DV is (m + 1) x (m + 1) matrix of order
v>0a> g when a ¢ N, which have the elements defined by

{dij}:,r;-':lo = a(2j

I'(sa+1)
+1)Zzb” bS‘F(sa—v+1)((s+r+1)a—v) (35

s=0r=
where

b = 0, sa €Ny, sa<v,

st {b;i =by;  sa & Ny, sa>[v]orsa€Nysa=>w.

Proof. From the property (ii) of equation (9) and the orthogonally of FSLPs, we get
DVFI¥(x)

l
. T(sa+1)
=Y by xSV 37

Z Sll"(sa—v+1)x ’ (37

(36)

s=0

let

xSV — Z d Fl“(x) (38)

By multlplymg both sides of the equation (38) by wf* (x)FL*(x), it yields

1
d; —(21+1)a2br1 s+r+Da—-v’

By substituting the equatlons (38) and (39) into equation (37), we have

s I'(sa+1) “
DPFLi(x) = (2 + 1)“2 z Z brjbs; Isa—v+1D((s+7r+Da—7v) FIf (), (40)

(39)

j=0s=0r=
hence,

I'(sa+1) L
dij = a2+ D;)Z)b” b Isa—v+1D((s+7r+Da—7v) Lj=0ym 41

6. Method for the Solution
Now, we will structure the approximate solution of equation (1) under given conditions, as in the
following series form
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T 0 =) ) by FIEEOL(O) (42)
i=0 j=0

which is equivalent to the matrix form

T(x,t) = @ (x)TO(t) (43)

where

T= {tU}::o Ot = [Lo(8), L1 (®), ..., Ly (D], @(x) = [FIG (x), FI (x), ..., FIy ()]’

The approximate of the first temporal and spatial derivatives can be written as

dT (x,t)

ot =0 (X) TDtQ)(t) (44)
0T (x,t)

d0x
= 0'(x)(Dy) 'TO(t) (45)
and the fractional spatial derivative as
0T (x,t) ) )
— o =0’ ()Dy) TA®) (46)

daxv
By applying the solution method for S-FBHE in (1), we have

pc @' (x)TD:D(t) — k@ (x)(DE) TO(t) + Wycp, @ (x)TO(t)
=0 '(x)QextQ)(t) +0 ’(X)QmetQ)(t) +0 '(X)WbeTaQ)(t), (47)
where
g%, t) = Qext + Qmer + WyepTy
P'(x)G B(t) = D' (x)Q10(t) + B’ (x)Q20(t) + & '(x)Q3D(t)
G=0,+0Q;+0Q3 o
P'(x)GO()=0 '(x)Ql(D(t) + @ '(x)Q.8(t) + @ '(x)Q3P(t)andG = {gij}i’;-zo'

S =ai+1)2j+1) f f 906, ©) FIEQOL; (D wf (x)dxdt (48)

Multiplying by a)f‘(x)Fl“(x)L (t) generates mn +n+m+ 1 algebraic equations for i =
0(1)(n), j = 0(1)m. Then, by integrating from 0 to 1 and using the orthogonal property, we have

T(pc Dy — wpppcp]) — k(DY) T = G, (49)
with the initial condition from equation (2) in the matrix form is as follows:
Te(0) =~ F (50)
where
F=[fo f1 ""frri],
fi=a2j+1) f T(x,0) FIi' (x)w[ (x)dx (51)
0
and the boundary conditions from equations (3) and (4), respectively, in the matrix form give
—k,0°(0)D, T~ K’ (52)
_k*w ’(R)Dx T
~H’ (53)
where

K = [ko kl A kn], and H = [ho hl o hn]’
1

ki = Qi+ 1)fo(0, t) L;(t)w; (t)dt, (54)
hi=Q2i+1) f T,(R,t) L;i(t)w;(t)dt (55)

0
which generates the nm +n +m + 1 linear algebraic equations by equation (49) together with
equations (50),(52) and (53). These unknown coefficients T can be found by solving Sylvester system.
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7. Error Analysis
Consider e(x,t) = T(x,t) — T,m(x, t) as the error function where T,,,,(x,t) and T(x,t) are the
approximate solution and the theoretical solution of (1), respectively.
Therefore, T, (x, t) satisfies the following problem
0T, (x,t VT, (x,t

c "’gg )_ . ’g;g ) + Wy T (%, £) + R (x,8) = g(x, £), (56)

where R, (x,t) is the residual function,
v

Ram(e,) = pe 2ome 8D ST 4y e ) — g ). 57)
We can find an approximation é,,,(x, t) to the error function e, (x, t) using the same procedure as
the previous one. Thus, the error function satisfies the solution of the equation

depm(x,t Ve m(x,t

c n"éi ) — k., 7;;1(7 ) + Wycpenm(x, t) = Rym(x, t). (58)

We should note that in order to construct the approximate é,,,, (x, t) to the error function e, (x, t),
only equation (58) needs to be recalculated by using the same procedure used for solution (1).

8. Numerical Experiments

In order to show the ability of the collocation method to achieve the high accuracy, we utilize now
the proposed method presented in this article for two examples, in which the collocation method is
implemented for solving the S-FBHE based on FSLPs. In these examples, the solution obtained from
this method is compared with the exact solution using the computer device Asus Core i5 (2012) and
MATLAB R2018a software.

The S-FBHE is transformed into the linear algebraic equations (49),(50),(52) and
(53) respectively. In these examples, take v = a, R = 1 and use evenly-spaced grid points. Tables 2-
7 shows the absolute errors obtained from solving the S-FBHE using FSLPs, for different fractional
order « =1.51,1.7,19 at t =1,1.2,1.3 and x € [0,R] for different values of order n=m =
6(2)12.

Examplel

Consider the S-FBHE (1) with choosing Q,.:, SO the exact solution is:

T(x,t) = e *t1*t% + 37 (59)
with the initial condition

T(x,0) =37, x €[0,R] (60)
and the boundary conditions

dT(0,t
( )=—t1+"‘ >0 (61)

=—e Rtlt® >0 (62)
Table 2- Absolute Errors of Example 1 with R = 1and ¢ = 1.51.

Absolute error Absolute error Absolute error Absolute error
(x,0) nxXm=6x6 nxXxm=98x8 nxm=10x10 nxm=12x12
’ CPU= CPU= CPU= CPU=
160.329415s 283.492145s 449,.555917s 763.665118s
(0,0) 9.2897e-05 2.1589e-05 7.3668e-06 3.1496e-06
(0.1,0.1) 1.3553e-04 6.6216e-05 2.6084e-05 9.0596e-06
(0.2,0.2) 3.5470e-04 3.9097e-05 2.1405e-05 1.2136e-05
(0.3,0.3) 1.7135e-04 1.0657e-04 3.0567e-06 3.0460e-05
(0.4,0.4) 3.5248e-04 6.8506e-06 7.2961e-05 3.9723e-05
(0.5,0.5) 5.7297e-04 2.4522e-04 9.5092e-05 2.6318e-05
(0.6,0.6) 1.3067e-04 1.3149e-05 9.3588e-06 1.6524e-05
(0.7,0.7) 1.1601e-03 4.1668e-04 1.7085e-04 6.6750e-05
(0.8,0.8) 4.5665e-04 3.3147e-04 2.7213e-04 9.9522e-05
(0.9,0.9) 2.1217e-03 6.0418e-05 3.7764e-04 1.3092e-05
(1,1 6.0224e-03 2.6419e-03 1.4417e-03 8.9283e-04
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Figure 1- Comparison between exact and numerical solutions for Example lat« = 1.51,,R = 1,n =

6(2)12.

— Exact

—Nuatn=6

—Nuatn=38
Nuatn=10
Nuatn=12

376 ‘ ‘
0 0.1 02

03 04 0.5

Figure2- Comparison between exact and numerical solutions for Example lata = 1.51,R = 1,n =

6(2)12
Table 3- Absolute Errors of Example 1 with R =1and a = 1.7.
(x,t) Absolute error Absolute error Absolute error Absolute error
nxXxXm=6x6 nxXxm=8x8 nxXxm=10%x10 | nxXxm=12x 12
CPU= CPU= CPU= CPU=
132.424413s 236.526092s 423.834810s 751.131544s
(0,0) 1.6367e-04 4.0087e-05 1.4241e-05 6.2724e-06
(0.1,0.1) 7.8288e-06 3.1301e-05 2.0602e-05 1.2090e-05
(0.2,0.2) 3.0937e-04 8.2960e-05 3.4689¢e-06 2.1882e-05
(0.3,0.3) 3.3061e-04 9.8121e-05 5.4720e-05 2.6801e-05
(0.4,0.4) 2.2588e-04 1.5303e-04 1.0603e-04 2.0960e-06
(0.5,0.5) 8.2192e-04 2.4738e-04 2.4530e-05 5.2812e-05
(0.6,0.6) 3.2032e-04 2.2636e-04 1.6229e-04 1.1473e-04
(0.7,0.7) 1.2352e-03 5.4656e-04 2.8736e-04 1.6718e-04
(0.8,0.8) 1.0918e-03 1.3128e-04 3.1273e-04 2.1998e-04
(0.9,0.9) 1.5044e-03 4.1016e-04 4.7191e-04 1.6846e-04
1,2) 7.6506e-03 3.6415e-03 2.0928e-03 1.3461e-03
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Nuatn=10{
Nuatn=12

NI ‘ t=1a=17

L

| | | | | | | |
0 01 02 03 04 03 06 07 08 09
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Figure 3- Comparison between exact and numerical solutions for Example 1 at « = 1.7,R = 1,n =
6(2)12.
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— Exact

—Nuatn=6 [

—Nuatn=3§
Nuatn=10
Nuatn=12
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Figure 4- Comparison between exact and numerical solutions for Example 1 at « = 1.7,R = 1,n =

6(2)12.

Table 4- Absolute Errors of Example 1 with R = 1 and @ = 1.9.

Absolute error
nxXm=6xX6

Absolute error
nxm=8x8

Absolute error
nxXxm=10x10

Absolute error
nxm=12 x 12

x.0) CPU= CPU= CPU= CPU=
127.307871s | 242.393609s | 439.252672s | 723.600739s

(0,0) 1.2717e-04 3.2815-05 1.2145¢-05 5.5269¢-06
(0.1,0.1) 7.33746-05 5.2176€-06 6.4377€-06 7.8466€-06
(0.2,0.2) 1.5266e-04 8.9358¢-05 2.4491e-05 1.0377¢-05
(0.3,0.3) 3.77486-04 2.24176-05 8.5757e-05 5.1349¢-06
(0.4,0.4) 2.8351e-05 2.5296¢-04 5.4700e-05 6.7004e-05
(0.5,0.5) 8.11176-04 9.9161e-05 1.1810e-04 1.1922¢-04
(0.6,0.6) 7.9471e-04 4.6563¢-04 2.71976-04 1.4492¢-04
(0.7,0.7) 9.76926-04 4.6138e-04 2 5954¢-04 1.6384¢-04
(0.8,0.8) 1.7323¢-03 2.46986-04 1.7967e-04 2.4811e-04
(0.9,0.9) 2.58226-03 8.5326e-04 4.2100e-04 3.5956e-04

(L) 9.1330e-03 4.60756-03 2.75576-03 1.8270e-03
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Figure 5- Comparison between exact and numerical solutions for Example 1 at « = 1.9,R = 1,n
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Figure 6- Comparison between exact and numerical solutions for Example 1 at « = 1.9,R = 1,n

6(2)12.

Example 2

X

Consider the S-FBHE (1) with choosing Q.,, S0 the exact solution is [8]:

3 3
T(x,t) = t2 x? (E —x) + 37
with the initial condition

T(x,0) =37, x €[0,R]
and boundary conditions

aT(0,t
0T (R,t) 3
—k*T=3t2R(1—R) ,t>0

(63)
(64)

(65)

(66)

Table 5- Absolut Errors Obtained for Example 2 with R = 1 and @ = 1.5.

Absolute error Absolute error Absolute error Absolute error
nxXm=6x6 nxXxm=8x8 nxXxm=12x12
(x,t) _ _ nxm=10x10 -
CPU= CPU= CPU=652.098277s CPU=
159.439663s 332.868450s ) 4683.959786s
(0,0) 4.7535e-04 2.0206e-04 1.0329e-04 5.9661e-05
(0.1,0.1) 3.8248e-04 2.8583e-04 1.7071e-04 9.0607e-05
(0.2,0.2) 1.1027e-03 3.3929¢e-04 7.8038e-05 3.7306e-05
(0.3,0.3) 9.1218e-04 9.5409e-05 1.1130e-04 1.0378e-04
(0.4,0.4) 2.3700e-04 1.8279e-04 1.7801e-04 2.9282e-05
(0.5,0.5) 7.9141e-05 3.5798e-04 2.4337e-05 6.9434e-05

885



Al-Saadawi and Al-Humedi Iraqi Journal of Science, 2020, Vol. 61, No. 4, pp: 875-889

(0.6,0.6) 2.9689¢e-04 1.2515e-04 5.5775e-05 3.2100e-05
(0.7,0.7) 7.1184e-04 1.3955e-04 8.2098e-05 3.3098e-06
(0.8,0.8) 1.1209e-04 5.9892e-05 9.6552e-05 4.8572e-06
(0.9,0.9) 1.1027e-03 1.3805e-04 2.6357e-06 3.5864e-05
(1,1) 1.2685e-03 2.2910e-04 4.4188e-05 7.2284e-07
376
34 — B
a 13- B
Fal — [tte=1s [
A 7 —— Exact
”//// —Nuatn=6
o —Nuatn=8
3 e Nuatn=10[7]
Nuatn=12
369 ‘ | \ \ \ \

0 0.1 02 03 04 05 0.6 0.7 08 09 |
X

Figure7- Comparison between exact and numerical solutions for Example 2 at a = 15,R=1,n=
6(2)12.

38
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—Nuatn=6
—Nuatn=8
Nuatn=10] |
Nuatn=12

36.8 | | | | | |
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

X
Figure 8- Comparison between exact and numerical solutions for Example 2 at « = 1.5,R = 1,n =
6(2)12.

Table 6- Absolute Errors Obtained for Example 2 with R =1and a = 1.7

Absolute error Absolute error Absolute error Absolute error
nxXxXm=6xX6 nxXxm=8x8 nxXxm=12x12
(x,t) _ _ nxm=10x 10
CPU= CPU= CPU=846.523806s CPU=
152.784115s 367.743789s ’ 20918.601336s
(0,0 8.3083e-04 3.0972e-04 1.4822e-04 8.2125e-05
(0.1,0.1) 1.1516e-04 2.6053e-04 2.1113e-04 1.4459e-04
(0.2,0.2) 1.3158e-03 5.7888e-04 1.8768e-04 5.0078e-05
(0.3,0.3) 1.3977e-03 1.8043e-04 4.4541e-05 9.5541e-05
(0.4,0.4) 4.6102e-04 1.9667e-05 1.9508e-04 6.4368e-05
(0.5,0.5) 3.2579e-04 3.0703e-04 5.6517e-05 1.5953e-05
(0.6,0.6) 1.3631e-04 1.8300e-04 4.4848e-05 5.0623e-05
(0.7,0.7) 4.0343e-04 2.7092e-04 7.3656e-05 5.8390e-05
(0.8,0.8) 1.0396e-04 1.0850e-04 1.6530e-04 2.6468e-06
(0.9,0.9) 1.2614e-03 2.3628e-04 5.8947e-05 8.9319¢-05
(1,2) 1.2726e-04 2.4118e-05 4.6645e-06 1.0673e-05
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Figure 9- Comparison between exact and numerical solutions for Example 2 at @ = 1.7,R = 1,n =

6(2)12.
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Figurel0- Comparison between exact and numerical solutions for Example 2at« = 1.7, R =1,n =

6(2)12.

Table 7- Absolut Errors Obtained for Example 2 with R =1and a = 1.9

Absolute error | Absolute error Absolute error Absolute error
(x,0) N><M=_6><6 N><M=£3><8 N><M=1£)><10 NXM=12x12
CPU= CPU= CPU= CPU=
152.596047s 333.750116s 646.495021s 1173.085625s
(0,0) 1.6561e-03 5.8557e-04 2.6635e-04 1.4041e-04
(0.1,0.1) 5.2281e-04 9.5436e-05 1.8358e-04 1.6569e-04
(0.2,0.2) 1.3320e-03 8.0221e-04 3.6057e-04 1.2871e-04
(0.3,0.3) 1.9028e-03 3.8942e-04 5.6962e-06 2.4652e-05
(0.4,0.4) 7.5477e-04 1.5740e-04 1.0235e-04 1.0853e-04
(0.5,0.5) 6.1954e-04 1.0970e-04 1.1064e-04 3.5566e-05
(0.6,0.6) 6.4969e-04 1.8860e-04 1.4415e-04 2.8657e-05
(0.7,0.7) 3.8694e-05 3.9736e-04 6.3546e-06 9.7660e-05
(0.8,0.8) 5.7872e-04 2.9104e-04 2.2942¢-04 3.6989e-05
(0.9,0.9 1.5016e-03 4.3705e-04 1.4489e-04 1.4288e-04
1,1 2.3591e-03 6.8923e-04 2.7628e-04 1.3131e-04
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Figure 11- Comparison between exact and numerical solutions for Example 2ata =19,R =1,n =
6(2)12
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Figurel2- Comparison between exact and numerical solutions for Example 2 ata = 1.9,R =1,n =
6(2)12

9. Conclusions

In this article, the FSLPs were employed in the matrix form to solve S-FBHE successfully. The
Caputo formula was utilized to approximate the fractional derivative. The computational outcomes
specified that the present methodology has higher accuracy, good convergence, and reasonable
stability, as well as a less computation effect by using few grid points.
Figs. 1-12 clarified comparisons between the exact solutions and numerical outcomes of Examples 1
and 2, showing that the FSLPs have high accuracy and good convergence by increasing n. We could
also observe the effect of increasing t from the figures.
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