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Abstract 

     The aim of this paper is to employ the fractional shifted Legendre polynomials 

(FSLPs) in the matrix form to approximate the fractional derivatives and find the 

numerical solutions of the one-dimensional space-fractional bioheat equation (S-

FBHE). The Caputo formula was utilized to approximate the fractional derivative. 

The proposed methodology applied for two examples showed its usefulness and 

efficiency. The numerical results showed that the utilized technique is very 

efficacious with  high accuracy and  good convergence. 

 

Keywords: Collocation method, Space-Fractional bioheat equation, Fractional 
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                      بأستخدامالكدورية التقريب العددي لحل معادلة الكدوريه  رجنديمتعددات حدود ل
                                           Bioheat           
 

2ه الحميديحميده عود  *،1فراس عامر الدعداوي   
7

العراق البصرة، البصرة،التربويت الوفتوحت في  الرياضياث، الكليتقسن   
2

العراق البصرة، البصرة،جاهعت  الصرفت،التربيت للعلوم  الرياضياث، كليتقسن   

 الخلاصة
 بالذكل المرفوفي   (FSLPs)الكدورية  ليجندرالحدود متعددات   توظيف هو هذا البحث منالهدف      

 (S-FBHE) . بعدال ةأحادي الكدورية bioheatلإيجاد الحلول العددية لمعادلة الكدورية لتقريب المذتقات 
فائدتها  على مثالين المطبقة المقترحة المنهجية. تبين ة ير و الكد ةالمذتق لتقريب  Caputoصيغة أستخدمنا
 .النتائج العددية أن التقنية المدتخدمة فعالة للغاية، وتعطي دقة عالية وتقاربًا جيدًا تعهر  وكفائتها.

 
1.  Introduction 

     Many problems in various fields can be successfully modeled by the ordinary, partial or fractional 

differential equations. Fields of application include, for example, biomedical engineering, physics, 

viscoelasticity, biology, and fluid mechanics ,etc. In many cases, finding the exact solutions for these 

equations is difficult or impossible. Therefore, researchers used approximate or numerical solution 

methods [1-5].  

The fractional calculus is utilized to improve the modeling accuracy of many phenomena in natural 

sciences. The most important merit of utilizing fractional differential equations is their non-local 
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property. This means that the next case of a system depends not only upon its current case but also 

upon all of the non-local properties. These are more factual and represent an important cause of 

making the fractional calculus more popular. In medicine, the fractional order model may be the 

proper one for modeling of dynamic systems [6].  

     Heat distribution in biological tissues is typically expressed as a bioheat equation. It involves 

thermic conduction, perfusion of blood, convection and metabolic temperature generation in human 

tissues [7]. The pioneering work of Pennes in 1948 was the cornerstone of the mathematical modeling 

of temperature distribution in tissues, with the bioheat equation  still being extensively used [8]. The 

temperature distribution in the skin tissue is very important for medical application such as  skin 

cancer, skin burns ,etc [9]. The fractional bioheat model has attracted the focus of the researchers and 

it contributes to a significant rate of the ongoing research [10-18].  

In this work, we introduce a numerical approach for solving the one-dimensional S-FBHE based on 

FSLPs. 

2.  Governing Equation 

     The space-fractional version of the one-dimensional unsteady state of bioheat equation can be 

obtained by replacing the space derivative with a derivative of arbitrary positive real order        , 
which takes the form of: 

  
      )

  
   

       )

              )    )                                                   )  

     where                         ,       and       symbolize density, specific heat, thermal 

conductivity, temperature, time, distance, artillery temperature ,blood perfusion rate, metabolic heat 

generation in skin tissue, and external heat exporter in skin tissue, respectively. The units and values 

of the symbols expressed in this equation are demonstrated in table 10. 

 

Table 1-The units and values of the symbols expressed in the space-fractional bioheat equation. 

Symbol      and      and               

Unit °C kg/m
3 

J/kg°C W/m°C m
3
/s/ m

3
 W/m

3
 

value 37 1000 4000 0.5 0.0005 420 

 

The initial and boundary conditions are 

     )                                                                                                                                                                   ) 

   

  

  
|
   

                                                                                                                                                         ) 

   

  

  
|
   

                                                                                                                                                          ) 

where,    is the heat flux on the skin surface. 

 

3.  Preliminaries and Notations 

     In this section, we recall the essential principles of the fractional calculus theory that will be used in 

this article.   

Definition 1  The Riemann-Liouville fractional integral operator of order     is defined as follows 

[19, 20]:  

      )   
 

    )
  ∫     )   

 

 

     )            

        )        )

                                                                                        ) 

Definition 2 The Riemann-Liouville definition of fractional differential operator is given as follows 

[21]: 

      )  

{
 

 
 

       )
  

  

   
∫

    )

    )     

 

 

                        

 
      )   

   
                                                                                                   

                             ) 

Definition 3 The Caputo definition of fractional differential operator is defined as below [22]:  
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      )   {

 

       )
  ∫

   )   )

    )     

 

 
                                             

 
      )   

                                                                                          
                                            )  

     The relation between the Riemann-Liouville operator and Caputo operator is given by the 

following expressions [23]: 
           )       )                                    

          )       )  ∑    )    )

   

   

  

  

                                                                                                           ) 

For      ,       , and the constant 𝐶, Caputo fractional derivative has some basic properties 

which are needed here, as follows [24]:  
    )       𝐶                                                                                                                    

  )       {

                                                              ⌈ ⌉ 
        )

         )
                           ⌈ ⌉

                    

   )    (∑  

 

   

    ))  ∑   
 

 

   

    )          {  }   
                      

                                         ) 

Definition 4 (generalized Taylor’s formula). Suppose that       )   𝐶      for        )    )  
then one has  

    )  ∑
   

         )
       )

   

   

 
   

        )
       )                                                                      ) 

where          ,             Also, one has  

|    )  ∑
   

         )
       )

   

   

|     
   

        )
                                                                             ) 

and    |       )|   
In case    , the generalized Taylor’s formula (10) is the classical Taylors formula [25]. 

4. Fractional Shifted Legendre Polynomials  

     Define the FSLPs by introducing the change of variable      and         on shifted 

Legendre polynomials. The FSLPs      ) is symbolized by    
   ). The FSLPs are a particular 

solution of normalized eigenfunctions of the singular Sturm-Liouville problem [21].  

(        )   
   ))            )        

   )                                                               ) 

Then    
   ) can be obtained as follows:  

     
   )    

       )      )

   
    

   )    
 

   
       

   )                                                        ) 

We can derive the analytic form of    
   ) of degree    as follows:  

   
   )  ∑   

 

   

                                                                                                                                                 ) 

where      
   )         ) 

      )    ) 
 and    

   )     )  ,    
   )      

Theorem 1 If FSLPs are orthogonal with the weight function    
   )       on the interval        

then the orthogonal condition is 

∫   
   )    

   )   
    )

 

 

    
 

     ) 
                                                                                                ) 

Proof. With ∫     )     )
 

 
    )    

 

     )
    , where     is the Kronecker function and  the 

weight function     )   , let     , then we have 

∫    )     )

 

 

    )   ∫     )      )      
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     )
   , 

∫     )      )      

 

 

   ∫   
   )    

   )       

 

 

  

 
 

     )
                                                                                                                            ) 

∫   
   )    

   )      

 

 

   
 

     ) 
     

Then the theorem is proved. 

     A temperature function    ) square integrable in region        can be expressed in terms of 

FSLPs as 

   )  ∑  

 

   

   
   )                                                                                                                                              ) 

where the coefficients     are obtained by 

         )∫   
   )   )

 

 

  
    )                                                                                     ) 

Consider a truncated series when     )-term FSLPs in (18), then we get 

   )      )  ∑  

 

   

   
   )  𝐶    )                                                                                                          ) 

where the fractional shifted Legendre coefficient vectors 𝐶 and    ) are given by 

𝐶                  )      
   )    

   )      
   )  . 

 

Theorem 2. Suppose that       )  𝐶      for      )        )    and 

  
      {   

   )    
   )      

   )}. If     )  𝐶    ) is the best approximation to    ) from 

  
 , then the error bound is presented as follows: 

‖   )      )‖ 

 
  

      )
√

 

     ) 
                                                                                                  ) 

where    |      )|           . 
Proof. Consider the generalized Taylor’s formula  

    )  ∑
   

         )
       )

 

   

 
   

        )
       )                                                                       ) 

where          ,           Also, one has  

|    )  ∑
   

         )
       )

 

   

|     
   

        )
                                                                              ) 

     Since     )  𝐶    ) is the best approximation to    ) from   
  and 

∑ (
   

        )
)       )  

     
 , hence 

‖   )      )‖ 
  ‖   )  ∑

   

         )
       )

 

   

‖

 

 

  

 
  

 

(        ))
 ∫    

 

 

                                                                                               ) 

                                  
  

 

(        ))
 
     ) 
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Now, by taking the square roots both sides, the theorem is proved. 

A temperature function      )                ) can be expanded as in the following equation: 

     )  ∑∑   

 

   

 

   

   
   )    )                                                                                                                        ) 

where 

         )     ) ∫∫     )

 

 

 

 

   
   )    )  

   )                                                 ) 

Theorem3. If the series ∑ ∑    
 
   

 
      

   )    ) converges uniformly to      ) on the square 

           , then we obtain the equation (26).  

 

Proof. By multiplying   
   )   

   )    ) on both sides of (25), where   and   are fixed and 

integrating term-wise with regard to   and   on            , then 

∫∫     )

 

 

 

 

   
   )    )  

   )     ∑∑   

 

   

 

   

∫∫   
   )    )   

   )    )  
   )    

 

 

 

 

 

                                                       ∑ ∑    
 
   

 
   ∫   

   )
 

 
   

   )   
   )  ∫     )    )

 

 
   

                                                              ∫   
   )

 

 
    

   )    ∫ [    )]
  

 
                               ) 

                                                             
 

     ) 
 

 

     )
 

 

Theorem4. If the function      ) is a continuous function on             and the series    
∑ ∑    

 
   

 
      

   )    ) converges uniformly to      ), then    is the FSLPs expansion of      ). 

 

Proof. Using the contradiction, let 

     )  ∑∑   

 

   

 

   

   
   )    ) 

     )  ∑∑   

 

   

 

   

   
   )    ) 

}
 
 

 
 

                                                                                                                   ) 

Then there is at least one coefficient such that           however 

         )     ) ∫∫     )

 

 

 

 

   
   )    )  

   )         

Theorem 5. If the two continuous functions defined on             have the identical FSLPs 

expansions, then these two function are identical. 

 

Proof. Suppose that      ) and      ) can be expended by FSLPs as follows: 

     )  ∑∑   

 

   

 

   

   
   )    )                                                                                                                        ) 

     )  ∑∑   

 

   

 

   

   
   )    )                                                                                                                        ) 

By subtracting equation (30) from (29), we obtain 

     )       )  ∑ ∑ (       )
 
   

 
      

   )    )                                                                 (31)                                         

Theorem 6. If the sum of the absolute values of the FSLPs coefficients of a continuous function 

     ) forms a convergent series, then the FSLPs expansion is absolutely uniformly convergent and 

converges to the function      ). 

Proof. Consider that 
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|∑∑   

 

   

 

   

   
   )    )|  ∑∑|   |

 

   

 

   

|   
   )||    )| 

  ∑∑|   |

 

   

 

   

                                                                 ) 

Suppose a truncated series in (25), which satisfies  

     )  ∑∑   

 

   

 

   

   
   )    )

     )𝐶   )                                                                                                               ) 

where  

   )      
   )    

   )      
   )  ;    )       )     )       )   and 𝐶  {   }     

   
. 

5. Two-Dimensional Fractional Shifted Legendre Operational Matrix of Fractional 

Differentiation  

The derivative of the    )  can be approximated as follows  

   )  )       )                                                                                                                                                  ) 

where     is called the FSLPs in the matrix of space derivative. 

 

Theorem 7. Suppose that the Caputo fractional derivative    is     )      ) matrix of order 

      
 

 
, when    , which have  the elements defined by 

{   }     

   
     

  )∑∑    

 

   

 

   

   
 

      )

        )       )   )
                                                ) 

where 

   
  {

                                                                

   
                      ⌈ ⌉               

                                                                      ) 

Proof. From the property (ii) of equation (9) and the orthogonally of FSLPs, we get 

     
   )

 ∑   
 

 

   

      )

        )
                                                                                                                           ) 

let 

      ∑  

 

   

   
   )                                                                                                                                           ) 

By multiplying both sides of the equation (38) by   
   )   

   ), it yields 

        ) ∑    

 

   

 
 

      )   
                                                                                                        ) 

By substituting the equations (38) and (39) into equation (37), we have 

     
   )       ) ∑∑∑       

 
      )

        )       )   )
    

   ) 

 

   

 

   

 

   

                        ) 

hence, 

          )∑∑   

 

   

 

   

   
 

      )

        )       )   )
                    )                        ) 

6. Method for the Solution 

     Now, we will structure the approximate solution of equation (1) under given conditions, as in the 

following series form  
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     )  ∑∑   

 

   

 

   

   
   )    )                                                                                                                         ) 

which is equivalent to the matrix form 

      )      )    )                                                                                                                                       )  

where 

  {   }     

   
    )       )     )       )  ,    )      

   )    
   )      

   )   

The approximate of the first temporal and spatial derivatives can be written as 
      )

  
     )       )                                                                                                                                   ) 

      )

  
     )   )      )                                                                                                                                              ) 

and the fractional spatial derivative as 
       )

   
     )   

 )      )                                                                                                                            ) 

By applying the solution method for S-FBHE in (1), we have 

       )      )        )   
 )     )          )    )

     )       )      )       )      )         )                                              ) 

where 

     )                   

    )     )      )     )      )     )      )     ) 

           

    )     )      )     )      )     )      )     )and  {   }     

   
     

          )     )∫∫     )

 

 

 

 

   
   )    )  

   )                                                                       ) 

     Multiplying by    
   )   

   )    )  generates          algebraic equations for    

   )  )      )   Then, by integrating from   to   and using the orthogonal property, we have 

               )       
 )                                                                                                                  ) 

with the initial condition from equation (2) in the matrix form is as follows: 

    )                                                                                                                                                                   ) 

where  

                 

         )∫     )

 

 

   
   )  

   )                                                                                                         ) 

and the boundary conditions from equations   ) and   )               in the matrix form give 

       )                                                                                                                                                      ) 

       )     
                                                                                                                                                 ) 

where 

              and                

        )∫      )

 

 

    )    )                                                                                                                 ) 

        )∫      )

 

 

    )    )                                                                                                               ) 

     which generates the          linear algebraic equations by equation (49) together with 

equations (50),(52) and (53). These unknown coefficients   can be found by solving Sylvester system. 
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7.  Error Analysis 

    Consider      )       )         ) as the error function where        ) and      ) are the 

approximate solution and the theoretical solution of (1), respectively.  

Therefore,        ) satisfies the following problem 

  
        )

  
   

         )

   
            )         )       )                                               ) 

where         ) is the residual function, 

       )    
        )

  
   

         )

   
            )       )                                               ) 

We can find an approximation  ̃      ) to the error function        ) using the same procedure as 

the previous one. Thus, the error function satisfies the solution of the equation  

  
        )

  
   

         )

   
            )         )                                                                 ) 

     We should note that in order to construct the approximate  ̃      ) to the error function        ), 

only equation (58) needs to be recalculated by using the same procedure used for solution (1). 

8. Numerical Experiments 

     In order to show the ability of the collocation method to achieve the high accuracy, we utilize now 

the proposed method presented in this article for two examples, in which the collocation method is 

implemented for solving the S-FBHE based on FSLPs. In these examples, the solution obtained from 

this method is compared with the exact solution using the computer device Asus Core i5 (2012) and 

MATLAB R2018a software. 

     The S-FBHE is transformed into the linear algebraic equations    )    )    ) and 

   ) respectively.  In these examples, take          and use evenly-spaced grid points. Tables 2-

7 shows the absolute errors obtained from solving the S-FBHE using FSLPs, for different fractional 

order                at              and           for different values of order      
   )  .   

Example1 

Consider the S-FBHE (1) with choosing      , so the exact solution is:  

     )                                                                                                                                                    ) 
with the initial condition 

     )                                                                                                                                                     ) 
and the boundary conditions 

   

      )

  
                                                                                                                                         ) 

   

      )

  
                                                                                                                                    ) 

Table 2- Absolute Errors of Example 1 with      and         

    ) 

Absolute error 

        

CPU 
            

Absolute error 

        

CPU=

            

Absolute error 

          

CPU=

            

Absolute error 

          

CPU= 

            

(0,0) 9.2897e-05 2.1589e-05 7.3668e-06 3.1496e-06 

(0.1,0.1) 1.3553e-04 6.6216e-05 2.6084e-05 9.0596e-06 

(0.2,0.2) 3.5470e-04 3.9097e-05 2.1405e-05 1.2136e-05 

(0.3,0.3) 1.7135e-04 1.0657e-04 3.0567e-06 3.0460e-05 

(0.4,0.4) 3.5248e-04 6.8506e-06 7.2961e-05 3.9723e-05 

(0.5,0.5) 5.7297e-04 2.4522e-04 9.5092e-05 2.6318e-05 

(0.6,0.6) 1.3067e-04 1.3149e-05 9.3588e-06 1.6524e-05 

(0.7,0.7) 1.1601e-03 4.1668e-04 1.7085e-04 6.6750e-05 

(0.8,0.8) 4.5665e-04 3.3147e-04 2.7213e-04 9.9522e-05 

(0.9,0.9) 2.1217e-03 6.0418e-05 3.7764e-04 1.3092e-05 

(1,1) 6.0224e-03 2.6419e-03 1.4417e-03 8.9283e-04 
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Figure 1- Comparison between exact and numerical solutions for Example 1 at               

   )  . 

 
Figure2- Comparison between exact and numerical solutions for Example 1 at              

   )   
 

Table 3- Absolute Errors of Example 1 with      and        
    ) Absolute error 

        

CPU 
            

Absolute error 

        

CPU=

            

Absolute error 

          

CPU=

            

Absolute error 

          

CPU= 

             

(0,0) 1.6367e-04 4.0087e-05 1.4241e-05 6.2724e-06 

(0.1,0.1) 7.8288e-06 3.1301e-05 2.0602e-05 1.2090e-05 

(0.2,0.2) 3.0937e-04 8.2960e-05 3.4689e-06 2.1882e-05 

(0.3,0.3) 3.3061e-04 9.8121e-05 5.4720e-05 2.6801e-05 

(0.4,0.4) 2.2588e-04 1.5303e-04 1.0603e-04 2.0960e-06 

(0.5,0.5) 8.2192e-04 2.4738e-04 2.4530e-05 5.2812e-05 

(0.6,0.6) 3.2032e-04 2.2636e-04 1.6229e-04 1.1473e-04 

(0.7,0.7) 1.2352e-03 5.4656e-04 2.8736e-04 1.6718e-04 

(0.8,0.8) 1.0918e-03 1.3128e-04 3.1273e-04 2.1998e-04 

(0.9,0.9) 1.5044e-03 4.1016e-04 4.7191e-04 1.6846e-04 

(1,1) 7.6506e-03 3.6415e-03 2.0928e-03 1.3461e-03 
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Figure 3- Comparison between exact and numerical solutions for Example 1 at             
   )  . 

 
Figure 4- Comparison between exact and numerical solutions for Example 1 at             
   )  . 

 

Table 4- Absolute Errors of Example 1 with      and      . 

    ) 

Absolute error 

        

CPU 
            

Absolute error 

        

CPU=

            

Absolute error 

          

CPU=

            

Absolute error 

          

CPU= 

            

(0,0) 1.2717e-04 3.2815e-05 1.2145e-05 5.5269e-06 

(0.1,0.1) 7.3374e-05 5.2176e-06 6.4377e-06 7.8466e-06 

(0.2,0.2) 1.5266e-04 8.9358e-05 2.4491e-05 1.0377e-05 

(0.3,0.3) 3.7748e-04 2.2417e-05 8.5757e-05 5.1349e-06 

(0.4,0.4) 2.8351e-05 2.5296e-04 5.4700e-05 6.7004e-05 

(0.5,0.5) 8.1117e-04 9.9161e-05 1.1810e-04 1.1922e-04 

(0.6,0.6) 7.9471e-04 4.6563e-04 2.7197e-04 1.4492e-04 

(0.7,0.7) 9.7692e-04 4.6138e-04 2.5954e-04 1.6384e-04 

(0.8,0.8) 1.7323e-03 2.4698e-04 1.7967e-04 2.4811e-04 

(0.9,0.9) 2.5822e-03 8.5326e-04 4.2100e-04 3.5956e-04 

(1,1) 9.1330e-03 4.6075e-03 2.7557e-03 1.8270e-03 
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Figure 5- Comparison between exact and numerical solutions for Example 1 at             
   )  . 

 
Figure 6- Comparison between exact and numerical solutions for Example 1 at             
   )  . 

 

Example 2 

Consider the S-FBHE (1) with choosing        so the exact solution is [8]:  

     )   
 
    (

 

 
  )                                                                                                                                   ) 

with the initial condition 

     )                                                                                                                                                     ) 
and boundary conditions 

   

      )

  
                                                                                                                                               ) 

   

      )

  
   

 
       )                                                                                                                      ) 

  

Table 5- Absolut Errors Obtained for Example 2 with      and      . 

    ) 

Absolute error 

        

CPU=

            

Absolute error 

        

CPU=

             

Absolute error 

          

CPU=            

Absolute error 

          

CPU 
             

(0,0) 4.7535e-04 2.0206e-04 1.0329e-04 5.9661e-05 

(0.1,0.1) 3.8248e-04 2.8583e-04 1.7071e-04 9.0607e-05 

(0.2,0.2) 1.1027e-03 3.3929e-04 7.8038e-05 3.7306e-05 

(0.3,0.3) 9.1218e-04 9.5409e-05 1.1130e-04 1.0378e-04 

(0.4,0.4) 2.3700e-04 1.8279e-04 1.7801e-04 2.9282e-05 

(0.5,0.5) 7.9141e-05 3.5798e-04 2.4337e-05 6.9434e-05 
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(0.6,0.6) 2.9689e-04 1.2515e-04 5.5775e-05 3.2100e-05 

(0.7,0.7) 7.1184e-04 1.3955e-04 8.2098e-05 3.3098e-06 

(0.8,0.8) 1.1209e-04 5.9892e-05 9.6552e-05 4.8572e-06 

(0.9,0.9) 1.1027e-03 1.3805e-04 2.6357e-06 3.5864e-05 

(1,1) 1.2685e-03 2.2910e-04 4.4188e-05 7.2284e-07 

 
Figure7- Comparison between exact and numerical solutions for Example 2 at              
   )    

 
Figure 8- Comparison between exact and numerical solutions for Example 2 at             
   )   . 
 

Table 6- Absolute Errors Obtained for Example 2 with      and       

    ) 

Absolute error 

        

CPU=

            

Absolute error 

        

CPU=

            

Absolute error 

          

CPU=            

Absolute error 

          

CPU 
              

(0,0) 8.3083e-04 3.0972e-04 1.4822e-04 8.2125e-05 

(0.1,0.1) 1.1516e-04 2.6053e-04 2.1113e-04 1.4459e-04 

(0.2,0.2) 1.3158e-03 5.7888e-04 1.8768e-04 5.0078e-05 

(0.3,0.3) 1.3977e-03 1.8043e-04 4.4541e-05 9.5541e-05 

(0.4,0.4) 4.6102e-04 1.9667e-05 1.9508e-04 6.4368e-05 

(0.5,0.5) 3.2579e-04 3.0703e-04 5.6517e-05 1.5953e-05 

(0.6,0.6) 1.3631e-04 1.8300e-04 4.4848e-05 5.0623e-05 

(0.7,0.7) 4.0343e-04 2.7092e-04 7.3656e-05 5.8390e-05 

(0.8,0.8) 1.0396e-04 1.0850e-04 1.6530e-04 2.6468e-06 

(0.9,0.9) 1.2614e-03 2.3628e-04 5.8947e-05 8.9319e-05 

(1,1) 1.2726e-04 2.4118e-05 4.6645e-06 1.0673e-05 
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Figure 9- Comparison between exact and numerical solutions for Example 2 at             
   )  . 

 
Figure10- Comparison between exact and numerical solutions for Example 2 at      ,       
   )  . 

 

Table 7- Absolut Errors Obtained for Example 2 with      and       

    ) 

Absolute error 

        

CPU=

            

Absolute error 

        

CPU=

             

Absolute error 

          

CPU=

             

Absolute error 

          

CPU 
             

(0,0) 1.6561e-03 5.8557e-04 2.6635e-04 1.4041e-04 

(0.1,0.1) 5.2281e-04 9.5436e-05 1.8358e-04 1.6569e-04 

(0.2,0.2) 1.3320e-03 8.0221e-04 3.6057e-04 1.2871e-04 

(0.3,0.3) 1.9028e-03 3.8942e-04 5.6962e-06 2.4652e-05 

(0.4,0.4) 7.5477e-04 1.5740e-04 1.0235e-04 1.0853e-04 

(0.5,0.5) 6.1954e-04 1.0970e-04 1.1064e-04 3.5566e-05 

(0.6,0.6) 6.4969e-04 1.8860e-04 1.4415e-04 2.8657e-05 

(0.7,0.7) 3.8694e-05 3.9736e-04 6.3546e-06 9.7660e-05 

(0.8,0.8) 5.7872e-04 2.9104e-04 2.2942e-04 3.6989e-05 

(0.9,0.9) 1.5016e-03 4.3705e-04 1.4489e-04 1.4288e-04 

(1,1) 2.3591e-03 6.8923e-04 2.7628e-04 1.3131e-04 
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Figure 11- Comparison between exact and numerical solutions for Example 2 at              
   )    

 
Figure12- Comparison between exact and numerical solutions for Example 2 at              
   )   

 

9.  Conclusions 

     In this article, the FSLPs were employed in the matrix form to solve S-FBHE successfully. The 

Caputo formula was utilized to approximate the fractional derivative. The computational outcomes 

specified that the present methodology has higher accuracy, good convergence, and reasonable 

stability, as well as a less computation effect by using few grid points.   

Figs. 1-12 clarified comparisons  between the exact solutions and numerical outcomes of Examples 1 

and 2, showing that the FSLPs have high accuracy and good convergence by increasing    We could 

also observe  the effect of increasing    from the figures. 
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