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ABSTRACT

This study introduced new technique which is based on a combination
of the least-squares technique (LST) with Chebyshev and Legendre
polynomials for finding the approximate solutions of higher-order linear
Fredholm-Volterra integro-differential equations (FVIDES) subject to
the mixed conditions. Two examples of second and third-order linear
FVIDEs are considered to illustrate the proposed method, the numerical
results are comprised to demonstrate the validity and applicability of
this technique, and comparisons with the exact solution are made. These
results have shown that the competence and accuracy of the present
technique.

squares technique.
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1. Introduction

There are many scientific fields including biomedical and biophysics have been investigated by
integro-differential equations. There are three types of these questions; Fredholm Volterra or mixed
integro-differential equations have been used for solving many problems in applied mathematics, such
as modelling and bioinformatics. So, the numerical methods are used for these scientific subjects. Even
though, extremely difficult in the nonlinear equation, there are numerical methods to solve the exact
solutions of FVIDE which are the most approximation method [8, 17]. Recently, FVIDEs have been

solved by matrix methods, for instance, the method is used to solve the system of differential equations
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[2, 10]. There are many numerical methods approximation method, the Adomian decomposition
method, the Chebyshev-Taylor collocation method, Haar Wavelet the Tau method, Wavelet-Galerkin
method, the monotone iterative technique, the variation iteration method, the Tau method and the
Walsh series method [5, 7,9, 12, 13, 14, 15, 16, 17].

The aim of this paper is to introduce a new technique to get better and faster numerical solutions
depend on the Chebyshev and Legendre polynomials for solving linear Fredholm- Volterra integro-

differential equations [5].
p d

1O ) = £ + Ay f ey (o, u(e)dt + A, f kG Du(dt, c < vt <d,  (1.1)
0 Cc

under the mixed conditions
Z?]:_Ol(Cjiui(C) + dﬂul(d)) = ,B] _] =0 ) 1 e ..,N -1 (12)

2. Numerical methods

In this paper, the standard LST has been discussed to solve equations (1.1) and (1.2) by combining

with the following basis functions [1]:
* Chebyshev Polynomials * Legendre Polynomials
2.1 Chebyshev Least- Squares Technique:

We will define Chebyshev polynomials by the following equation, [1]

Cis1(x) = 2xCi(x) — Ci_1(x) ,i =1 (2.1)
where
Co(x)=1,6(x) =x, (2.2)
We assume the approximate solution as
m
ulx) =u,(x) = z a;C;(x) c<x<d (2.3)
i=0

Where a; and C;(x) are unknown constants and the Chebyshev polynomial of degrees (i) of the first

kind which is for all x € [—1,1]. Substituting equation (2.3) into equation (1.1), we get
m X

m d m
2 a;C;P(x) = f(x) + 14 f ki(x,t) ) a;C;(t)dt+ Azf k,(x, t)z a;C;(t) dt (2.4)

i=0 0 i
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The residual equation has been given by

R(X, ai) = R(X, um(x))

m

= z a;C;" (x)

i=0

X m d m
- {f(x) + j aCoD) Y aC®dt+ 1, f (D) Y 4l dt} (2.6)
0 i=0 ¢ i=0

Let
d

S(ag as, .., 4y) = j [R(x, a)]?w(x)dx, (2.7)

Cc

Where w(x) is the positive weight function defined in the interval [c, d]. For simplicity set w (x)=1,
thus,

S(ao, al, ey am)
2

drm X m d m
- aiCi(k)(x)—{f(x)+A kiGo,t) Y a;Ci(O)dt+2, | k,(x,8) Y a;Ci(t) dt” dx, (2.8)
[ [y S oy

We can get the values of a ; ,i = 0 by minimizing the value of S as follows :

—=0,i=01,..,m (2.9)

6ai

Then from (2.8) by applying (2.9) get:

drm X m m

5 d
a_j-:f ZaiCi“‘)(x)— {f(x) +,11fk1(x, t)zaici(t) dt+Azf kz(X,t)zaiCi(t) dt}] dx

o lizo i=0 ¢ i=0

y 0

d x d

f GO {1 f ey (x, £)Ci (D) dt + 2, f ko (6, )Gy (D) dt [ dx = 0 (2.10)

c 0 ¢

Thus, (2.10) are generated (m+1) algebraic system of equations in (m+1) unknown

a;,i = 0,---,m, or in the matrix form as follow:
deR(x, ag)hodx deR(x, a,)hydx ... deR(x,am)hodx
a d d
W = k J. R(x,ap)hidx [ R(x,a)hidx ... [ R(x, ap)hidx ) (2.11)

deR(x,ao)hmdx deR(x,al)hmdx deR(x,am)hmdx
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[ (OYhoda \
G =| U CNdx | (2.12)

\fcd{f(x).}hmdx /

where
x d
hy=c® — Aljkl(x, t)Cidt+/12[ k,(x, t)C;dt dx (2.13)
0 c
m x m d m
RG,a) = Y a,60) - {Al [r@oY e+, [ koY ac dt}. (2.14)
i=0 0 i=0 ¢ =0
WA=G orA= [W;G]. (2.15)
Property: Vx € Q the matrix w(x) defined in (16) is non-singular. m

The equation (1.1) corresponds to a system of (m + 1) linear algebraic equations with the unknown
Chebyshev coefficients a;,i =0,1,...,m, [23].
Another form of (2.15) by applying the conditions can be explained as
[U;:B] ,i=0,1,..,N—1

where

U =luyp uy Up ... upl,i=0,1,2..N—-1 (2.16)
To get the solution of (1.1) under conditions (1.2), by changing the row matrices (2.16) by the last (m)
rows of the matrix form (2.15), we get the new augmented matrix [4, 11, 18, 19, 20, 21, 22].
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[W; G]
d d d
jR(X, ag)hydx fR(x,al)hde fR(x, amhedx ; Gy
c C C
d d d
jR(X, ag)h;dx fR(x,al)hldx fR(x, ap)hdx ; G
C C C
=| - L o - ~ ,(2.17)
]R(X, ao)thodX fR(X,al)thldX jR(x, am)thde i Gpon
C C C
a o oo
U(m-1)0 Um-1)1 Um-1)N ) Bn-1
A=WG,

therefore, the matrix A (thus the coefficients ay, a,, a,, -, a,,) is uniquely determined. Also, the

equation (1.1) with conditions (1.2) has a unique solution.

2.2 Legendre Least — Squares Technique:

We will define Legendre polynomials by the following equation [1]:
Pa(®) = o (> = )" ,n=0,1.. (2.17)
where

Po(x) =1, p1(x) = x,

we suppose the approximate solution as
m

ulx) =u,(x) = z a;p;(x) c<x<d, (2.18)

i=0
by the same procedure in Chebyshev polynomials which have been discussed in section (2.1). We have
(m + 1) algebraic linear system of equations in (m + 1) unknown Legendre coefficients a; , i > 0.
3. Convergence analysis Chebyshev (Legendre) Polynomials
Now we will review an estimate of the errors above based on the numerical methods which introduced
in the second section, want to prove that as m — oo the approximate solution u,,(x) will be converge

to the exact solution u(x) of (1).
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Note: We will suffice with proof of the convergence of the Chebyshev polynomial and likewise, the
proof of the convergence of the Legendre polynomial.
Lemma (3.1): [6]. Let u(x) be in the Sobolev space H*(-1, 1) and, @, u(x) = X, a;T;(x)
be the best approximation polynomial of u(x) in L, — norm .Then

I u = Q| -1,0) < em™ | U g1y (3.1)
where C is a positive constant, which depends on the selected norm and is independent of u(x) and m.
Proof: By using of the transformation

x € [-1,1],u(x) » u*(8) = u(cos(6)),0 € (0,2m) (3.2)

since, 8 = cos~1(x), where, % = —w(x), (the Chebyshev weight )

w1, ma =5 1112, 02m (3.3)
He is following the map u — u* it is an analogy between L,[—1,1] and the subspace to L,(0,2m)
even from real functions . Furthermore, it maps HX[—1,1] in space the periodic functions HX (0, 2) .
Actually, since u € €™ 1([—1,1]), then u* € C™1(R) it is a 2= - cyclic with all derivatives of the
system up to —1 , whence u* € H¥(0,2m) . Lastly, since |%| = |—sin@| < 1, we also have
N grco2my) < Cllull e —109 fork > 1 (3.4)

Let q,, denote the symmetric truncation to the grade , i.e.,

m

Pr;kz(z, a;e’?) = Z aje!)?
Jj=—00 j=—m
It is easily seen that
(@mu)" = gnu’ Vu € L,[-1,1] (3.5)

EZai(e0+e%)
2

Actually , since u(x) = X720 a;T;(x), u*(0) = X2, a; cosif = \
whence (3.5). Now, from
| v — qmulli,p02n < Cm~K|| uk”Lz(O,Zn) vu € HE(0,2m) (3.6)

and (2.3) we get
[|u— leu||L2[—1,1] = %” U = QU™ ||, c0,2m) < Ccm~k|| u*(k)lle(O,Zn)
thus,
[l v = pmulli,—1,1 < Ccm~F|| uk||1-1(—1,1)
Theorem (3.2): [3]. Assume k: x — x is bounded, with x a Banach space, and assume

A — k:x — x is one to one and onto. Further assume
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|k — qnk]|l > 0 as m —» o (3.7)
Then for all sufficiently large m, say M > m the operator ( A — q,,k) ! exists as a bounded operator

from x to x. Moreover, it is uniformly bounded:

Suppzmll(A = qmk) 7l - o (3.8)
For the solutions of (1 — Q. k)X, = Xy , xmexand (A —k)x =y
X = X = A4 = Q)" (X — Qi X) (3.9)
Aol = @kl <l = xll < 1211(2 = @) 7l = gl (3.10)

This leads to ||x — x,,,|| = 0 as ||x — q,,x|| = 0.

Proof:

A) We choose m search that

€. = Supl|l 1 — kKl < ——
m= Supll A= amkll <y,

Then the inverse [I + (A — k)~1(k — q,, k)]~ exists and is uniformly bounded by the geometric

series theorem:

1
(A =Rk~

Using 1 — qmk = (A — k) + (k — @nk) = A =K1 + (1 — k)7 (k — @ k)],
(A — q k) texists,

I+ (A= 107 (k= k)] < T

— -1 M =
1A = a7 < o0 =™ (3.11)

This shows (3.8).
B) for the error formula (3.9) , multiply (A — k)x = y by q,,, , and then rearrange to obtain
(A = Qnk)x = gmy + Ax — @)
subtract (A — q,,k)x,, = q,,y to get

(A= @k (x = xpm) = A(x — ) (3.12)
X=Xy = A (A= quuk) T (x = Q).
which is (3.9). Taking norms and using (3.10)
lIx — xpll < [Amllx — gpxll (3.13)

Thus if @,,x — x,then x,,, > x asm — o
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C) The upper bound in (3.10) follows directly from (3.9) as we have just seen. The minimum follows
by taking the limits of (3.12), to get
[A11lx = qx]l < 112 = qukllllx = x5l
This is equivalent to the minimum in (3.10). To get a minimum that is uniform in m note that for
M =m,
12 = @mkll < 12 = Kll + Ik — @ukll < IA = kll +€,
The minimum in (3.11) can now be replaced by

|41

—_—||x — x|l < [lx — x|l
e = @l < Dl =

Combining this and ( 3.13 ), we have

N I TPV - -
e 1 = @l < lx = xpll < [2mllx — g (3.14)

This shows that converges to X < q,,,x converges to. Furthermore, if convergence does occur, then
llx — @x|l and |[x — x,,|| = 0 exactly at the same speed. To apply the above theorem, we need to

know whether ||k — q,,,k|l = 0 as m — oo. [

Lamma (3.3): [3]. Suppose x , y be Banach spaces, and let W,,,: x - y,m > 1 be a sequence of
bounded linear operators. Assume {W,,,x} converges for all x € X.Then the convergence is uniform on
compact subsets of X,

Proof. By using the principle of uniform boundedness, the operators W}, are uniform bounded:
M = Sup|[W, || < o

m21
The functions W, are also equal:
Wnx — Woyll < Mllx — yll
Suppose S is a compressed subset of X. Then {W,,} is a set of functions with uniform and equal
boundaries in the combined set S; hence the standard result of the analysis is that {I},,x} is uniformly

convergent for x € S. [

Lamma (3.4) Suppose X is a Banach space, and let {q,,,} be a set of finite projections on X with
QmXx 2> x @ m > oo, x €X (3.15)
Let k: x — x be compact. Then
|k — qkll > 0 as m - o

Proof. by definition of operator norm,
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Ik — qmkll = |SUP llkx — @mkx|l = Sup ||z — gzl

|x||<1 z€k(U)
With k(U) = {kx | ||x|| < 1}.
The group k(U) is compact. So, by (3.15) and the Lemma (3.3),

Sup ||z — q,,z|| » 0 as m — oo, ]
z€k(U)

4. Numerical Experiment

In this paragraph, we have investigated the combination of LST for solving high-orders linear FVIDEs
with Chebyshev and Legendre's polynomials as the basis functions. The examples are solved to
explain them precisely, and time of accomplishment of the method. The absolute error has been
defined

Error =|u(x) — u,, (x)| c<x<d m=1.2,...

where u(x) is the exact solution and u,,, (x) is the approximate solution .

Example 1. we considered second order FVIDE given as [1]

X

1
u'(x) = f(x) +f u(t)dt +J- (1—-2xt)u(t)dt ,—1<x<1
-1

0
u(0)=2, u'(0)=6
The exact solution is given as u(x) = 2 + 6x — 3x2.

Where, f(x) = -8+ 6x —3x%2+ x3,k;(x,t) =1,ky(x,t) =1—2xt,4; =1, = 1.

Firstly, an approximate solution u(x) will be found using the combination of least-squares with the

Chebyshev polynomial, which defined in the form
m

ulx) = Z a;Ci(x) ,-1<x<1

=0

ifm=6.

158 137 8546 16859 21542 15053 180350
5 15 105 175 63 45 231




Hameeda Oda Al-Humedi, Ahsan Fayez Shoushan, Al-Qadisiyah Journal of Pure Science, Vol.(26) Issue (1) (2021) pp. Math. 20-38

63

-2

—286

—50 —1354 —2962 —1298
3 9 15 3 21 63 9
-2 347 —46 12893 —4406 8053 —4586
9 270 45 630 315 126 135
—286 —46 13802 302 142238 594 129566
15 45 315 25 945 35 385
W= -50 12893 302 1131139 3382 1099391 60722
3 630 25 3150 175 990 1575
—1354 —4406 142238 3382 22442986 —34 26909158
21 315 945 175 10395 735 5005
—2962 8053 594 1099391 —34 3072051937 —8122
63 126 35 990 735 378378 945
—1298 —4586 129566 60722 26909158 —8122 7609658362
9 135 385 1575 5005 945 315315

29

From the given conditions, the augmented matrices are obtained respectively, as follows:
Up=[1 0 -1 01 0 —1]andU;=[0 1 0 —3 0 5 0]

If we replace the last two rows of the matrices W and G by the values of U, and U; in, then

=~ 158 137 8546 16859 21542
G=[— — - — 2 6],
5 15 105 175 63
63 -2 —286 -50 —1354 —2962 —1298
3 9 15 3 21 63 9
-2 347 —46 12893 —4406 8053 —4586
9 270 45 630 315 126 135
—286 —46 13802 302 142238 594 129566
xr 15 45 315 25 945 35 385
W= =50 12893 302 1131139 3382 1099391 60722
3 630 25 3150 175 990 1575
—-1354 —4406 142238 3382 22442986 —-34 26909158
21 315 945 175 10395 735 5005
1 0 -1 0 1 0 -1
L0 1 0 -3 0 5 0-
Thus, Chebyshev coefficients are calculated as:
7 -1 ~ 1 3 12
A=W Gz[g 6 —50000].

Therefore, the approximate solution of the problem taking m = 6 is the exact solution under the given
conditions as follows:

ug(x) = (ag — ay + a, — ag) + (a; — 3a; + 5a5)x + (2a, — 8a, + 18a¢)x? + (4a; — 20as)x3
+ (8a, — 48a¢)x* + 16asx® + 32a,x°
which represent the exact solution, u(x) = 2 + 6x — 3x2.
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Secondly, an approximate solution u(x) will be found using the combination of least-squares with the

Legendre polynomial, which defined in the form
6
ug(x) = z a;p;(x)
i=0

158 137 372 8909 65516 1545

T 7 140 315 g 0l
26 -2 —182 21 w0 “H o,
3 9 15 2 4
—2 347 37 11149 1793 i’
9 270 45 840 48
182 37 1894 11 18898 13

15 45 105 4 315 8
21 11149 11 1512443 9 18627019 29

2 840 4 10080 2 44352 4
18898 9 478174 3 2162158

—40 =8 =% 2 693 4 1287

111 1793 13 18627019 3 380541959 5
8

4 48 8 44352 4 164736

29 2162158 5 13513504

| —84 —19 126 1287 8 2145

For the given conditions then augmented matrices are obtained respectively, as follows

Up=[10 -2 020 -27,0=[010 -

16

N | w
o
|&
o
—

If we replace the last two rows of the matrices W and G by the values of U, and U; in, then

158 137 372 8909 65516 5

=15 15 7 140 315




Hameeda Oda Al-Humedi, Ahsan Fayez Shoushan, Al-Qadisiyah Journal of Pure Science, Vol.(26) Issue (1) (2021) pp. Math. 20-38 31

26 -2 -182 -21 40 -111 84
3 9 15 2 4
-2 347 37 11149 1793 19
9 270 45 840 48
182 37 1894 11 18898 13 126

15 45 105 4 315 8
21 11149 11 1512443 9 18627019 29

7 21 Dlesss 7 18647979
2 840 4 10080 2 44352 4
s _g 18898 9 478174 3 2162158
315 2 693 4 1287
10 ! 0 > 0 >
2 2 16
0o 1 0 > 0 15
2 8

Thus, Legendre coefficients are calculated as
A=W='G=[1 6 -2 0 0 0 0 ]

Ug = 2 + 6x — 3x?

which is the exact solution (1).

Example 2. Consider a second order FVIDE given as [1]
X s
u"'(x) = f(x) +f u(t)dt +J. xu(t)dt ,
0 -1
With conditions, u(0) =1,v'(0) =1,u"(0) = -1
The exact solution is given as u(x) = x + cosx.

Where f(x) = 222,k (6,t) = 1,kp(x, ) = x, 4, = A, = 1

Firstly, an approximate solution u(x) will be found using the Chebyshev polynomial-least-squares

technique, which defined in the form
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8 8 2nx(24n*-40m%+15
R4=191x+§x3—5x5— ( — )

x?(16x*-30x?+15)

. R = 960x2 — 120

32x7  2mx(210m%+1607°-35)

_ 3 _ 48x5 _
Re = 3834x% — 1151x + 222 — 22 N

Thus,

G=[0 —30.6020 0 —91.6143 0 5.0688e+4 0],

1.0965e+3 0 5.7218e+3 0 1.0240e+5 O 2.4321e + 57

0 30.6020 0 91.6143 0 —5.0688e + 4 0
5.7218¢+3 0 29920e+4 0 53574e+5 O 9.5004e + 5

W=i 0 91.6143 O 3.5427e + 3 0 —1.3361le +5 0
1.0240e+5 0 5.3574e+5 0 9.596le+6 0 1.5679e +7

0 —50688e¢e+4 0 —1.336le+5 0 84321e+7 0
L2.4321e+5 0 9.5004e+5 0 1.5679e+7 0 1.7171e + 9

For the given conditions u(0) = 1, u’(0) = 1 andu” (0) = —1, the augmented matrices are obtained

respectively, as

Uy=[1 0 -1 010 —-1],U=[01 0 -3 05 0],

U,=[0 0 4 0 —16 0 36].

If we replace the last three rows of the matrices W and G by the values of U,, U; and U, in, then

G=[0 —306020 0 —916143 1 1 -—1],

1.0965e+3 0 5.7218e+3 0 1.0240e+5 O 24321e + 57
0 30.6020 0 91.6143 0 —5.0688¢ + 4 0

~ 5.7218e+3 0 29920e+4 0 53574e+5 O 9.5004e + 5
W=r 0 91.6143 O 3.5427e + 3 0 —1.3361le+5 0
1 0 -1 0 1 0 -1
0 1 0 -3 0 5 0

0 0 4 0 - 16 0 36 -

Thus, the Chebyshev coefficients are calculated as

A=W™1G =[0.7645 09745 —0.2307 —0.0065 0.0048 0.0012 0]’

Therefore, the approximate solution of the problem taking m = 6 is the exact solution under the given
conditions as follows:

a, = 0.7645,a, = 0.9745,a, = —0.2307,a; = —0.0065,a, = 0.0048 ,

a; = 0.0012,a, = 0.
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ug(x) = (ag — a, + a, — ag) + (a; — 3as + 5as)x + (2a, — 8a, + 18a4)x? + (4a; — 20as)x3
+ (8a, — 48a¢)x* + 16asx® + 32a.x°

ug = 1+ x —0.4998x% — 0.05x3 + 0.0384x* + 0.0192x°

Secondly, an approximate solution u(x) will be found using the combination of least-squares with the
Legendre polynomial, which defined in the form

6

ug(x) = Z a;p; (x)

i=0
_ 2_ 2(cyr2_
Ry = —x —2mx , R, =71x2 Ry =D _px(m2—1) Ry =152 (59; 6
2- 2_ 2_ 2_ 2 2 a_ 2
R, = 105x — x(7x%-3)(x%-1) _ nx (7m%-3)(m*-1) R = 945x%  x (21x*-35x2+15) 105
8 4 2 16 2

R 3465x% 945x x(x?2—-1)(33x*—-30x%2+5) mx(m?-1)(33nw*—-30m?+5)
6= - - -
2 2

16 8
Then,
G=[0 —30.6020 0 —68.7347 0 24916e+4 0],
and,
r 1.0965e+3 0 4.5655e+3 0 5.7943e+4 0 1.3621le+5 1
0 30.6020 0 68.7347 0 —24916e+ 4 0
45655e+3 0 1.9044e + 4 0 24184e+5 0 4.5943e+5
W = 0 68.7374 0 1.4311e+3 O — 4.9825¢4 0
5.7943e + 4 0 24184e+5 0 3.0722e+6 0 5.4218e+6
0 —24916e+ 4 0 —49825e+4 0 2.0379e + 7 0
L1.3621e+5 0 4.5943e+5 0 5.4218e+6 0 3.5385¢e + 8-

For the given conditions, the augmented matrices are obtained respectively, as

Upy=[1 0
U,=[0 0 3 0

~1/2 0 3/8 0 —5/16 |, U, =
—15/2 0 105/8].

If we replace the last three rows of the matrices W and G by the values of U,, U; and U, in, then

0 1

G=[0 —30.6020

[0 1 0

1 —-17

—3/2 0 15/8 0]
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r 1.0965e+3 0 4.5655e+3 0 57943e+4 0 1.3621le+5 1
0 30.6020 0 68.7347 0 —24916e+ 4 0
45655e¢e+3 0 1.9044e + 4 0 24184e+5 0 4.5943e+5
0 68.7374 0 1.4311e+3 O — 4.9825¢e4 0
— 3 5
W = 1 0 - = 0 § 0 _1_6
0 1 0 3 0 15 0
2 8
) 0 3 0 15 105
2 8
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A=W~'G =[0.8411 0.9782 —0.3113 — 0.0115 0.0087 0.0024 — 0.0001]’

Therefore, the approximate solution of the problem taking m = 6 is the exact solution under the given

conditions as follows:
a, = 0.8411,a, = 0.9782,a,
as = 0.0024,a, = —0.0001

—0.3113 ,a3; = —0.0115,a, =0

.0087 ,

_ a, 3a, 5a6> ( 3a, 15a5) (Baz 15a, 105a6) 5
”6(")_(“0 278 16/t BT T3 2 4 16 )~
Saz 35as\ , 35a, 315a¢)\ , 63as\ . 23las

+(7_ 4>x+(8 B 16)x+(8)x+(16)x

Finally, we get the approximate solution:-

ug(x) = 1+ 0.999x — 0.5002x% — 0.0497x3 + 0.04x* + 0.0189x> — 0.0014x°

standard LST Method[1]
X Exact solution Legendre Chebyshev Legendr | Chebyshe
Poly Poly e Poly v Poly
N=6 Error N=6 Error Error Error
0 1 1 0 1 0 0 0
0.1 | 1.095004165278 | 1.0949424876 | 6.1678e-5 | 1.094956032 | 4.8133e-5 | 0.00486 | 0.00497
0.2 | 1.1800665778412 | 4435841.1796 | 4.2222e-4 | 1.179675584 | 3.9099%-4 | 0.01969 | 0.01988
0.3 | 1.2553364891256 | 1.2539790064 0.0014 1.254025696 0.0013 0.04452 | 0.04460
0.4 | 1.3210609940029 | 1.3179590016 0.0031 1.318011648 0.0030 0.07865 | 0.07889
0.5 | 1.3775825618904 | 1.37175625 0.0058 1.3718 0.0058 0.1222 0.1224
0.6 | 1.4253356149097 | 1.4157211456 0.0096 1.415741632 0.0096 0.1730 0.1746
0.7 | 1.4648421872845 | 1.4504007144 | 0.0144 1.450394784 | 0.0144 0.2346 0.2351
0.8 | 1.4967067093472 | 1.4765557504 | 0.0202 1.476548096 | 0.0202 0.3027 0.3033
0.9 | 1.5216099682707 | 1.4951769436 | 0.0264 1.495243648 | 0.0264 0.3774 0.3783
1 1.5403 1.5075 0.0328 1.5078 0.0325 0.4550 0.4597
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Table 1. The Numerical results for Example 2

Numerical Solution

Numerical Solution

T T T T T T T T T

Exact Sol.

Numerical Sol.

|

01 02 03 04 05 06 07 08 09 1
X-axis
Figure 2.1: Chebyshev -Least-Squares Technique
Exact Sol.
Numerical Sol. [
01 02 03 04 05 06 07 08 09 1

X-axis

Figure 2.2: Legendre-Least-Squares Technique
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6. Conclusions

In this paper, we have studied Chebyshev and Legendre polynomials. Then, the solution of higher
orders linear FVDEs of the second and third type using LST method it is considered polynomial as
basic functions. We found that the combination of Chebyshev and Legendre polynomials with LST
method is better than [1] and through the obtained Absolute error shown that the accuracy and efficient
method. Furthermore, Chebyshev method is better than Legendre Polynomials in absolute error.
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