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Abstract. In this paper, we extend use the spectral scheme by including a new application for solving the two-
dimensional time-space fractional bioheat equation (T-SFBHE) with initial/Neumann boundary conditions. To achieve 

this goal, we suggest the numerical algorithm that depend on shifted Jacobi-Gauss-Lobatto polynomials (SJ-GL-Ps) 

together with Jacobi-Gauss-Lobatto points to calculate the approximate derivatives of any order (fractional/ordinary) in 

the matrix form. the proposed technique of the two examples is applied in order to evidence its utility and precision. The 

numerical results designate that the utilized approach is very effectual and gives high accuracy and good convergence by 
using a few grid points. 

  INTRODUCTION 

In lastly decades, fractional calculus of any arbitrary order, which includes essential principles of the derivatives 

or integrals of the fractional-order, has been utilized for describing many phenomena in engineering, physics and 

control its results accurately in such different fields as diffusion problems, viscoelasticity, mechanics of solids, 

biomedical engineering, control theory, and economics, etc.[35].  

Spectral methods are powerful mathematical techniques and very useful to find numerical solutions of the 

differential equations of fractional/integer-orders. This efficiency comes about because of the spectral weighting 

coefficients, typically what approaching to zero quicker than any else algebraic power, indicating that 

exponential/super-exponential convergence [13]. 

A lot of studies exist that used spectral techniques for different types of applications that utilized the various 

formula for solving fractional differential equations that are that contributed to a significant rate of the ongoing 

research these days. For example, Pedas and Tamme [31] and Ghoreishi and Yazdani [20] in (2011), used the spline 

collocation methods depend on the Lagrange fundamental polynomials for solving linear differential equations in 

the multi-term fractional-order; studied the spectral Tau technique to provide an efficient numerical solutions 

construct on Chebyshev and Legendre polynomials of differential equations multi-term fractional-order. Bhrawy and 

Alghamdi [6] in (2012), utilized collocation methods to develop a shifted Jacobi-Gauss-Lobatto polynomials for 

solving the nonlinear-fractional Langevin equation. Khader [25] and Bhrawy et al. [8] in (2013), employed the 

spectral and Tau methods to find the numerical solutions for the differential equations of the fractional-order by 

utilizing the generalized Laguerre polynomials. Tian et al. [38] and Saeed and Rehman [36] in (2014), applied the 

Legendre/Chebyshev-Gauss-Labatto polynomials in the matrix form for the solution the advection -diffusion 

equation of fractional-order depending on spectral collocation method; and proposed the Hermite wavelet 

polynomials for solving linear/nonlinear-fractional delay differential equations. Bhrawy [7] in (2015), used spectral 

collocation scheme to propose new suitable techniques for solving the nonlinear-fractional sub-diffusion/reaction 

sub-diffusion equations based basically on the SJPs. Thamareerat et al. [39] and Alshbool and Hashim [3] in (2016), 

employed moving Kriging interpolation to find the numerical solutions of time fractional Navier-Stokes problems 
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by using Petrov-Galerkin method: suggested a new adjustment based on the Bernstein polynomials for solving 

Riccati differential equation and stiff systems of the fractional-order. Rahimkhani et al. [33] and Isah and Phang [23] 

in (2017), suggested the operational matrix by using Bernoulli wavelet polynomials to find approximate solutions 

for fractional delay differential equations; introduced collocation method to proposed a new operational method 

based on Genocchi polynomials for solving nonlinear fractional differential equations. Agarwal and El-Sayed [1] 

and Bahmanpour et al. [4] in (2018), utilized both them collocation method builds on the shifted Chebyshev 

polynomials (SCPs) of the second kind, Müntz Legendre polynomials and Jacobi polynomials as a test func tion for 

solving models of any arbitrary fractional-order. Ali et al. [2] in (2019), applied spectral collocation formula on 

suggest solving the fractional-order delay-differential equations depending on Chebyshev operational form. 

Pennes’ suggested in (1948) the essential structure of the mathematical designing that describes temperature 

propagation in human tissues, the model known as the bioheat equation remains extensively used in the 

hyperthermal and freezing treatments [19]. The fractional bioheat model which extracted the focus of the researchers 

and these contributed to a significant amount of the researches based on approximate and analytic methodology, for 

example (Singh et al. [37] in (2011), finite difference and homotopy perturbation method, Jiang and  Qi [24] in 

(2012), Taylor's series expansion, Damor et al. [10] in (2013), implicit finite difference method, Ezzat et al. [18] in 

(2014), Laplace transform mode, Ferrás et al. [19] and Kumar et al. [27] in (2015), implicit finite difference method, 

“backward finite difference method” and “Legendre wavelet Galerkin scheme”, Qin and Wu [32] and Damor et al. 

[11] in (2016), quadratic spline collocation method and Fourier-Laplace transforms, Kumar and Rai [26] in (2017), 

finite element based on Legendre wavelet Galerkin method, Roohi et al. [34] in (2018), Galerkin scheme, 

Hosseininia et al. [21] in (2019), “Legendre wavelet method”). 

In this work, we employed the SJ-GL-Ps in the matrix form to present the numerical approach for solving two-

dimensional T-SFBHE. 

This article is organized in that the governing equation of distribution of the temperature in the biological tissue 

will be appeared in the next section. Some definitions about the essentials principles of the fractional calculus will 

be shown (Section 3 ), followed by the shifted Jacobi polynomials operational matrix for ordinary derivatives and 

their fractional derivatives ( Section 4 ). The approximation of 1D, 2D and 3D temperature functions in matrix form 

dependent on shifted Jacobi polynomials for fractional differentiation is in (Section 5) to establish a numerical 

solution for T-SFBHE. After that, a  method for solution is explained in (Section 6) and to determine an error bound 

         is called for in Section 7 and an efficient error estimation for the SJ-GL-Ps will be given in Section 8. final 

Section 9, deals with the numerical results for the T-SFBHE. 

 GOVERNING EQUATION  

The time-space fractional version of the two-dimensional unsteady state Pennes bioheat model can be obtained 

by replacing the thermal derivative with a derivative of arbitrary positive real order         and second order 

space derivative by Riesz-Feller derivative of fractional arbitrary positive real order            . The T-SFBHE is 

given according to 

  
          

     (
           

    
 

           

    
)      

            
      

                          

                                                                                                                                                                                        

with initial and boundary conditions  

                                                                                                                                                     

                            
         

  
                                                                                                                         

                            
         

  
                                                                                                                          

                             
          

  
                                                                                                                       

                              
          

  
                                                                                                                       

where                            ,      and      symbolizes density, specific heat, thermal 

conductivity, temperature, time, distances with    , artillery temperature, heat flux on the skin surface, blood 

exudation rate, metabolic heat obstetrics in lacing tissue and external heat exporter in skin tissue respectively. The 

units and value of the symbolizations that expressed in the above equation are tabulating in Table1 [12].  
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TABLE 1. The units and values utilized in this paper of the two dimentional T-SFBHE. 

Symbolizations      t x   and      and              

Units °C °C s m kg/m
3
 J/kg °C W/m °C m

3
/s/ m

3
 W/m

3
 

values  37   1000 4000 0.5 0.0005 420 

PRELIMINARIES AND NOTATIONS 

This section is basically restricted to the principles essentials of the fractional calculus theory that will be used in 

this article.  

3.1 Definition ([9], [26], [34]): The Riemann-Liouville fractional integral of order     defined as: 

       
 

    
∫        

 

 

           

                                                                             

                                                                                                          

3.2 Definition ([9], [26], [34]): The Caputo definition of fractional differential operator defined as:  

                        {

 

        
  ∫

       

          

 

 
            

 
        

                                                           
                                                                                  

The relation that governing the Riemann-Liouville and Caputo of fractional order given via the forms [37]: 

                 
                                                 

              ∑            
   

  

  

                                                                                                               

For           and constant  , Caputo fractional derivative has some fundamental properties which are needed 

here as follows [22]:  

                

                                                                                                                    

          {
                                                           ⌈ ⌉ 

      

        
                           ⌈ ⌉            

         ∑   
 
          ∑    

  
     

             {  
}

   
               

                                                   

3.3 Definition [22]: (generalized Taylor’s formula). Suppose that                for            , then one 

has  

                                    ∑    

          
           

    
   

         
                                                                               

where      ,         . Also, one has assume 

                               |     ∑    

          
           

   |     
   

         
                                                                               

and    |       |. 

In case    , the generalized Taylor’s formula in Eq. (12) is the classical Taylors formula. 

SHIFTED JACOBI POLYNOMIALS AND FRACTIONAL DERIVATIVES 

The Jacobi polynomials which are orthogonal in the interval        are defined as the following formula  
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         {                         }

                   
    

         

 
                      

                  
     

     
         

                                                                                                                                                                   
where   

     
     ,    

     
    

 

 
                . 

For transform Jacobi polynomials on a region      , one can work the replace of variables   
  

 
   in the 

above formula. Therefore, the shifted Jacobi polynomials (SJPs) are constructed in the relation as follows [7]  

  

     
 

  

 
        

               . 

The analytic form of the SJPs     

     
    of degree   is given by: 

                                                        

     
   ∑

                           

                            
   

                                                         
where     

     
                 

        
     

     
    

        

        
. 

From the SJPs, we can be obtain the formula that most utilized are the “shifted Legendre polynomials” (SLPs) 

     ; the “shifted Chebyshev polynomials” (SCPs) of the first kind        ; the SCPs of the second kind        ; 

the nonsymmetric SJPs, the two important special cases of  SCPs of third(fourth) kinds         and        ; and 

also, the symmetric SJPs that called “Gegenbauer (ultraspherical) polynomials”     
    . These orthogonal 

polynomials are interrelated to the SJPs by the following relations  [16]  

          

     
                                   

    
 
 

 

    
 

 
 
 

   

(  
 

 
   

 

 
)
     

                  
       (

 

 
)

 (  
 

 
)

  
   

(
 

 
 
 

 
)
             

     

       
 

   

(
 

 
 
  

 
)
                                                                               

         
     

       
 

   

   
 

 
 
 

 
 
         

     
      

 
 

 

      
 

 
 
 

   

    
 

 
    

 

 
 
     

The orthogonal property of SJPs is given by 

                    ∫     

     
       

     
       

     
  

 

                                                                                                                      

where     

     
          and      {

      

            

                

          
     

                                                              
 

The fractional derivative of the vector      [    

     
        

     
          

     
   ]  can be discusses in the lemma 

and theorem  as following 

4.1 Lemma:- Let     

     
    be the SJPs. Then       

     
                ⌈ ⌉          

Proof:- Using properties (ii) and (iii) of the Eq. (14) into Eq. (16) lead us to prove the lemma. 

                         

The following theorem is generalizing the operational matrix of derivatives form an arbitrary fractional order based 

on SJPs that have given as    

4.2 Theorem [15]:- Let      be shifted Jacobi vector defined in      [    

     
        

     
          

     
   ]  and 

assume also,    . Then 

                                 
                                                                                                                                                    

where   
   4

 is the             shifted Jacobi operational matrix of derivatives of order   in the Caputo 

formula and is defined by: 
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   ⌈ ⌉   

 
       

 
       

 
   ⌈ ⌉   

 
       

 
       

 
   ⌈ ⌉   

 
       

 
       

 
 
 
 
 
 

 
   ⌈ ⌉   

 
       

 
       ]

 
 
 
 
 
 
 

 

where 

                         ∑     
 
  ⌈ ⌉                                                                                                                                                

  and      is given by ∑
                                     

                              

 
                                                                                  

Proof. Applying Eq. (20) into Eq. (42) (the SJPs     

     
    of degree  ) we obtain 

      

     
    ∑       

                    

                            
     

  

   

 

 ∑
                           

                                  

 

   

       ⌈ ⌉ ⌈ ⌉                                                    

Now, approximate      by       terms of shifted Jacobi series, we get 

                          ∑    
 
       

     
                                                                                                                                          

where the coefficients     can be obtain as following 

    
 

    
∫      

     

     
               

 
 

    
∫      

          ∑                            

                            
   

       

                                                 
 

    

∑                            

                            

 
    ∫          

                                      

 
 

    

∑ [       
                    

                            
  

                  

            
            ]

  

   

 

 
                  

              

 ∑       
                              

                              
 

  

   

 

Now, substituting Eq. (25) into Eq. (27), we observe that 

                                

     
    ∑            

     
    

      ⌈ ⌉ ⌈ ⌉                                                                    

where         is given in Eq. (26). We can write the Eq. (50) in a vector form as: 

                            

     
                                      ⌈ ⌉                                                             

Also from Lemma 4.1, we have 

                            

     
                         ⌈ ⌉                                                                                

By a combination of the Eqs. (25-26), we obtain the desired result. 

Notes that if      , then theorem 4.2 gives the formula      (    )
 

          

4.3 Corollary [35]:- If         and     , then      is given as follows: 

     
                           

                                    
 ∑

                         

                        

 

   

  

By the aid of properties of the SJPs with simplification, we get 

                ∑
                       

                                    

 

   

       

Then one can easily demonstrate that 
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        ∑     

 

  ⌈ ⌉

 

where      is given as in [35]. It is clear that the SJPs for derivatives  in the matrix form for fractional calculus 

with      , is in complete agreement with the SLPs for derivatives in the matrix form for fractional calculus 

[35]. 

4.4 Corollary [14]:- If       
 

 
  then      given as follows: 

     
              

 

 
     

 

 
       

          
 

 
                     

 ∑
                     

 

 
 

    
 

 
                   

 

   

       

by the aid of properties of the SJPs with simplification, we have 

          
                       

 

 
 

          
 

 
                           

               

Then one can easily elucidate that 

        ∑     

 

  ⌈ ⌉

 

where      and      are given as in [14]. It is clear that the SJPs for derivatives in the matrix form for any 

arbitrary fractional order with      
 

 
   is complete accord with the SCPs for derivatives in the matrix form for 

fractional calculus obtained by [14]. 

SHIFTED JACOBI OPERATIONAL MATRIX OF FRACTIONAL DIFFERENTIATION  

A temperature function      defined for       may be expressed in terms of the SJPs as 

                        ∑   
 
       

     
                                                                                                                                              

where the coefficients    are given by 

                        
 

    
∫     

 

     

     
       

     
                                                                                                     

In practice, consider the      -term SJPs so that 

                       ∑   
 
       

     
                                                                                                                                   

where the shifted Jacobi coefficient vector    and the shifted Jacobi vector      are given by 

              
       [    

     
        

     
          

     
   ] . 

By extending the above property in two variable functions, we can approximate a two variable function        

defined for       and        dependent on double SJPs as  

                        ∑ ∑    
 
   

 
       

     
       

     
                                                                                                                  

where  

                          
 

        
∫ ∫       

 

     

     
       

     
    

     
         

 

                                                                     

such that  
     

           

     
        

     
   . 

In practice, consider the       and       terms double SJPs with respect to      so that 

                           ∑ ∑    
 
   

 
       

     
       

     
                                                                                           

where the shifted Jacobi coefficient matrix   and the shifted Jacobi vectors      and      are given by. 

  {   }
     

   
       [    

     
        

     
          

     
   ]         [    

     
        

     
          

     
   ] . 

Now, in order to approximate a three variable temperature function          defined for            
   and        dependent on  triple Jacobi series as  

                       ∑ ∑ ∑  ̃        

     
        

     
       

     
    

   
 
   

 
                                                                                   

In practice, consider the               and       terms triple SJPs with respect to       so that where 
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                    ̃    
 

              
∫ ∫ ∫         

 

      

     
        

     
       

     
    

     
             

  

 

  

                    

such that   
                   

     
          

     
       

     
   . 

                       
        ∑ ∑ ∑  ̃        

     
        

     
       

     
    

   
  
   

  
            ̈                                  

where the symbol ⊗ is the Kronecker tensor product, the shifted Jacobi vectors            and      are given by 

                       

     [     

     
         

     
            

     
   ]         

     [     

     
         

     
            

     
   ]         

     [    

     
        

     
          

     
   ]           }

 

 

                                                                                      

Also shifted Jacobi coefficient matrix  ̈ is given in a block form as follows  

                       ̈  

[
 
 
 
  ̃   

 ̃   

 
 ̃   

 ̃   

 ̃   

 
 ̃   

 
 
 
 

 ̃    

 ̃    

 
 ̃    

 ̃   

 ̃   

 
 ̃   

 ̃   

 ̃   

 
 ̃   

 
 
 
 

 ̃     

 ̃     

 
 ̃     ]

 
 
 
 

                                                                     

DESCRIPTION OF THE METHOD  

The selection of collocation points is playing a significant role in the efficiency and convergence of the 

“collocation method”. For boundary value problems, the “Gauss -Lobatto” points represent one of the most 

important keys utilized of approximation. It should be renowned  that for a differential equation with the singularity 

at     in the region       one is unable to apply the “collocation method” with “Jacobi-Gauss-Lobatto” points 

because the two assigned abscissas   and   are necessary to be used as two points from the collocation nodes. We 

use the “collocation method” with “Jacobi-Gauss-Lobatto” nodes to treat the two dimensional T-SFBHE; i.e., we 

collocate this equation only at the                 “Jacobi-Gauss-Lobatto” points              and 

       respectively. These equations and with initial, boundary conditions generate                  
   nonlinear algebraic equations by using one of the iteration methods can be solved.  

Now, we set    
     

      {     

     
         

     
            

     
   }   

We recall the “Jacobi-Gauss-Lobatto” generators. Such that    is any positive integer,    
     

  stands for the 

group of all algebraic polynomials from degree at most   . If we denoting       by         , and      

     
 by         

     
, 

      , to the grid points and “Ghristoffel numbers” [13] of the standard or “shifted Jacobi-Gauss-Lobatto” 

quadrature on the        or      
   respectively. 

                                        
  

 
                                                                                                                        

         

     
  

  

 
           

      
For any         

     
   we have 

∫      

     

  

 

       (
  

 
)

     

∫            

 

  

 (
  

 
     )           

 (
  

 
)

     

∑      

     
(     )

  

   

 (
  

 
(           

  ))                                                                                                                                                                                                  

 ∑          

     

  

   

 (        )      

  where          and          

     
 are the grid points and equivalent weights of the “shifted Jacobi-Gauss-quadrature” 

technique on the region        respectively. In the same procedure on the intervals        and       then one 

can readily show that  
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(       )                                                                                                              

                                  
 

 
(      )                                                                                                                    

        

     
 (

  

 
)

     

     

     
 and         

     
 (

 

 
)

     

    

     
  

We will structure the numerical solution algorithm of Eq. (1) based on SJ-GL-Ps, under the given conditions, in 

the series or matrix form by utilizing Eqs. (41-44) into the shifted Jacobi vectors                      define by 

Eq. (50). In addition, the “shifted Jacobi-Gauss-Labatto” coefficient matrix  ̈ is given by Eq. (51). 

We can approximate the 1st spatial derivatives and their temporal/spatial fractional derivatives as  
 

                                  

     

         

  
       ̈[   

   
    ]     

         

  
       ̈     [   

   
    ]

          

    [  
   

    ]   ̈          

           

    
       ̈[   

    
    ]      

           

    
       ̈     [   

    
    ] }

 
 
 
 

 
 
 
 

                                                                                                                              

 

By appling solution method for the two dimensional T-SFBHE based on Jacobi-Gauss-Labatto in the matrix 

form that given in Eq. (1), we get 

       [  
   ]   ̈    ⨂       (      ̈ [   

    
    ] ⨂            ̈     [   

    
    ])  

            ̈                                                                                                                       

where,              
                    . We collocate Eq. (66) at                  point, 

as 

    (      ) [  

   
]    ̈ (        ) ⨂  (        )

  (  (      ) ̈ [   

    
 (        )] ⨂  (        )

   (      ) ̈ (        ) [   

    
           ])  

       (      ) ̈ (        ) ⨂  (        )   

  (                        )                                                                                                                      
For             ,              and        . 

where                   and                   are the shifted Jacobi-Gauss-Lobatto quadrature of 

     

     
    and      

     
    respectively, while                are the roots of     

     
   , that generates a system of 

                nonlinear algebraic equations in the unknown extension coefficients,  ̃   ,           

  ,              and        , and the rest of this system is obtained from the initial, boundary conditions  

by utilize Eqs. (2-6), as 

       ̈ (        )  (        )                                      

  (      ) ̈[   

   
    ]  (        )                                   

  (      ) ̈[   

   
    

 ]  (        )      
                              

  (      ) ̈ (        ) [   

   
    ]                                   

  (      ) ̈ (        ) [   

   
    

 ]      
                              }

 
 
 

 
 
 

                                         

This generates                     nonlinear algebraic equations, which can be solve by using 

Levenberg-Marquardt algorithm, taking  ̈ as its variable, with an initial guess of all zeros, to reduce Eqs. (40-44), 

consequently, the approximate solution         
        at the point (                        ) given in Eq. (39) can 

be calculate. 
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 ERROR BOUND 

We will present an analytic expression for the error norm of the preferable approximation for a smooth 

temperature function           , where        
       

        by its expansion employing triple Jacobi 

polynomials. This shows an upper bound on the error expected in the numerical solutions. Let at first examine the 

space 

        

        {     

     
        

     
       

     
   }                             

Assume that         
        belong to         

   
, be the preferable approximation of temperature function 

        . Then depending on the qualifier of the best approximation, have          
                

   
 

                        ‖                 
       ‖

 
 ‖                 

       ‖
 

                                                       

It is appeared that the previous inequality also be correct if         
        denotes the interpolating polynomial 

for          at points                           , where                   are the roots of         

     
   , 

                  are the roots of         

     
    and                   are the roots of       

     
   . Thus, by the 

applying similar procedures as in [7] 

                 
        

             

             
∏ (          )

  
    

             

             
∏ (          )  

    
            

           
∏ (        ) 

    

           ( ̃  ̃   ̃)

                  

                         
∏             

  
   

∏ (          
)  

   
∏            

   

                    
                                                                                                     

where    ̃       
     ̃         and    ̃       , and we can obtain: 

‖                 
       ‖

 
 

 |
             

      
|         

       
‖∏ (          )

  
   

‖
 

       
  |

             

      
|         

       
‖∏ (          )  

   
‖

 
       

 

 |
            

     
|         

       
‖∏ (        ) 

   ‖
 

      
 

                             |
           ( ̃  ̃  ̃ )

                 
|           

       
‖∏ (          )

  
   

‖
 

‖∏ (          )  
   

‖
 

‖∏ (        ) 
   ‖

 

                    
                        

Since          is a smooth temperature function on  , then there exist a constants           and   , such that: 

                          

 |
             

      
|

         
          

 |
             

      
|         

          

 |
            

     
|         

          

 |
           ( ̃  ̃   ̃)

                 
|             

       
}
 
 
 

 
 
 

                                                                                                             

The factor ‖∏ (          )
  
   

‖
 

minimized as follows: Let utilize the one-to-one mapping   
  

 
      

between the intervals         and        to deduce that 

          
       ∏(          )

  

   

               
                        

       |∏
  

 
(          )

  

   

|                
                       

 (
  

 
)

    

          
       |∏(          )

  

   

|
               

                                                                                                               

 (
  

 
)

    

          
       |

     

        

 
  

     |                 
     

where    

     
 

            

                    
 is the leading coefficient of      

     
    and          are the roots of      

     
   . 

It is a well-famed reality [29], that the Jacobi polynomials satisfy 
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       |     
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where             
 

 
  and    is a favorable constant, and reach the maximum of their absolute value on the 

interval       , at      provided that      and     
 

 
 from [5] 

         
       |     

     
   |       

     
    

         

              
  (       )  

from Eqs. (48-49), we get 

‖                 
       ‖

 
 

  ̃

(
  
 

)
    

       

   

            
   ̃

(
  
 

)
    

       

   

            
   ̃

(
 

 
)
   

      

  
           

 

             ̃  
(
  
 

)
    

(
  
 

)
    

(
 

 
)
   

       

   
     

   
     

  
                         

                                                                                                                          

Hence, an upper bound of the maximum absolute errors achieved for the approximate solution. The convergence 

of the recommended method depends fundamentally on the above error bound. Moreover, the speed of convergence 

of “Jacobi collocation methods” was proved be fast for any choice of shifted Jacobi parameters [17, 28]. 

ESTIMATION OF THE ERROR FUNCTION 

In this section, we will give an efficient error estimation for the SJ-GL-Ps and also a technique to obtain the 

corrected solution of the T-FBHE as in Eq. (1) under the Eqs. (2-6) by using the residual correction method and thus 

the approximate solution Eq. (49) is corrected by the proposed method [40]. 

 For our aim, we define         
                         

        as the error function of the Collocation 

approximation         
        to         , where          is the exact solution for the Eq. (1) under Eqs. (1-6). 

Hence,         
        satisfies the following system:    

 [        
       ]    

         
       

  
  (

           
       

    
 

           
       

    
)              

       

     
                            

                                                                                            

with the initial and boundary conditions  

                                                  
                                                                                               

                                           
         

       

  
                                                                                               

                                          
         

       

  
                                                                                               

                                          
         

        

  
                                                                                              

                                          
         

        

  
                                                                                              

Here,         
        is the residual function of the T-SFBHE (2.1) which is obtained by substituting the 

approximate solution         
        into Eqs. (2--5). 

Now, let us subtract Eqs. (81-86) from Eqs. (2-6) respectively. The we obtain the error problem:    

  
         

       

  
  (

           
       

    
 

           
       

    
)              

              

          
                                                                                                                                                  

with the homogeneous conditions:  
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Finally, we solve the error Eqs. (87-92) in the same method which is suggestion in Section 6 and thus we get the 

approximation to         
 as following: 

        
        ∑ ∑ ∑  ̃̃        

       
        

       
       

       
   

 

   

  

   

  

   

        

        ̃̈                                                                                                                                           

By examining the Eq. (1), while the theoretical solution is not known, the maximum absolute error can be 

estimated approximately by using 

                                      
           {        

                           }                        

The above error estimation has established on the convergence rates of expansion in Jacobi polynomial [29]. 

Therefore, it provided reasonable convergence rates in temporal or spatial discretization. 

 ILLUSTRATIVE TEST PROBLEM 

In this section, we apply the approach which has been presented in section 6 for solving the two dimensional T-

SFBHE in the two examples based on SJ-GL-Ps. The two dimensional T-SFBHE transformed into non-linear 

algebraic Eqs. (67-68) respectively. A Levenberg-Marquardt technique, taking  ̈ as its variable, which used to 

minimize these equations as a set of least squares problems. This  ̈ is then used in Eq. (65) to acquire our 

approximate surface of          . In these examples, we takeng         ,       and using Gauss-

Labatto points. Tables 2 and 3 shows that the maximum errors satisfy from solving the problem under  SJ-G-LPs  

study on        
           and         when                          and   . 

 
Example1: 

Consider the two dimensional T-SFBHE (2.1) case where by choosing      . So, the exact solution under initial 

and Neumann boundary conditions is: 

                                                                                                                                                                           

TABLE 2. Maximum errors obtained for Example 1 with         and          . 

        Maximum Error 

2 3.922158384739305e-07 

3 7.216142608257314e-05 

4 6.375869214281238e-05 

5 5.817127026190860e-04 

6 5.138294572262225e-04 

7 7.442164453124178e-04 

8 6.344458501388317e-04 

9 7.111922919520453e-04 

10 5.847427290177620e-04 

 
  

 
 
 
 
 

 
 

FIGURE1.Numerical and exact solutions for Example 1 at                     

                       . 
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FIGURE 2: Maximum error for Example 1 at                     

                      . 

 
Example 2: Consider the two dimensional T-SFBHE (2.1) case where by choosing      . So, the exact solution 

under initial and Neumann boundary conditions is:  

                                                                                                                                                               

TABLE 3. Maximum errors obtained for Example 2 with                      . 

        Maximum Error 

2 2.840849002247126e-03 

3 1.344468016142741e-03 

4 1.125036383839984e-03 

5 6.377698966986145e-05 

6 5.738165020829911e-05 

7 3.158523192325902e-04 

8 2.720642876425927e-04 

9 4.160982083121212e-04 

10 4.160982083121212e-04 

 

  
 

 
 
 
 
 

 
 
 

FIGURE 3. Numerical and exact solutions for Example 1 at                      

                      . 
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FIGURE 4: Maximum error for Example 1 at                      

                    . 

 CONCLUSION 

In this article, an approximate approach for solving two-dimensional T-SFBHE has been introduced. The 

fractional derivatives are described in the Caputo form. The proposed technique depend on the spectral collocation 

method of operational matrix formula for the shifted Jacobi-Gauss-Lobatto polynomials. From Figures 1 and 3 

clarified a comparison between then numerical and exact solutions of examples  1 and 2 respectively. The Figures 2 

an 4 indicated the maximum error values observed that the low error for all sample size, with the best performance 

occurring for                      at just under                    and for         
             at just under                    respectively. 

The error of the numerical solution was estimated theoretically and the exponential convergence rate of the 

proposed method in both temporal and spatial discretization was graphically investigated analyze d. The numerical 

results show that the present technique has higher accuracy, good convergence, and reasonable stability (depending 

on Figures 2 and 4) by using few grid points.   
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