
AIP Conference Proceedings 2235, 020010 (2020); https://doi.org/10.1063/5.0007637 2235, 020010

© 2020 Author(s).

Analysis of error estimate for expanded H1

- Galerkin MFEM of PIDEs with nonlinear
memory
Cite as: AIP Conference Proceedings 2235, 020010 (2020); https://doi.org/10.1063/5.0007637
Published Online: 04 May 2020

Hameeda Oda Al-Humedi, and Ali Kamil Al-Abadi

https://images.scitation.org/redirect.spark?MID=176720&plid=1085724&setID=379066&channelID=0&CID=358604&banID=519893954&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a9535e29d1c2cd1e986d12f7504a5dc481499373&location=
https://doi.org/10.1063/5.0007637
https://doi.org/10.1063/5.0007637
https://aip.scitation.org/author/Al-Humedi%2C+Hameeda+Oda
https://aip.scitation.org/author/Al-Abadi%2C+Ali+Kamil
https://doi.org/10.1063/5.0007637
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0007637


 
 

       Analysis of Error Estimate for Expanded   - Galerkin 

MFEM of PIDEs with Nonlinear Memory  

Hameeda Oda Al-Humedi 
1, a)

, Ali Kamil Al-Abadi
1, b) 

 
 

1
Department Mathematics, College of Education for Pure Sciences, Basrah University, Basrah, Iraq  

Corresponding Author: 
a)

ahameeda722@yahoo.com  
b)

alimath1976@gmail.com 

Abstract. In this paper, the error estimate of expanded    -Galerkin mixed finite element methods (MFEMs) has been 
discussed with studied semi-discrete for parabolic integro-differential equations (PIDEs) with a nonlinear memory. In 

addition, we derived an error estimates for the unknown function, gradient function, and flux. 

I.  INTRODUCTION  

Pani presented a new MFEM called   -Galerkin mixed finite element procedure  [  ] which splits given  

equations into a first-order system and can be viewed as a nonsymmetric version of least square method . Deepjyoti 

Goswami Amiya K. Pani and Sangita Yadav established optimal Error Estimates of two MFEMs for PIDEs with 

Nonsmooth Initial Data [  ].\ 
Compared to standard mixed methods [           ] ,   -Galerkin MFEM has many good features. The first is 

choosing of finite element spaces that they are not subject into a Ladyzenskaja-Babuska-Brezzi (LBB) conditions. 

The second finite element spaces    (for approximating an unknown function) and    (for approximating the flux) 

may be of different polynomial degrees. Moreover, the    and    error estimates do not require a finite element 

mesh become quasi-uniform. Although we seek extra regularity in the solution, a best order of convergence to the 

flux in    norm can be obtained. Up to now,   -Galerkin MFEMs have been widely used to solve some partial 

differential equations [     ] . 
In [ ], an   -Galerkin MFE procedure deals with a nonlinear parabolic equation in  porous medium flow by 

combining the   -Galerkin formulation and the expanded MFEMs  are suggested. The formulation has the 

advantages of   -Galerkin method and expanded MFEMs, it can solve the scalar unknown, its gradient and its flux 

directly. It is proper to the case anywhere the coefficient from the differential is a little tensor that do  not need to be 

inverted. Furthermore, the formulation permits the use from standard continuous and piecewise (linear and tall-

order) polynomials in contrast for continuously differentiable piecewise polynomials required by standard   -
Galerkin methods, and is free of LBB condition as required by MFEMs. Certainly, this formulation has its hold 

disadvantages such as it needs to deal with the large size matrix. 

The purpose of this paper is to extend the   -Galerkin MFEM developed in [  ] to parabolic integro-differential 

equations with a nonlinear memory. Then, the paper will present the error estimates. 

The rest of this article is orderly as follows: In Section  ,   -Galerkin MFEM combined with expanded MFE for 

nonlinear PIDEs with memory is established. In Section  , optimal order error estimates for the semi-discrete 

scheme of the,   -Galerkin MFEM combined with expanded MFEM are proved. Throughout this research,    
indicates a general positive constant which does not depend by  . in the alike time, we show a useful integral 

inequality. 

                                             ∫ ∫ | ( )|      ∫ | ( )|                                                                                               
 

 

 

 

 

 (   ) 
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where    is a integrable function in [   ],   [   ]  Also the kernel   is assumed  to be positive definite ,i.e. ,  

all   (   ]       
 (   )  and 

                                       ∫ (∫  (   ) ( )  
 

 
)

 

                                 [   ]                                                         (   ) 

II. GOVERNING PROBLEM 

 Consider the following PIDE with nonlinear memory[  ]: 

      ∫ (   )(   ( (   )    (   ))

 

 

  (   )      (   )) 

  (   ) (   )                                                                                                                                      (   ) 
 (   )                                                     (   )                                                  
 (   )    ( )                                                                                                         

Where,   be smooth bounded range in   (       ) with the Lipchitz continuous boundary    .   (   ] is 

the time interval with      , suppose the kernel    be positive definite as well as a smooth neither non smooth 

memory and   is a known function. 

For clearly, we will not do the dependence of variable   in  (   )  (   )  (   ) and  (   )   we give the 

following hypotheses about          and   in the following show:  

( ) The functions  ( )        is a tensor function,  ( )      ( )     are vector functions and  ( )     is 

scalar function, respectively.  

( )  All the functions  ( )   ( )  ( )   and  ( ) are continuously differentiable with respect to any variable 

also smooth and bounded. 

 Problem (   ) and a nonlinear version thereof exist in many physical operations in which this is needful to take 

in tally the effects from memory due to a reduction of the usual diffusion equations, [        ], to approximate the 

solution   of PIDEs. Both finite difference and finite element methods have been analysed  widely  in the past for 

both the linear and nonlinear problem  [                     ] . Recently, many numerical methods like 

MFEM[     ], finite volume element method (FVM)[  ], and discontinuous Galerkin method (DGM) for space 

discretization or time discretization[  ], have been proposed to solve PIDEs. 

III. EXPANDED   -GALERKIN MFEM FOR PIDES WITH NONLINEAR  

MEMORY  

  Weak Formulation 

Re-write a equation (   ) as following: 

     (   ∫ (   )( ( )    ( ))  

 

 

)

 ∫ (   )( ( )      ( ))  

 

 

                                                                                                                                                                  (   ) 
to definite  the   -Galerkin  MFEM combined with expanded mixed element method. We split the nonlinear 

PIDEs together memory  (   ) into first-order system as follows: 

     ∫ (   )( ( )    ( ))  

 

 

 

And                                   

as follows 
 

            ∫  (   )( ( )     ( ))                                                                                                      (    )
 

      
                                                                                                                                                                        (    ) 
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                             ∫  (   )( ( )   ( ))                                                                     (    ) 

  
                      
        (   )    ( )                                                                                                           (    ) 

A  weak form into up equations is find (     )    
 ( )      

Such that  

        (    )  (       )  (∫  (   )( ( )    ( ))  
 

     )  (     )                                       (    ) 

                   (    )  (     )                                                                                        ( )          (    ) 
                                                (   )  (   )  (∫  (   )( ( )   ( ))     

 
)                                    (    ) 

                      σ(0)= u_0 (x)                                                                                                            (3.3d) 

      
where   

                                (     )  {  (  ( ))
 
        ( )} 

with norm  

                               (     ) (   
        )

 
  

and     

                              
 ( )  {    ( )                 } 

with  inner product   (   )  also norm    . 
To proof the equivalence between (   ) and (   ), we need the following  lemmas: 

Lemma     ([ ])  Let     be a bounded range and the Lipschitz continuous boundary     . Then, every    
 (     ), there exists      ( ) ⋂  

 ( ) and a divergence free    (     ) ,       . 

Lemma     ([  ])  Let   be a bounded field also a Lipschitz continuous boundary  . Then, all     ( ), 

there exists    (  ( ))
 
  (     ) ,        

Theorem     by using the conditions which explained in above Lemmas. (     )    
 ( )      is a 

solution of the system (   ) if and only if it is a solution to the weak formulation(   ). 
Proof: A solution to the system (   )  is a solution to the weak form(   ). Then, we have to prove that a solution 

to the weak form (   ) is a solution to the system (   ).We choose       ∫  (   )( ( )   ( ))  
 

   in 

(    ) to have  

(      ∫  (   )( ( )   ( ))  
 

 
)  (      ∫  (   )( ( )   ( ))  

 

 
)                      

(∫  (   )( ( )   ( ))       ∫  (   )( ( )   ( ))  
 

 

 

 
) then  

(    ∫  (   )( ( )   ( ))       ∫  (   )( ( )   ( ))  
 

 

 

 
)    that means  

                                                     ∫  (   )( ( )
 

    ( ))                                                                            (   ) 

Using Lemma    , there exists a     ( ) ⋂  
 ( ) and  a divergence free[4] 

    (     ) such that         
Putting        into (    )  exhibit 

                         (       )  (     )               
                                                                 (     )  (    )  (     )           

 ( )                                           (   ) 
Divergence theorem indicate  

                                                                   (    )   (     )                       
 ( )                                          (   ) 

From  (   )  and (   ) that we get  

                 (     )  (     )                              
 ( )  

which implies 

                                         
Now inserting               in            we obtain  

                                                                                                                                                                                    (   ) 
To get        we substitute (   ) and (   )  in (    ) then by using the divergence theorem for the first term 

from the resulting equation to have:   
(      )  (    )  (  (    )     ) 
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                                     (  (∫  (   )( ( )  (    )   ( ))  
 

 
)     ) 

                                      (     )                                                                                                                                   (   ) 
putting     in (   ) and since    (     ) is divergence-free and        ,we have  

                                                       (    )  
 

 

 

  
(   )                                                                                                (    ) 

furthermore, using (   )  for     we get  

       (   )    (   )   (   )     ( )   (   )  
which means    (   )     
Integrating (    ) with respect time from   to  , we have  

                             (   )     
thus, we obtain       
Now, we can be rewritten (3.9) as follows:  

 (      )  (  (   ∫  (   )( ( )      ( ))  
 

 
)     ) 

                                                                   (     )                                                    (     )                              (    ) 
Since         

 ( )  by Lemma  (   ) that there exists an    (     )  such that  

                                           
Thus, (    ) becomes  

                                 (       )  (       )                                  (     )  
and we have  that         , that is  

                                                                                                                                                                           (    ) 
by (   )  with (    ) we get  

                                                     (  ∫  (   )
 

 
( ( )     ( ))  )                                                 (    ) 

then with (   ) we conclude  

                                                   ((    )  ∫  (   )( ( )  (    )   ( ))  
 

 
)                           (    )  

and     ,we get 

                                                                (   ∫  (   )( ( )      ( ))  
 

 
)                                         (    )   

this completes the proof. 

Semi Discrete Scheme  

To discuss the semi discrete   -Galerkin MFEM combined with procedure, we first give some definitions and 

some properties of projections. Let    be a partition of   to a finite number from elements, so that, ̅   
 ⋃  ̅    

 and element edges lying on the boundary may be curved [  ]. Let    denote the  triangle diameter of  . 

put             . Let    be the finite dimensional subspaces of   
 ( ) defined by 

   {     
 ( )   |    ( )}  

where   ( ) denotes the spaces of polynomials from degree at most   on  . Moreover, we denote by    the 

vector spaces in  MFE spaces with index  . It is well known to    and    satisfy the inverse property and the 

following approximation properties [ ],[  ]: 
   
     

                  
                      

   ( )  

   
     

         
                                                       ( 

   ( ))
 
  

   
     

   (    )     
                                                                     ( 

   ( ))
 
  

to analyze the error estimates, we require the following projection operators.  Let      
 ( )    be the Ritz 

projection [8] defined by:  

                                                       ( (      )    )                                                                                        (    ) 
which the following results hold: 

                                                         (     )     
                                                               (    )      

also  we know that the Raviart–Thomas projection     (     )      define by[7] 

                                             (  (     )     )                                                                                          (    )        
we have the following approximation features:  
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                                                                                           (    ) 

                                                               (     )     
                                                                                     (    ) 

Now based on the above of preliminaries, we define   -Galerkin  MFEM combined with expanded MFEM for 

the system (   )  as follows : find(        )             such that 

        (      )  (         )   (∫  (   )( (  
 

 )      (  ))       )  (      )                         (     )    

                                                 (      )  (       )                                                                                                (     )   

                                             (     )   (∫  (   )( (  )  
 

   (  ))     )                                             (     )  

                         and            . 

IV. ERROR ESTIMATES TO THE SEMI-DISCRETE  

In this section, we decompose error estimates for the   -Galerkin MFEM combined with expanded MFEM 

presented in Section 3.1 are:   

                  (     )  (      )     , 

                   (     )  (      )       
and 

                  (     )  (      )       
applying (   ),(    ), and auxiliary projections (   ),(   ). We get the error equations in     and   as follows:  

(     )  (     )   (        )  (        )   (∫  (   )( ( )   (  ))   )
 

        )  

(∫  (   ) (  
 

 )       )                                          (∫  (   ) (  )        
 

 
)  (∫  (   )( ( )  

 

 

 (  ))       )                                                                                                                                                                         (   ) 

                                                                  (     )  (      )  (     )                                                                      (   ) 
       (    )  (    )  (    )  (    ) 

                                            (∫  (   )( ( )   (  )) )     
 

 ))  

                                            (∫  (   ) (  
 

 )      )  

                                            (∫  (   ) (  )      
 

 
)  

                                               (∫  (   )( ( )   (  ))     
 

 
)                                                                                     (   )  

clearly, where 

  ( )     (  )     ( ( )     (  )     (  )     (  )     

                                     ( ( )   (  ))     (  )  (   )  

We have                             also the above equation is holds. 

Similarly, we have  

                 ( )   (  )   ( ( )   (  )   (  )   (  )   

                                                   ( ( )   (  ))   (  )(   )  

 Now, we will prove the error estimates for                     
Theorem     Assume that   ( )       ( ) and let (     ) and (        )be the solution of (   ) and 

(    ), respectively. Then, the optimal error estimates hold:  
( )             

    (     )  

( )     (    )     
    (     )  

( )                         
    (       )  

where     and     for        The index    can be relaxed to include the case of      for      
Proof . For prove ( ) we use the triangle inequality, we have 

         ‖            ‖                            (    )  
                     ‖     ‖   ‖      ‖   

                                                         ‖ ‖   ‖ ‖                                                                                                                 (   ) 

 where            and            . 
Since estimate of   is given in (    ) it only we need to estimate  , we choose       in (   ), to have 

                                                                            (ξ, β)=( β, β)-(θ, β)                                                               (4.5) 
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applying Young’s inequalities for each term of the above equation  

                             (    )   ‖ ‖  
 

  
‖  ‖  

                             (     )   ‖  ‖  
 

  
‖  ‖  

                             (    )   ‖ ‖   
  
‖  ‖  

where    (       
 

  
  ) 

Then, substituting the above inequalities into (   ) we obtain  

 ‖  ‖  
 

  
‖  ‖   ‖ ‖  

 

  
‖  ‖   ‖ ‖  

 

  
‖  ‖  

 ‖  ‖  
 

  
‖  ‖  

 

  
‖  ‖   (‖ ‖  ‖ ‖ ) 

(  
 

  
 
 

  
) ‖  ‖   (‖ ‖  ‖ ‖ ) 

Where     
 

  
 
 

  
  and    

 

 
 

since        
  ( ) ,then ‖ ‖    ‖  ‖ ,thus ,we have the estimate ‖ ‖ ,  

                                                             ‖  ‖    (‖ ‖
  ‖ ‖ )                                                                                   (   ) 

                                                                       ‖ ‖     (‖ ‖
  ‖ ‖ )                                                                                  (   ) 

note that into the above inequality, we need to estimate     we choose         in (   ) to get  

(   )  (   )  (   )  (   )  (∫  (   )( ( )   (  
 

 )) )    )  

                                                             (∫  (   ) (  )     
 

 
)  

                                                            (∫  (   ) (  )     
 

 
)  

                                                             (∫  (   )( ( )   (  
 

 ))    )  

                                                                                                         ∑   
 
                                                                          (   ) 

We apply Young’s inequalities to estimate the terms on right side with appropriately small ε,    

                                               |  |  | (   )|   ‖ ‖
   ‖ ‖                                                                                  (   )  

                                              |  |  |(    )|   ‖ ‖
   ‖ ‖                                                                                     (    )       

                                               |  |  |(   )|   ‖ ‖
   ‖ ‖                                                                                      (    )    

|  |  | (∫  (   )( ( )   (  
 

 ))     )|  
                                  ∫ (‖ ‖  ‖ ‖ 

 

 )   ‖ ‖                                                                         (    ) 
where    depends on  (   ) ,and    depends on ‖ ‖   (  ). 

|  |  | (∫  (   ) (  
 

 )     )|  

                                                       ∫ ‖ ‖
     ‖ ‖ 

 

                                                                                              (    ) 

where      depends on  (  ) 

                                               |  |  |(∫  (   ) (  
 

 )     )|                                                                           (    ) 
|  |  | (∫  (   )( ( )   (  

 

 ))    )|  

                                     ∫ (‖ ‖
  

  ‖ ‖ )   ‖ ‖                                                                                                      (    ) 

combining the above inequalities from (   ) to (    ), we obtain 

                   ‖ ‖    (‖ ‖
  ‖ ‖  ‖ ‖ )    ∫ (‖ ‖

  ‖ ‖  ‖ ‖ )                                                     (    )
 

  
where      (          ). 
Also here, we need to estimate    taking      in (   ) yields 

(   )  (   )  (   )  (   ) 

                (∫  (   )( ( )   (  )) )    
 

 
)  

                (∫  (   ) (  )     
 

 
)  
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                (∫  (   ) (  )     
 

 
)  

                (∫  (   )( ( )   (  ))    
 

 
)  

                                                                          ∑                                                                                                                (    )
 
    

We use Young’s inequalities to estimate the right side term by the term. 

                                                     |  |  |(   )|   ‖ ‖
   ‖ ‖                                                                                (    ) 

                                                     |  |  |(   )|   ‖ ‖
   ‖ ‖                                                                                (    ) 

                                                    |  |  | (   )|   ‖ ‖
   ‖ ‖                                                                              (    ) 

|  |  |(∫  (   )( ( )   (  
 

 )) )    )|  

                                                                  ∫ (‖ ‖
  ‖ ‖ )    ‖ ‖                                                               (    )

 

  

|  |  |(∫  (   ) (  )     
 

 
)|  

                                                                 ∫ ‖ ‖
  

     ‖ ‖                                                                                   (    ) 

                                                   |  |  |(∫  (   ) (  )     
 

 
)|                                                                              (    ) 

|  |  |(∫  (   )( ( )   (  ))    
 

 
)|  

                                   ∫ (‖ ‖  ‖ ‖ )   ‖ ‖ 
 

                                                                          (    ) 
Thus, by appropriately small ε, setting  (    ) – (    ) into (    ) to yield. 

                                           ‖ ‖    (‖ ‖
  ‖ ‖  ‖ ‖ )    ∫ (‖ ‖

  ‖ ‖ 
 

  ‖ ‖ )                          (    ) 
Here ,      (          ) 
Now, putting (    ) into (    )we get, 

‖ ‖  (‖ ‖  ‖ ‖    (‖ ‖
  ‖ ‖  ‖ ‖ )  

                   ∫ (‖ ‖
  

  ‖ ‖  ‖ ‖ )    

                    ∫ (‖ ‖
  

  ‖ ‖  ‖ ‖ )    

                                            ‖ ‖    (‖ ‖
  ‖ ‖  ‖ ‖ )    ∫ (‖ ‖

  ‖ ‖  ‖ ‖ 
 

 )                         (    ) 

where       (     ). 
combining (   ) with (    ) we obtain, 

                      ‖ ‖    (‖ ‖
  ‖ ‖  ‖ ‖ )    ∫ (‖ ‖

  

  ‖ ‖  ‖ ‖ )                                                   (    ) 

applying Gronwall inequalities [1] to the above equation, one has  

                                         ‖ ‖    (‖ ‖
  ‖ ‖ )    ∫ (‖ ‖

  ‖ ‖ 
 

 )                                                            (    ) 

from (    ) , (    ) and (    ) we have  

‖ ‖    (  
 (   )‖ ‖

  (    )
     

(   )‖ ‖
  (    )
 )  

              ∫ (  
 (   )‖ ‖  (    )

     
(   )‖ ‖

  (    )
 )

 

   

                                  ‖ ‖     
    (       ) (‖ ‖

  (    )
  ‖ ‖

  (    )
  ‖ ‖  (    )

 )                           (    ) 

  
‖ ‖  

                      
    (       )                                                                                                                                                     (    )      

                     ‖ ‖        (       )                                                                                                      (    ) 
Now substituting (    ) into (   ) with (    ) we obtain  

 ‖ ‖     (   
    (       ) (‖ ‖

  (    )
  ‖ ‖

  (    )
  ‖ ‖  (    )

 ) 

                                                           (   )‖ ‖
  (    )
 ) 

                                  ‖ ‖     
    (       ) (‖ ‖

  (    )
  ‖ ‖

  (    )
  ‖ ‖  (    )

 )                         (    ) 

‖ ‖     
    (       )                                                                                                

                                     ‖ ‖     
   (       )                                                                                                                 (    ) 

where from the given in the theorem we have  

                          ‖ ‖
  (    )
  ‖ ‖

  (    )
  ‖ ‖  (    )
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Now substituting (    ) into (   ) with (    ) we get  
‖    ‖     

 ‖ ‖       
    (       )   

                                                                                  
(     )                                                                                                (    ) 

where     (    ) 
and 
                ‖    ‖     

 ‖ ‖    

but  

                ‖    ‖    
   ‖ ‖   , 

similarly, we prove  ( ) , namely  
‖  (    )‖  ‖  (            )‖  
                            ‖  (     )‖  ‖  (      )‖  
                                                                                 ‖   ‖  ‖   ‖                                                                                   (    )      
Since, estimate of   is given in (    ), it sufficient to estimate  ‖   ‖  We choose      
(       )   (    )  (    )  (       ) 

                          (∫  (   )( ( )   (  ))   )      
 

 
)  

                          (∫  (   ) (  
 

 )       )  

                          (∫  (   ) (  )       
 

 
)  

                           (∫  (   )( ( )   (  ))      

 

 

)                                

 ∑                                                                                                                                                      (    )

 

   

 

Using  Young’s inequalities to bound  all the terms on the right side, we get 

                                                 |  |  | (    )|  
   

  
‖  ‖

  
  

   
‖ ‖                                                                     (    ) 

                                                |  |  | (    )|  
   

  
‖  ‖

  
  

   
‖ ‖                                                                       (    ) 

                                             |  |  |(       )|   ‖   ‖
   ‖   ‖                                                                 (    )       

|  |  |(∫  (   )( ( )   (  ))     
 

     )|  

                                                             ∫ (‖ ‖
  ‖ ‖ )

 

     ‖   ‖                                                               (    ) 

|  |  |(∫  (   ) (  )       
 

 
)|  

                                                            ∫ ‖ ‖
  

     ‖   ‖                                                                                   (    ) 

where    depends on  (  ). 

|  |  |(∫  (   ) (  )       
 

 
)|  

                                                                  ∫‖ ‖
     ‖   ‖ 

 

 

                                                                                   (    ) 

 

|  |  |(∫  (   )( ( )   (  
 

 )      )|  

                                                        ∫ (‖ ‖  ‖ ‖ )
 

     ‖   ‖                                                                       (    ) 

Thus, by appropriately small ε, setting (    ) – (    ) into (    )  yields 
‖   ‖    (‖  ‖

  ‖  ‖
  ‖   ‖  ‖ ‖ )  

                                                                ∫ (‖ ‖
  ‖ ‖  ‖ ‖ 

 

  ‖ ‖ )                                                          (    ) 

where      (     )  
Here, we need to estimate ‖  ‖   we choose       in (   )  and obtain  

(     )   (     )  (        )  (        )  

                    (∫  (   )( ( )   (  ))   )       
 

 
)  
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                    (∫  (   ) (  )        
 

 
)  

                    (∫  (   ) (  )        
 

 
)  

                                                                    (∫  (   )( ( )   (  ))       
 

 
)  ∑                                   (    )

 
    

We analyse the right-hand side terms of (    ) by using Young’s inequalities with 

appropriately small ε , we obtain 

                                                      |  |  | (     )|   ‖  ‖
   ‖  ‖

                                                                             (    ) 
                                                |  |  | (        |   ‖   ‖

   ‖    ‖
                                                          (    ) 

                                                |  |  | (        )|   ‖   ‖
   ‖    ‖

                                                         (    ) 

|  |  |(∫  (   )( ( )   (  
 

 ))   )       )|  

                                                                  ∫ (‖ ‖
  ‖ ‖ )

 

     ‖    ‖
                                                           (    ) 

|  |  |(∫  (   ) (  )      
 

 
)|  

                                                              ∫ ‖ ‖
  

     ‖    ‖
                                                                                (    ) 

|  |  |(∫  (   ) (  
 

 )        )|  

                                                              ∫ ‖ ‖
     ‖    ‖

                                                                                 (    )
 

  

|  |  |(∫  (   )( ( )   (  ))       
 

 
)|  

                                                                     ∫(‖ ‖
  ‖ ‖ )

 

 

    ‖    ‖
                                                              (    ) 

Thus, combining the above inequalities from (    ) to (    ), we get 
‖  ‖

  ‖    ‖
    (‖  ‖

  ‖   ‖  ‖   ‖ )  

                                                                                                ∫(‖ ‖
  ‖ ‖ 

 

 

 ‖ ‖  ‖ ‖ )                                  (    ) 

then,‖  ‖
  ‖  ‖

  ‖    ‖
   

thus,(    ) becomes  
‖  ‖

    (‖  ‖
  ‖   ‖  ‖   ‖ )  

                                                                           ∫(‖ ‖
  ‖ ‖ 

 

 

 ‖ ‖  ‖ ‖ )                                                       (    ) 

from (    ) into (    )  we have  
‖   ‖    (‖  ‖

    (‖  ‖
  ‖   ‖  ‖   ‖ )  

                    ∫(‖ ‖
  ‖ ‖  ‖ ‖ 

 

 

 ‖ ‖ )   ‖   ‖  

                 ‖ ‖    ∫(‖ ‖
 

 

 

 ‖ ‖  ‖ ‖  ‖ ‖ )   

after simplify we get 
‖   ‖    (‖  ‖

  ‖   ‖  ‖ ‖ )  

                                                                         ∫(‖ ‖
  ‖ ‖  ‖ ‖ 

 

 

 ‖ ‖ )                                                         (    ) 

where      (     ) 
now substituting (    ) and (    ) into (    ) we get  

                                                                  ‖   ‖     
   (       )                                                                                      (    ) 

where ‖  ‖  (    )
  ‖ ‖

  (    )
  ‖ ‖  (    )

  ‖ ‖
  (    )
    

then putting (    ) and (    ) in (    ) we have  

‖  (    )‖    
 ‖ ‖       

    (       )  
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(     )                                                                                       (    ) 

where              (    ) 
for (c) we have 

‖    ‖ ‖    ‖  ‖    ‖   
                    ‖            ‖ ‖            ‖   
                    ‖            ‖  
                     ‖     ‖  ‖      ‖ ‖     ‖  
                      ‖      ‖ ‖     ‖  ‖      ‖  
                                                                             ‖ ‖  ‖ ‖  ‖ ‖  ‖ ‖  ‖ ‖  ‖ ‖                                                (    ) 
Now, substituting (    ),(    ),(    ) and (    ) into  (    ), we get  

                                                          ‖ ‖       
(       )                                                                                                      (    ) 

Therefore, setting (    ), (    ) ,(    ) , (    ) and (    ) into (    ) we obtain  

                                                  ‖    ‖    
   (       )                                                                                            (    ) 
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