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Abstract. The aim of this article was employed a fractional-shifted Legendre polynomials (F-
SLPs) in a matrix form to approximate the temporal and spatial derivatives of fractional orders 
for derived an approximate solutions for bioheat problem of a space-time fractional. The spatial-
temporal fractional derivatives are described in the formula by the Riesz-Feller and the Caputo 
fractional derivatives of orders 𝑣 ∈ 1, 2  and 𝛾 ∈ 0, 1 ,  respectively. The proposed 
methodology applied for two examples for demonstrating its usefulness and effectiveness. The 
numerical results confirmed that the utilized technique is immensely effective, provides high 
accuracy and good convergence.  

Key words. Collocation method, Time-space fractional bioheat equation, Fractional-shifted 
Legendre polynomials, Accuracy.  

1.  Introduction 
Medical treatments like cryosurgery, cryopreservation, cancer hyperthermia, skin burns and thermal 
malady diagnostics, require an understanding of thermal phenomena and temperature behavior in living 
tissues. Therefore, bioheat transport in human tissues is a topic of high theoretical and applied benefit. 
Biothermal studies can assist the design of clinical thermal treatment equipment, evaluation of thermal 
treatment’s effects on skin, and establishment of thermal protections for various purposes [1, 6, 18].  

The physical phenomenon that explain heat transport in human tissue that includes the influence of 
blood flux on tissue temperature in a continuum was presented by Pennes [14], Furthermore it suggested 
a mathematical model to describe heat flux in biological tissue. The model known as the bioheat 
equation which that is still widely utilize [3]. 

Many researchers worked on the development Pennes bioheat model and fractional bioheat equation 
and gave very important analytic and computational solutions, and provided significant approximate 
solution, (for example, Ng et al. [13] in (2009), used the boundary element method; Lakhssassi et al. 
[12] in (2010), presented the analytic and numerical solutions by using the Jacobi elliptic functions and 
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the Crank-Nicolson method; Singh et al.[17] in (2011), studied the numerical solutions by using finite 
difference and homotopy perturbation method; Jiang and Qi [10] in (2012), suggested a new fractional 
thermal wave model; Damor et al. [4] in (2013), used implicit finite difference method; Ezzat et al. [6] 
in (2014), suggested a new mathematical model; Ferrás et al.[7] in (2015), utilized an implicit finite 
difference; Qin and Wu [15] in (2016), applied a quadratic spline collocation technique; Kumar and 
Rai[11] in (2017), used finite element Legendre wavelet Galerkin methodology; Roohi et. al. [16] in 
(2018), determined the temperature distribution pattern during the hyperthermial therapy 
computationally by using Galerkin method; Hosseininia et al. [8] and Kumar et al. [19] in (2019); 
applied Legendre wavelet method, Kirchhoff’s transformation,  finite element Legendre wavelet and 
Galerkin method).  

In this article, will introducing the approximate algorithm for solving one dimensional time-space 
fractional bioheat equation (T-SFBHE) based on F-SLPs. 

2.  Time-Space Fractional Bioheat Equation 
The time-space fractional version of the one-dimensional unsteady state Pennes bioheat equation can be 
obtain by replacing the first order time derivative by Caputo fractional derivative of order 𝛾 ∈ 0,1  and 
second order space derivative by Riesz-Feller derivative of fractional arbitrary positive real order 𝑣 ∈
1, 2 . The T-SFBHE is given according to [17] 

𝜌𝑐
𝜕 𝑇 𝑥, 𝑡
𝜕𝑡

𝑘∗
𝜕 𝑇 𝑥, 𝑡
𝜕𝑥

𝑊 𝑐 𝑇 𝑥, 𝑡 𝑇 𝑄 𝑄 , 𝑡 0, 0 𝑥 𝑅,    

where 𝜌, 𝑐, 𝑘,𝑇, 𝑡, 𝑥,𝑇  ,𝑊 𝜌 𝑤 , 𝑄   and  𝑄  symbolizes density, 
specific heat, thermal conductivity, temperature, time, distance, artillery 
temperature ,blood perfusion rate, metabolic heat generation in skin tissue and 
external heat exporter in skin tissue respectively. The units and values of the 
symbols expressed in this equation are mentioned in Table1[5]. 

Table 1. The unit and value of the symbols expressed in the bioheat equation. 
Symbol 𝑻 𝑻𝒂 t x 𝝆 and 

𝝆𝒃 

𝒄 and 𝒄𝒃 𝑲 𝝎𝒃 𝑸𝒎𝒆𝒕 

Unit °C °C s m kg/m3 J/kg °C W/m °C m3/s/ m3 W/m3 
value  37   1000 4000 0.5 0.0005 420 

 
with initial and boundary conditions 

𝑇 𝑥, 0 𝑇 ,                                                                                        

𝑘∗
𝜕𝑇
𝜕𝑥

𝑞 ,                                                                              

𝑘∗
𝜕𝑇
𝜕𝑥

0.                                                                             

where, 𝑞  is the heat flux on the skin surface. 

3.  Preliminaries and Notations 
In this section, remind the principles essentials of the fractional calculus theory that will be used in this 
article.  

Definition 1.  The Riemann-Liouville fractional integral operator of order 𝛼 0  defined as [2]: 

 
𝐼 𝑢 𝑡  

 
  𝑡 𝑠  𝑢 𝑠 𝑑𝑠,   𝛼  0,

 𝐼  𝑢 𝑡   𝑢 𝑡
                                      

Definition 2. The Riemann-Liouville definition of fractional differential operator given as follows 
[9]: 
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𝐷 𝑢 𝑡

⎩
⎪
⎨

⎪
⎧ 1

 𝛤 𝑛 𝛼
  
𝑑
𝑑𝑡

𝑢 𝑠
𝑡 𝑠

 𝑑𝑠,𝛼  0,𝑛  1  𝛼  𝑛,     

 
𝑑 𝑢 𝑡    
𝑑𝑡

 ,                                                                                    𝛼  𝑛.    

             

Definition 3. The Caputo definition of fractional differential operator is defined as [10]:  

𝐷 𝑢 𝑡    
   

𝑡 𝑠 𝛼 𝑛 1  𝑑𝑠, 𝑛  1  𝛼  𝑛,                     

     ,                                                        𝛼  𝑛.                    
                

The relation between the Riemann-Liouville and Caputo operators given by the expressions [17]: 
 
𝐷  𝐼   𝑢 𝑡  𝑢 𝑡 ,                                   

𝐼 𝐷   𝑢 𝑡  𝑢 𝑡 ∑ 𝑢  0  
!

                                                       

For 𝛼  0, 𝑣  1, and constant 𝐶, Caputo fractional derivative has some fundamental properties 
which are needed here as follows [9]:  

 

 𝑖     𝐷  𝐶  0,                                                                                                   

𝑖𝑖  𝐷  𝑡
0                                           for 𝑣 ∈  N  and  𝑣  ⌈α⌉ 

   

  
𝑡 ,     for 𝑣 ∈  N  and 𝑣  ⌈α⌉            

𝑖𝑖𝑖   𝐷 ∑ 𝑐 𝑢 𝑡 ∑ 𝑐 𝐷 𝑢 𝑡 ,   𝑤ℎ𝑒𝑟𝑒 𝑐   𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

                    

Definition 4. (generalized Taylor’s formula). Suppose that 𝐷 𝑢 𝑡 ∈  𝐶 0, 1  for 𝑖  0, 1, . . . ,𝑛
1, then one has  

 𝑢 𝑡 ∑
   

𝐷 𝑢 0
  

𝐷 𝑢 𝜉                 

Where 0  ξ  t, ∀𝑡 ∈  0, 𝑘 . Also, one has  

 𝑢 𝑡 ∑
   

𝐷 𝑢 0 𝐾  
  

                        

where 𝐾 |𝐷 𝑢 𝜉 |.  
In case 𝛼 1, the generalized Taylor’s formula (10) is the classical Taylors formula [9]. 

4.  Fractional Shifted Legendre Polynomials  
Define the F-SLPs by introducing the change of variable 𝑥 𝑥  and 𝑁 1 𝛽 𝑁 on shifted 

Legendre polynomials. The F-SLPs 𝐿 𝑥  is symbolized by 𝐹𝑙 𝑥 . The F-SLPs are a particular 
solution of the normalized eigenfunctions of the Sturm-Liouville problem.  

𝑥  𝑥 𝐹𝑙 𝑥 ˊ 𝛽  𝑖 𝑖 1 𝑥  𝐹𝑙 𝑥 0, 𝑥 ∈  0, 1 .    

 Then 𝐹𝑙 𝑥  can be obtained as follows:  

𝐹𝑙 𝑥   
2𝑖  1 2𝑥 1

𝑖 1
 𝐹𝑙 𝑥   

𝑖
𝑖 1

  𝐹𝑙 𝑥 , 𝑖 

 1, 2, . ..                                                                                                                   
can derive the analytic form of 𝐹𝑙 𝑥  of degree 𝑖𝛽 as follows:   

 𝐹𝑙 𝑥 ∑ 𝑏  𝑥 ,                                                                                      

where 𝑏  1 𝑖  𝑠 !/ 𝑖  𝑠 ! 𝑠!  and 𝐹𝑙 0 1 , 𝐹𝑙 1 1.  

Theorem1. The FLPs are orthogonal with the weight function  𝜔 𝑥 𝑥  on the interval 0,1 , 
then be orthogonally condition is 

 𝐹𝑙 𝑥  𝐹𝑙 𝑥  𝜔 𝑥 𝑑𝑥 𝛿                                       
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Proof. With 𝐿 𝑥  𝐿 𝑥  𝜔 𝑥 𝑑𝑥 𝛿  , where 𝛿  is the Kronecker function and the 

weight function 𝜔 𝑥 1, let 𝑥 𝑥  and then  have 

 𝐿 𝑥  𝐿 𝑥  𝜔 𝑥 𝑑𝑥 𝐿 𝑥  𝐿 𝑥  𝛽𝑥 𝑑𝑥 

𝛿 , 

 𝐿 𝑥  𝐿 𝑥  𝛽𝑥 𝑑𝑥 

𝐹𝑙 𝑥  𝐹𝑙 𝑥   𝛽𝑥 𝑑𝑥 𝛿 ,                                           

 𝐹𝑙 𝑥  𝐹𝑙 𝑥   𝑥 𝑑𝑥 𝛿 . 

Then the theorem is proved. 
 □  
A temperature function 𝑇 𝑥  square integrable on interval  0,1 , may be expressed in order of F-

SLPs as 
 𝑇 𝑥 ∑ 𝑐 𝐹𝑙 𝑥                                                                                        
where the coefficients  𝑐  are obtained by  

𝑐 𝛽 2𝑖 1 𝐹𝑙 𝑥 𝑇 𝑥 𝜔  𝑥 𝑑𝑥, 𝑖 0,1,2, …                          
If consider truncated series when 𝑁 1 -term the F-SLPs in (17), obtain 
 𝑇 𝑥 𝑇 𝑥 ∑ 𝑐 𝐹𝑙 𝑥 𝐶ˊ∅ 𝑥                                                    
where the fractional-shifted Legendre coefficient vectors 𝐶 and ∅ 𝑥  are given by 
𝐶ˊ 𝑐 , 𝑐 , … , 𝑐 , ∅ 𝑥 𝐹𝑙 𝑥 ,𝐹𝑙 𝑥 , … ,𝐹𝑙 𝑥 ˊ. 

Theorem2. Suppose that 𝐷 𝑇 𝑥 ∈ 𝐶 0,1  for 𝑖 0,1, … ,𝑁. 2𝑁 1 𝛽 1 and 𝑷

𝑠𝑝𝑎𝑛 𝐹𝑙 𝑥 ,𝐹𝑙 𝑥 , … ,𝐹𝑙 𝑥 . If 𝑇 𝑥 𝐶ˊ∅ 𝑥  is the best approximation to 𝑇 𝑥  from 𝑷  then 

the error bound is presented as follows: 

 ‖𝑇 𝑥 𝑇 𝑥 ‖   ,                                      

where 𝐾 𝐷 𝑇 𝑥 ,   𝑥 ∈ 0,1 . 
Proof. Consider generalized Taylor’s formula  

 𝑇 𝑥 ∑
   

𝐷 𝑇 0
  

𝐷 𝑇 𝜉 ,              

where 0  𝜉  𝑥, ∀𝑥 ∈ 0, 1 . Also, one has  

 𝑇 𝑥 ∑
   

𝐷 𝑓 0 𝑀  
  

                     

Since 𝑇 𝑥 𝐶ˊ∅ 𝑥  is the best approximation to 𝑇 𝑥  from 𝑷  and  

∑
  

𝐷 𝑓 0 ϵ𝑷 ,  

hence ‖𝑇 𝑥 𝑇 𝑥 ‖ 𝑇 𝑥 ∑
   

𝐷 𝑇 0

  
𝑥 𝑥 𝑑𝑥,                                                              

 ‖𝑇 𝑥 𝑇 𝑥 ‖
  

𝑥 𝑑𝑥 

 
  

 

Now, take the square root both sides, then the theorem proved. 
 □  
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For arbitrary a temperature function 𝑇 𝑥, 𝑡 ∈ 𝐿 0,1 0,1 , they can be expanded as the 
following formula: 

 𝑇 𝑥, 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡                                                                
where 

 𝑐 2𝑖 1 2𝑗 1 𝛽𝛼 𝑇 𝑥, 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝜔 𝑥 𝜔 𝑡 𝑑𝑥𝑑𝑡.    i, j
0,1, …                                                                                   

Theorem3. If the series ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡  converges uniformly to 𝑇 𝑥, 𝑡  on the square 
0,1 0,1 , then equation (25) can be proof as following  

Proof. By multiplying 𝜔 𝑥 𝜔 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡  both sides of (24), where 𝑖 and 𝑗 are fixed and 
integrating term wise with regard to 𝑥 and 𝑡 on 0,1 0,1 , then 

 𝑇 𝑥, 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝜔 𝑥 𝜔 𝑡 𝑑𝑥𝑑𝑡

∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝜔 𝑥 𝜔 𝑡 𝑑𝑥𝑑𝑡 

 ∑ ∑ 𝑐 𝜔 𝑥 𝐹𝑙 𝑥 𝐹𝑙 𝑥 𝑑𝑥 𝜔 𝑡 𝐹𝑙 𝑡 𝐹𝑙 𝑡 𝑑𝑡□ 

 𝑐 𝜔 𝑥 𝐹𝑙 𝑥 𝑑𝑥 𝜔 𝑡 𝐹𝑙 𝑡 𝑑𝑡                                   

 𝑐   

Theorem4. If the function 𝑇 𝑥, 𝑡  is a continuous function on 0,1 0,1  and the series 
∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡  converges uniformly to 𝑇 𝑥, 𝑡 , then ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡  is the F-
SLPs expansion of 𝑇 𝑥, 𝑡 . 

Proof. Using contradiction, let 

 
𝑇 𝑥, 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 ,

𝑇 𝑥, 𝑡 ∑ ∑ 𝑔 𝐹𝑙 𝑥 𝐹𝑙 𝑡 .
                                                             

Then there is at least one coefficient such that  𝑐 𝑔  however 

 𝑐 2𝑁 1 2𝑀 1 𝛼𝛽 𝑇 𝑥, 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝜔 𝑥 𝜔 𝑡 𝑑𝑥𝑑𝑡
𝑔                                                                                                                              
□ 

Theorem5. If two continuous functions defined on 0,1 0,1  have the identical F-SLPs 
expansions, then these two function are identical. 

Proof. Suppose that 𝑇 𝑥, 𝑡  and 𝑓 𝑥, 𝑡  can be expended by F-SLPs as follows: 

 𝑇 𝑥, 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 ,                                                              

 𝑓 𝑥, 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 .                                                              
By subtracting equation (30) from (29), have 

 𝑇 𝑥, 𝑡 𝑓 𝑥, 𝑡 ∑ ∑ 𝑐 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡  

 0 ∑ ∑ 0𝐹𝑙 𝑥 𝐹𝑙 𝑡 .                                                                   
□ 

Theorem6. If the sum of the absolute value of the F-SLPs coefficients of a continuous function 
𝑇 𝑥, 𝑡  forms a convergent series, then the F-SLPs expansion is absolutely uniformly convergent and 
converges to the function 𝑇 𝑥, 𝑡 . 

Proof. Consider 

 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡

∑ ∑ 𝑐                                                                              
If consider truncated series in (24), satisfy  
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 𝑇 𝑥, 𝑡 ∑ ∑ 𝑐 𝐹𝑙 𝑥 𝐹𝑙 𝑡 ∅ˊ 𝑥 𝐶∅ 𝑡 ,                               

where  𝐶 𝑐
,

,
, ∅ 𝑥 𝐹𝑙 𝑥 ,𝐹𝑙 𝑥 , … ,𝐹𝑙 𝑥 ˊ and ∅ 𝑡

𝐹𝑙 𝑡 ,𝐹𝑙 𝑡 , … ,𝐹𝑙 𝑡 ˊ. 
□  

5.  Two Dimensional Fractional-Shifted Legendre Operational Matrix of Fractional 
Differentiation  
The derivative of the ∅ 𝑥   can be approximated as follows  

 ∅ 𝑥 𝐷 ∅ 𝑥 ,                                                                                           
where  𝐷  and 𝐷  are called the F-SLPs operational matrix of space and time derivatives 
Theorem7. Suppose 𝐷  is 𝑁 1 𝑁 1  operational matrix of Caputo fractional derivatives 

of order 𝑣 0,𝛽 , when 𝛽 ∈ ℕ;then the elements of 𝐷 are obtained as 

 𝑑
,

,
2𝑗 1 𝛽∑ ∑ 𝑏 𝑏ˊ  .     

where 

 𝑏ˊ
0,    𝑠𝛽 ∈ 𝑁 ,   𝑠𝛽 𝑣,

𝑏ˊ 𝑏         𝑠𝛽 ∉ 𝑁 , 𝑠𝛽 ⌈𝑣⌉ 𝑜𝑟 𝑠𝛽 ∈ 𝑁 , 𝑠𝛽 𝑣.
               

Proof. With the properties of the derivative (ii) and the orthogonally of FLPs, have 

 𝐷 𝐹𝑙 𝑥 ∑ 𝑏ˊ  𝑥 .                                              

Let 

 𝑥 ∑ 𝑑 𝐹𝑙 𝑥                                                                                     

multiplying both sides of the equation (38) by 𝜔 𝑥 𝐹𝑙 𝑥 , get 

 𝑑 2𝑗 1 𝛽 ∑ 𝑏   ,                                         

substituting the equations (38) and (39) into equation (37), yields 

 𝐷 𝐹𝑙 𝑥 2𝑗 1 𝛽∑ ∑ ∑ 𝑏 𝑏ˊ  𝐹𝑙 𝑥 ,    

Hence, 𝑑 2𝑗 1 𝛽∑ ∑ 𝑏 𝑏ˊ  .  𝑖, 𝑗

0,1, … ,𝑁                                                                                          
□ 

6.  Method for Solution 
Now will structure the approximate solution of equation (1), under given conditions, as the following 
series form  

 𝑇 𝑥, 𝑡 ∑ ∑ 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 ,                                                            
which equivalent the matrix form 
 𝑇 𝑥, 𝑡 ∅ 𝑥 ˊ𝑇∅ 𝑡 ,                                                                                     

where 𝑇 𝑡
,

,
, ∅ 𝑡 𝐹𝑙 𝑡 ,𝐹𝑙 𝑡 , … ,𝐹𝑙 𝑡 ˊ and 

 ∅ 𝑥 𝐹𝑙 𝑥 ,𝐹𝑙 𝑥 , … ,𝐹𝑙 𝑥 ˊ. 

The approximate of the first spatial derivative as 

 
,

∅ˊ 𝑥 𝐷 ˊ 𝑇∅ 𝑡 ,                                                                        
and the fractional temporal and spatial derivatives as 

 
,

∅ˊ 𝑥 𝑇𝐷 ∅ 𝑡 ,                                                                          
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,

∅ˊ 𝑥 𝐷 ˊ 𝑇∅ 𝑡 ,                                                                     
applying the solution method for T-SFBHE in (1), have 
 𝜌𝑐 ∅ˊ 𝑥 𝑇𝐷𝑡

𝛾∅ 𝑡 𝑘∗∅ˊ 𝑥 𝐷𝑥
𝑣 ˊ𝑇∅ 𝑡 𝑊 𝑐 ∅ˊ 𝑥 𝑇∅ 𝑡 ∅ˊ 𝑥 𝑄 ∅ 𝑡

∅ˊ 𝑥 𝑄 ∅ 𝑡 ∅ˊ 𝑥 𝑊 𝑐 𝑇 𝐼∅ 𝑡 ,               
where 𝑔 𝑥, 𝑡 𝑄 𝑄 𝑊 𝑐 𝑇  
 ∅ˊ 𝑥 𝐺 ∅ 𝑡 ∅ˊ 𝑥 𝑄 ∅ 𝑡 ∅ˊ 𝑥 𝑄 ∅ 𝑡 ∅ˊ 𝑥 𝑄 ∅ 𝑡  
where  

 𝐺 𝑔
,

,
,    

 𝑔 𝛼𝛽 2𝑖 1 2𝑗 1 𝑔 𝑥, 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡 𝜔 𝑥 𝜔 𝑡 𝑑𝑥𝑑𝑡.     
This is  generate 𝑁𝑀 𝑁 𝑀 1 algebraic equations by multiplying  𝜔 𝑥 𝜔 𝑡 𝐹𝑙 𝑥 𝐹𝑙 𝑡  

for 𝑖 0,1,2, … ,𝑁; 𝑗 0,1,2, … ,𝑀, integrating from 0 to 1 and using the orthogonal property, to get 

 𝑇 𝜌𝑐 𝐷𝑡
𝛾 𝜔𝑏𝜌𝑏𝑐𝑏𝐼 𝑘∗ 𝐷𝑥

𝑣 ˊ𝑇 𝐺,                                                      
with the initial condition from equation (2) in matrix form 
 𝑇∅ 0 𝐹                                                                                                          
where  𝐹 𝑓 , 𝑓 , … , 𝑓 ˊ  
 𝑓 𝛽 2𝑗 1 𝑇 𝑥, 0 𝐹𝑙 𝑥 𝜔 𝑥 𝑑𝑥                                                
and boundary conditions respectively from equations 3  and 4  in matrix form, have 
 𝑘∗∅ˊ 0 𝐷 ˊ 𝑇 𝐾ˊ                                                                                        
 𝑘∗∅ˊ 𝑅 𝐷 ˊ 𝑇 𝐻ˊ                                                                                       
where 𝐾 𝑘 𝑘 . . . 𝑘 ˊ and  𝐻 ℎ ℎ . . . ℎ ˊ 
 𝑘 𝛼 2𝑖 1 𝑇 0, 𝑡 𝐹𝑙 𝑡 𝜔 𝑡 𝑑𝑡                                               

 ℎ 𝛼 2𝑖 1 𝑇 𝑅, 𝑡 𝐹𝑙 𝑡 𝜔 𝑡 𝑑𝑡                                                 
which generate 𝑁𝑀 𝑁 𝑀 1 linear algebraic equations by equation (49) together with 

equations (50),(52) and (53). These unknown coefficients 𝑇 can be solve by solving Sylvester system. 

7.  Error Analysis 
Consider 𝑒 𝑥, 𝑡 𝑇 𝑥, 𝑡 𝑇 𝑥, 𝑡  as the error function where 𝑇 𝑥, 𝑡  and 𝑇 𝑥, 𝑡  are the 
approximate and exact solutions of equation (1).  

Therefore, 𝑇 𝑥, 𝑡  satisfies the following problem 

 𝜌𝑐 ,
𝑘∗

𝜕𝑣 𝑥,𝑡

𝜕𝑥𝑣
𝑊𝑏𝑐𝑏𝑇 𝑥, 𝑡 𝑅𝑁𝑀 𝑥, 𝑡

𝑔 𝑥, 𝑡 ,                                                                                    
where 𝑅 𝑥, 𝑡  is the residual function, 
 𝑅 𝑥, 𝑡 𝜌𝑐 𝜕

𝛾𝑇𝑁𝑀 𝑥,𝑡
𝜕𝑡𝛾

𝑘∗
𝑇𝑁𝑀 ,

𝑊 𝑐 𝑇𝑁𝑀 𝑥, 𝑡
𝑔 𝑥, 𝑡 .                                                                                   

find an approximation �̃� 𝑥, 𝑡  to the error function 𝑒 𝑥, 𝑡  in the same previous procedure, so 
the solution of the problem, the error function satisfies the problem 

 𝜌𝑐 𝑒𝑁𝑀 ,
𝑘∗

𝜕𝑣𝑒𝑁𝑀 𝑥,𝑡

𝜕𝑥𝑣
𝑊𝑏𝑐𝑏𝑒𝑁𝑀 𝑥, 𝑡 𝑅𝑁𝑀 𝑥, 𝑡                

should note that in order to construct the approximate �̃� 𝑥, 𝑡  to the error function 𝑒 𝑥, 𝑡 , only 
equation (58) needs to be recomputed in the same procedure as doing before for the solution of equation 
(1). 

8.  Numerical Examples 
In this section, apply the algorithm, which presented in section 6 for solving the T-SFBHE in the two 
examples based on F-SLPs. In order to showing a capability of the collocation method for achieving the 
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high accuracy. In these examples, the solution obtained from the approximate technique is synonymous 
with the accurate solution. 

Where the parameters 𝜌, 𝑐, 𝑘∗,𝑇, 𝑡, 𝑥,𝑇  ,𝑊 𝜌 𝑤  and 𝑄  are obtained from Table 1  
 Example1: Consider the T-SFBHE (1) where by choosing  𝑄  so the exact solution is:  
 𝑇 𝑥, 𝑡 𝑥𝑡 2 𝑥 37                                                                            
with the initial condition 
 𝑇 𝑥, 0 37,   𝑥 ∈ 0,𝑅                                                                                 
and boundary conditions 

 𝑘∗
,

2𝑡   , 𝑡 0                                                                            

 𝑘∗
,

2𝑡 1 𝑅   , 𝑡 0                                                             
Table2. Absolut errors obtained for Example 1 with  𝑅 1 and  𝑁 𝑀 12. 
𝒙, 𝒕  Absolute error 

𝜶 𝟎. 𝟓,𝜷 𝟏. 𝟓 
 

Absolute error 
𝜶 𝟎. 𝟕𝟓,𝜷 𝟏. 𝟕𝟓 

 

Absolute error 
𝜶 𝟎. 𝟗𝟓,𝜷
𝟏. 𝟗𝟓 

 

(0,0) 1.1373e-08 1.9178e-07 1.1509e-07 
(0.1,0.1) 1.6373e-05 7.5360e-05 9.8106e-05 
(0.2,0.2) 4.5590e-05 1.3012e-04 5.5986e-05 
(0.3,0.3) 9.7485e-05 9.4045e-05 1.5015e-04 
(0.4,0.4) 1.2577e-04 5.6854e-05 3.7275e-04 
(0.5,0.5) 8.1411e-05 2.4769e-04 4.6486e-04 
(0.6,0.6) 2.7426e-05 3.8733e-04 4.2448e-04 
(0.7,0.7) 1.4291e-04 4.6677e-04 3.8853e-04 
(0.8,0.8) 2.0478e-04 5.6629e-04 5.7097e-04 
(0.9,0.9) 1.4727e-05 4.7077e-04 8.9061e-04 
(1,1) 1.7356e-03 2.9567e-03 3.9126e-03 

 
Figure1. Comparison between the numerical solutions for Example 1 at 𝑡 1 ,𝑅 1,𝑁 𝑀  12 . 
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Figure 2. Comparison between the numerical solutions for Example 1 at 𝑡 1.3 ,𝑅 1,𝑁 𝑀

 12 
Example 2: Consider the T-SFBHE (1) where by choosing  𝑄  so the exact solution is:  

𝑇 𝑥, 𝑡 𝑥 e 37                                                                                                 
with the initial condition 

 𝑇 𝑥, 0 𝑥
3
2 37,   𝑥 ∈ 0,𝑅                                                                        

and boundary conditions 

 𝑘∗
, 0  , 𝑡 0                                                                                 

 𝑘∗
, 3

2
R

1
2 𝑒 𝑡 , 𝑡 0                                                                  

Table 3. Absolut errors obtained for Example 2 with  𝑅 1 and  𝑁 𝑀 12. 
𝒙, 𝒕  Absolute error 

𝜶 𝟎. 𝟓,𝜷 𝟏. 𝟓 
 

Absolute error 
𝜶 𝟎. 𝟕𝟓,𝜷 𝟏. 𝟕𝟓 

 

Absolute error 
𝜶 𝟎. 𝟗𝟓,𝜷
𝟏. 𝟗𝟓 

 

(0,0) 1.1620e-08 1.7895e-03 4.5399e-03 
(0.1,0.1) 8.5099e-08 2.0225e-04 6.9776e-04 
(0.2,0.2) 1.8188e-08 7.8602e-05 3.1626e-04 
(0.3,0.3) 1.2060e-07 4.7694e-05 1.8943e-04 
(0.4,0.4) 2.9296e-08 3.9389e-05 1.7286e-04 
(0.5,0.5) 1.2435e-07 4.9954e-05 1.2595e-04 
(0.6,0.6) 5.2647e-08 1.0175e-04 9.7641e-05 
(0.7,0.7) 1.1404e-07 1.3178e-04 7.7762e-05 
(0.8,0.8) 4.4359e-08 1.3219e-04 1.1677e-04 
(0.9,0.9) 1.4109e-07 6.2032e-05 3.8348e-05 
(1,1) 1.4402e-07 3.5154e-05 2.7918e-07 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

37

37.5

38

38.5
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Figure 3. Comparison between the numerical solutions for Example 2 at 𝑡 1 ,𝑅 1,𝑁 𝑀  12 . 

 
Figure 4. Comparison between the numerical solutions for Example 2 at 𝑡 1.15 ,𝑅 1,𝑁 𝑀

 12 . 

9.  Conclusions 
In this work, the approximate algorithm structured on the F-SLPs in the matrix form to estimate the 
fractional derivatives to found the numerical solutions of the T-SFBHE. The Caputo formula utilized 
into approximate the fractional derivatives. Figs. 1-4 and Tables 2-3 indicated that the numerical results 
for Example 1 and 2 of  a present technicality has a higher accuracy, good convergence, reasonable 
stability as well as a minimal computational effort by utilizing a few mesh grid. Concluded that the 
target numerical approach can be solve a various kinds of models of any fractional orders. In addition 
expected that the present methodology may present a more exact estimate by employing some other 
families based on orthogonal polynomials. 
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