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Abstract 

The main objective of this article is to present a new technique for solving integro-

differential equations (IDEs) subject to mixed conditions, based on the least-squares 

method (LSM) and Laguerre polynomial. To explain the effect of the proposed procedure 

will be discussed three examples of the first, second and three-order linear mixed IDEs. 

The numerical results used to demonstrate the validity and applicability of comparisons 

of this method with the exact solution shown that the competence and accuracy of the 

present method.  

1. Introduction 

Studied a sixth-kind Chebyshev collocation scheme will be considered for solving a 

category of (V-OFNQIDEs). The operational matrix of variable-order fractional 

derivative for sixth kind Chebyshev polynomials is derived and then, a clustering 

approach is employed to reduce the V-OFNQIDE to a system of nonlinear algebraic 

equations [1]. Developed a numerical method was implemented for solving IDEs with the 

weakly singular by using a new method depend on the cubic B-spline least-square 

method and a quadratic B-spline as a weight function. The numerical results are in 

suitable agreement with the exact solutions via calculating �� and �� norms errors. 

Theoretically, discussed the stability evaluation of the current method using the Von- 

Neumann method, which explained that this technique is unconditionally stable [2]. A 

new method based on the Laplace Adomian decomposition with the Bernstein 
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polynomial to solve the Voltaire integral equation and the integro- differential equation of 

the first and second types, and through examples and comparison accurate and 

approximate solutions the method is adopted [3]. Used waves and orthogonal 

polynomials to solve some of the system single Volterra integro-differential equations 

(SSVIDEs) presented the convergence analysis for the derivative of the approximation in 

terms of Legendre wavelets, to demonstrate the accuracy and efficiency of the proposed 

method through the given examples [4]. Developed is a new numerical scheme based on 

the Laguerre and Taylor polynomials, called matrix collocation scheme, solution 

nonlinear PIDEs, for the numerical solution of the mentioned nonlinear equations under 

the initial or boundary conditions [5]. The Euler polynomial was used to solve the 

(VIDEs) of the pantograph delay type in approximation of the solution. The method is 

discussed in detail and compared through numerical examples [6]. 

In this paper, we will be applying the least-squares method and Laguerre polynomial 

for solving linear mixed IDEs of the second type. The mixed IDEs in this method are 

transformed into a system of linear algebraic equations. Consider the following general 

forms of the mixed IDEs [7]: 

�(�)(�) + 
�(�)(�) + ��(�) 

= 
(�) + �� � ��(�, �)�(�)�� + �� � ��(�, �)�(�)���
� ,    � ≤ �, � ≤ �,�

�          ( 1.1) 

under the mixed conditions 

�(�� �( )(�) + !"�
 #� �� �( )(�)) = $�, % =  0 , 1 , . . . , ' − 1                         (1.2) 

where, �(�) is an unknown function, the known functions 
(�), ��(�, �) and ��(�, �) are 

defined on the interval [�, �], the function ��(�, �) and ��(�, �) can be expanded from the 

Maclaurin series, �� , �� , and $� and are real or complex constants. 

1.1.  Laguerre polynomial and their properties 

The Laguerre polynomials � (�) are set of orthogonal polynomials over the interval [0, ∞]. The explicit formula for this polynomial is [8], 

� (�) = �(−1)� %!(% − .)! (.!)�
 

�#� �� 
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where ��(�) = 1, ��(�) = 1 − �. 

2. Least-Square Method and Laguerre Polynomial 

In this section, we will be implementing a new approach based on the LSM and 

Laguerre polynomial as a basis function to solve the equations (1.1) and (1.2). 

We assume the approximate solution as 

�/(�) = � 0 � (�)/
 #�           � ≤ � ≤ �                                             (2.1) 

where 0  are unknown constants and � (�) are the Laguerre polynomial of degrees (%). 
Substituting equation (2.1) into equation (1.1), we get 

� 0 � (�)(�)/
 #� + 
 � 0 � (�)(�)/

 #� + � � 0 � (�)/
 #�  

= 
(�) + �� � ��(�, �) � 0 � (�)/
 #� �� + �� � ��(�, �) � 0 � (�)/

 #� ���
�

�
� ,      (2.2)   

2.1. Description of the method 

The residual equation was given by 

1(�, 0 ) = 12�, �/(�)3 

= � 0 � (�)(�) + 
 � 0 � (�)(�)/
 #� + � � 0 � (�)/

 #�
/

 #�  

− 4
(�) + �� � ��(�, �) � 0 � (�)/
 #� �� + �� � ��(�, �) � 0 � (�)/

 #� ���
�

�
� 5.    (2.3) 

Let 

7(0�, 0�, … , 0/) = �[1(�, 0 )]�9(�)��,           �
�                        (2.4) 

where the positive weight function specified on the interval [�, �], is 9(�) = 1, [9], thus,  

7(0�, 0�, … , 0/) 
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= � ;� 0 � (�)(�) + 
 � 0 � (�)(�)/
 #� + � � 0 � (�)/

 #�
/

 #� − 
(�)<  �
�  

<+�� � ��(�, �) � 0 � (�)/
 #� �� + �� � ��(�, �) � 0 � (�)/

 #� ���
�

�
� =� ��, (2.5) 

We can get the values of 0  , % ≥ 0 by minimizing the value of 7 as follows [10]: @7@0 = 0,    % = 0,1, … , A.                                            (2.6) 

Then from (2.5) by applying (2.6) get: 

@7@0 = � ;� 0 � (�)(�) + 
 � 0 � (�)(�)/
 #� + � � 0 � (�)/

 #� − /
 #� 4
(�)�

�
+ �� � ��(�, �) � 0 � (�)/

 #� �� + �� � ��(�, �) � 0 � (�)/
 #� ���

�
�

� 5= �� 

× � D� (�)(�) + E� (�)(�) + �� (�)�
�

− F�� � ��(�, �)� (�)�� + �� � ��(�, �)� (�)���
�

�
� GH �� = 0 ,      (2.7)  

thus, (2.7) are generated (A + 1) algebraic system of equations in (A + 1) unknown 0 , % = 0, ⋯ , A , or in the matrix form as follows: 

K =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛ � 1(�, 0�)ℎ���    � 1(�, 0�)ℎ��� … � 1(�, 0/)ℎ����

�
�

�
�

�
� 1(�, 0�)ℎ���    � 1(�, 0�)ℎ��� … � 1(�, 0/)ℎ����

�
�

�
�

� ⋮                           ⋮                          ⋱                   ⋮
� 1(�, 0�)ℎ/��    � 1(�, 0�)ℎ/�� …  � 1(�, 0/)ℎ/���

�
�

�
�

� ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

              (2.8) 
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V =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛ �{
(�)}ℎ���   �

�
�{
(�)}ℎ���    �
� ⋮
�{
(�)}ℎ/��   �
� ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎞

                                                                                        (2.9) 

where, 

ℎ = � (�) + 
� (�)(�) + �� (�) − 4�� � ��(�, �)� �� + �� � ��(�, �)� ���
� ���

� 5  (2.10) 

1(�, 0 ) = � 0 � (�)(�)/
 #� + 
 � 0 � (�)(�)/

 #� + � � 0 � (�)/
 #�  

 − 4�� � ��(�, �) � 0 � (�)/
 #� �� + �� � ��(�, �) � 0 � (�)/

 #� ���
�

�
� 5,        (2.11) 

KE = V  or E =  [K: V].                                                     (2.12) 

Property [11]. ∀� ∈ Ὼ the matrix  K defined in (2.12) is non-singular.          � 

The equation (1.1) compatible with the system of linear algebraic equations (m + 1) 

with the unknown Laguerre coefficients of 0 , % = 0,1 , … , A. 
It is possible to describe another type of (2.12) by applying the conditions as. 

[a  : $ ],   % = 0, 1 , … , ' − 1 

where, 

a = [� �� �� �   ….     � !] , % = 0, 1, 2, … , ' − 1.                     (2.13) 

The solution of (1.1) under conditions (1.2) can be get by changing the row matrices 

(2.13) by the last (A) rows of the matrix form (2.12) we get the new augmented matrix 

[12, 13, 14]. 
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bKc : Vde =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛ � 1(�, 0�)ℎ���                    � 1(�, 0�)ℎ���            …     � 1(�, 0/)ℎ����

�     ;   V�
�

�
�

�
� 1(�, 0�)ℎ���                    � 1(�, 0�)ℎ���          …      � 1(�, 0/)ℎ����

�
�

�
�

� ;    V�
              ⋮                                        ⋮                         ⋱                               ⋮                      ⋮   

� 1(�, 0�)ℎ/!g��                 � 1(�, 0�)ℎ/!h��   …    � 1(�, 0/)ℎ/!i���
�       ;     V/"!

�
�

�
� ��������!                            ;          $�⋮                                       ⋮                         …             ⋮                           ⋮            ⋮

�(/"�)��(/"�)�                        …              �(/"�)!               ;          $!"� ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

 

E = Kc "�V,c  

therefore, the matrix A is uniquely determined. Also, the equation (1.1) with conditions 

(1.2) has a unique solution [1].  

3. Convergence Analysis 

Based on the numerical methods introduced in the second section, we will review an 

approximation of the above errors to prove that the approximate solution �/(�) will 

converge to the exact solution �(�) of (1.1). 

Lemma [15]. Let �(�) ∈ j�(ℝl), such that  

m/�(�) = � 0 � (�)/
 #�  

is the best approximation polynomial of �(�) for any A ≥ 0, and 0 ≤ � ≥ A, we have 

|| � − m/�||op(ℝq) ≤ rA�"is || �||ot,ii (ℝq)                           (3.1) 
where C is a positive constant, which depends on A. 

Proof. Let m/ denote the symmetric truncation to the grade, i.e., 

m/∗ (� 0��(� )�
�#"� ) = � 0��(�)/

�#�  

It is easily seen that  

(m/�)∗ = m/∗ �∗∀� ∈ j�(ℝl),                                (3.2) 
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Actually, since 

�(�) = � 0 � (�)�
 #�  

whence (3.2). Now, from 

|| � − m/�||op(ℝq) ≤ rA�"is || �||ot,ii (ℝq)∀� ∈ jv,// (ℝl)             (3.3) 

we get 

|| � − m/�||op(ℝq) = || � 0��(�)�
 #� − � 0��(�)/

 #� ||op(ℝq) 

                                              = ‖�∗ − m/∗ �∗‖ ≤ rA�"/� || �∗||ot,ii (ℝq) 
thus,  

|| � − m/�||op(ℝq) ≤ rA�"/� || �||ot,ii (ℝq) 
 

4. Illustrative Examples 

In this section, we provide numerical experiments of the suggested method. In all 

examples, set the parameter A = 5 and denote the exact solution and approximate 

solution by �(�) and �/(�)  respectively.The error estimation is given to show the 

accuracy of the proposed method, and the following absolute error between the exact and 

approximate solutions is given by: 

Error =|�(�) − �/(�)|           � ≤ � ≤ �, A = 1,2, … . 
In Figures 1-3, we can observe that the approximate solution is highly consistent with 

the exact solution for different values of x. Furthermore, in Tables 1-3, the absolute errors 

and at A = 5 are reported, which shows the improved rate of convergence comparing 

with other mentioned methods [16, 17, 18]. 

Example 1 [16]. Consider the following linear mixed IDE,  

�xx(�) + 
�x(�) + ��(�) 

= 
(�) + �� � ��(�, �)�(�)�� + �� � ��(�, �)�(�)���
� ,   � ≤ �, � ≤ �,�

"�  
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�(0) = �x(0) = 1, 
where 
 = �, � = −�, 
(�) = y� − (� + 1)z%{�, ��(�, �) = z%{�y"| , ��(�, �) =  0, �� = 1, �� = 0.  

Solution. Using the combination of least squares with the Laguerre polynomial 

defined in the form, an approximate solution of �(�) as (2.1) will be applied, when A = 5.  

V = [ −0.8143   − 0.5868     1.7778   6.1343      12.6433     21.7537]′ 
K =

⎝
⎜⎜⎛

0.0039y3    0.0060y3    0.0079y3    0.0118y3    0.0193y3    0.0323y30.0060y3    0.0100y3    0.0154y3    0.0254y3   0.0437y3    0.0741y30.0079y3    0.0154y3    0.0292y3    0.0549y3   0.0990y3    0.1693y30.0118y3    0.0254y3    0.0549y3    0.1098y3    0.2019y3    0.3464y30.0193y3    0.0437y3    0.0990y3    0.2019y3    0.3738y3    0.6424y30.0323y3    0.0741y3    0.1693y3    0.3464y3    0.6424y3    1.1052y3⎠
⎟⎟⎞ 

the augmented matrices are respectively obtained from the given conditions, as follows. 

a� = [ 1    1    1   1    1   1   ] ,  a� = [ 0   − 1   − 2    − 3   − 4   − 5] 
if we replace the last two rows of the matrices W and G by the values of a� and a�then  

Vd = [ −0.8143   − 0.5868     1.7778   6.1343      1         1]′ 
Kc =

⎝
⎜⎜⎛

0.0039y3    0.0060y3    0.0079y3    0.0118y3    0.0193y3    0.0323y30.0060y3    0.0100y3    0.0154y3    0.0254y3   0.0437y3    0.0741y30.0079y3    0.0154y3    0.0292y3    0.0549y3   0.0990y3    0.1693y30.0118y3    0.0254y3    0.0549y3    0.1098y3    0.2019y3    0.3464y31                       1                      1                  1                      1                     1 0               − 1              − 2                − 3                 − 4                   − 5 ⎠
⎟⎟⎞ 

E = Kc "�Vd = [ 6.1068       − 15.4749      20.8206     − 15.6838    6.2713     − 1.0401 ]x. 
Therefore, the approximate solution of the problem taking A = 5 is the exact 

solution under the given conditions as follows: 

�~ = 0.999 + 1.0004� + 0.4980�� + 0.1666�� + 0.0446�� + 0.0087�~. 
Example 2 [17]. Consider the following linear mixed IDE second kind 

�x(�) = 
(�) + �� � ��(�, �)�(�)�� + �� � ��(�, �)�(�)���
� , � ≤ �, � ≤ �,�

�  

�(0) = 0 
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 The exact solution is given as 

�(�) = �y�, 
where 
(�) = �y� + y� − �, ��(�, �) = 0, ��(�, �) = � , �� = 0, �� = 1, � = 0, � = 1,E = 0, � = 0. 

Solution. Using the combination of least squares with the Laguerre polynomial 

defined in the form, an approximate solution of �(�) as (2.1) will be applied, when A = 5. 

V = [ −1.3849   − 2.9108   − 3.2824  − 2.9582    − 2.2696    − 1.4490]′ 
W =

⎝
⎜⎜⎛

0.3333    0.6667    0.7222    0.6111    0.4139    0.18700.6667    1.5833    1.9444    1.9514    1.7528    1.45530.7222    1.9444    2.5648    2.7824    2.7468    2.56770.6111    1.9514    2.7824    3.2485    3.4616    3.50720.4139    1.7528    2.7468    3.4616    3.9534    4.27010.1870    1.4553    2.5677    3.5072    4.2701    4.8627⎠
⎟⎟⎞ 

the augmented matrices are respectively obtained from the given conditions, as follows. 

a� = [ 1    1    1   1    1   1   ], 
if we replace the last rows of the matrices W and G by the values of a�, then 

Vd = [ −1.3849   − 2.9108   − 3.2824  − 2.9582    − 2.2696   0]′ 
Wc =

⎝
⎜⎜⎛

0.3333    0.6667    0.7222    0.6111    0.4139    0.18700.6667    1.5833    1.9444    1.9514    1.7528    1.45530.7222    1.9444    2.5648    2.7824    2.7468    2.56770.6111    1.9514    2.7824    3.2485    3.4616    3.50720.4139    1.7528    2.7468    3.4616    3.9534    4.27011                   1              1              1             1               1 ⎠
⎟⎟⎞ 

E = Kc "�Vd = [ 12.8131      − 41.9191      53.9630     − 32.4262    7.5692     0 ]x. 
Therefore, the approximate solution of the problem taking A = 5  is the exact 

solution under the given conditions as follows: 

�~ = −1.7764y − 15 + 0.9949� + 1.0498�� + 0.3582�� + 0.3154��. 
Example 3 [18]. Considered the following linear mixed IDE second kind. 

�xxx(�) = 
(�) + �� � ��(�, �)�(�)�� + �� � ��(�, �)�(�)���
� , � ≤ �, � ≤ �,�

�  
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�(0) = 0, �x(0) = 1, �xx(0) = −1, 
where 
(�) = z%{� − �, ��(�, �) = 0, ��(�, �) = ��, �� = 0, �� = 1, � = 0, � = �/2.  

Solution. Using the combination of least squares with the Laguerre polynomial 

defined in the form, an approximate solution of �(�) as (2.1) will be applied, when A = 5. 

V = [ 0   0.3602     0.3432   0.4049      0.6162     0.8836]′ 
W =

⎝
⎜⎜⎛

0              0               0              0             0                 00     1.9663    1.8735    2.4565    4.3484    7.18530     1.8735    1.7851    2.3406    4.1431    6.84610    2.4565    2.3406    3.4616    7.0032   12.82280   4.3484    4.1431    7.0032   15.8992   31.27450   7.1853    6.8461   12.8228   31.2745   63.9409⎠
⎟⎟⎞, 

the augmented matrices are respectively obtained from the given conditions, as follows. 

a� = [ 1   1   1   1   1   1  ],   a� = [ 0   − 1   − 2  − 3   − 4  − 5   ], 
a� = [0     0     1    3    6   10]. 

By replacing the last three rows of the matrices W and G by the values of  a�, a� and a�  
then 

Vd = [ 0   0.3602     0.3432   1      1    − 1]′ 
Kc =

⎝
⎜⎜⎛

0              0               0              0             0                 00     1.9663    1.8735    2.4565    4.3484    7.18530     1.8735    1.7851    2.3406    4.1431    6.84611            1               1                 1                1                 10       − 1        − 2          − 3        − 4            − 50            0           1                 3                 6             10 ⎠
⎟⎟⎞, 

E = Kc "�Vd = [  0.6212       0.1364      0.8636     − 0.6212     0     0    ]x. 
Therefore, the approximate solution of the problem taking A = 5 is the exact solution 

under the given conditions as follows: 

�~ = 1 + 2.204y − 16� − 0.5�� + 0.1035��. 
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Table 1. Comparison of absolute errors of Example 1 for A = 5 at different values of �. 
Method [16] A = � 

|� − ��| A = 5 

Approximated 

Solution 

Exact Solution 

 

� 

2.0697374 e-2 1.1e-03 0.3668 0.36787944117144 -0.1 

1.1470384 e-2 9.1082e-4 0.448418144 0.44932896411722 -0.8 

4.420981e-3 7.5359e-4 0.548058048 0.54881163609403 -0.6 

9.73181e-4 5.0977e-4 0.669810272 0.67032004603564 -0.4 

5.9298e-5 2.5498e-4 0.818475776 0.81873075307798 -0.2 

1.0e-8 1.0000e-4 0.9999 1.0000 0 

8.849e-5 9.5814e-5 1.221306944 1.2214027581602 0.2 

1.21776e-3 1.9145e-4 1.491633248 1.4918246976413 0.4 

5.26806e-3 2.5653e-4 1.821862272 1.8221188003905 0.6 

1.334832e-2 1.8275e-4 2.225358176 2.2255409284925 0.8 

2.336246e-2 8.1828e-5 2.7182 2.718281828459 1 

Table 2.  Comparison of absolute errors of Example 2 for A = 5 at different values of �. 
Method [17] A = �� 

|� − ��| A = 5 

Approximated 

Solution 

Exact Solution 

 

� 

1.6806e-3 1.3935e-04 0.11037774 0.11051709180756 0.1 

1.2580e-3 6.1688e-05 0.24434224 0.24428055163203 0.2 

3.2146e-3 2.2050e-04 0.40517814 0.4049576422728 0.3 

3.0893e-3 1.9716e-04 0.59692704 0.59672987905651 0.4 

5.3670e-3 2.6865e-05 0.8243875 0.82436063535006 0.5 

5.5896e-3 1.5624e-04 1.09311504 1.0932712802343 0.6 

8.2456e-3 2.0476e-04 1.40942214 1.4096268952293 0.7 

8.8806e-3 5.4503e-05 1.78037824 1.780432742794 0.8 

1.1987e-2 1.6694e-04 2.21380974 2.2136428000413 0.9 

1.3116e-2 1.8172e-05 2.7183 2.718281828459 1 
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Table 3. Comparison of absolute errors of Example 3 for A = 5 at different values of �. 
Method [18] A = �� 

|� − ��| A = 5 

Approximated 

Solution 

Exact Solution 

 

� 

0 0 1 1 0 

4.99847830e-3 9.9335e-5 0.9951035 0.99500416527803 0.1 

2.00095694e-2 7.6142e-4 0.980828 0.98006657784124 0.2 

4.51238431e-2 2.5e-3 0.9577945 0.95533648912561 0.3 

8.05195987e-2 5.6e-3 0.926624 0.92106099400289 0.4 

1.26461140e-1 1.04e-2 0.8879375 0.87758256189037 0.5 

1.83296917e-1 1.70e-2 0.842356 0.82533561490968 0.6 

2.51457501e-1 2.57e-2 0.7905005 0.76484218728449 0.7 

3.31453382e-1 3.63e-2 0.732992 0.69670670934717 0.8 

4.23872552e-1 4.88e-2 0.6704515 0.62160996827066 0.9 

5.29377859e-1 6.32e-2 0.6035 0.54030230586814 1 

 

Figure 1. Exact and approximate solutions of Example 1 for A = 5. 
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Figure 2. Exact and Approximate solutions of Example 2 for A = 5. 

 

Figure 3. Exact and approximate solutions of Example 3 for A = 5. 
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5. Conclusions 

 In this paper, we developed a method based on the least-squares method (LSM) and 

Laguerre polynomials to solve mixed integro-differential equations. To illustrate the 

effectiveness of the proposed method, three examples were solved based on the present 

technique. In addition, the convergence of this method was analyzed. The results show 

that the proposed method is practically reliable and consistent in comparison with other 

mentioned methods [16, 17, 18]. 
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