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ABSTRACT  

This study introduced a new technique based on the combination of the least-squares method 

(LSM) with Euler polynomials for finding the approximate solutions of integro-differential 

equations (IDEs) subject to the mixed conditions. Three examples of first and second-orders 

linear Fredholm IDEs (FIDEs) and Volterra IDEs (VIDEs) are considered to illustrate the 

proposed method. The numerical results comprised to demonstrate the validity and 

applicability of this method comparisons with the exact solution shown that the competence 

and accuracy of the present technique.  

 

INTRODUCTION 

Presented a method for solving high-order Linear FIDE equations under the 

mixed conditions in terms of Legendre polynomials under mixed conditions. 

The method used is the Legendre collocation matrix method and then 

converting the equation and conditions into matrix equations, which 

correspond to systems of linear algebraic equations with Legendre coefficients 

(Yalçınbaş, 2009). Used Cauchy kernel with airfoil polynomials of the first 

kind, and the numerical solution for some of the integro-differential equations 

gets a system of linear algebraic equations. The convergence of the method 

gives some sufficient conditions (Mennouni and Guedjiba, 2010).   Studied 

Bessel polynomials to find approximate solutions of high-order linear VIDEs 

under the mixed conditions, based on collocation points, practical matrix 

method, the accuracy and efficiency of the method are proven (Yüzbaşı et al., 

2011). The Euler polynomial was used to solve the VIDEs of the pantograph 
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delay type in approximation of the solution. The method is discussed in more 

detail and compared through numerical examples (Mirzaee et al., 2016). Some 

of the numerical methods is developed for     order VIDEs by using a 

Legendre spectrum approach. Provide a rigorous error analysis for the 

proposed methods, shown that the numerical errors decay exponentially in the 

  -norm and   -norm. Numerical examples illustrate the convergence and 

effectiveness of the numerical methods (Wei and Chen, 2011). Applying a 

moving least squares method and Chebyshev polynomials for solution of 

VFIDEs of the second kind. The main advantage of this method it does not 

need a mesh (Yuksel et al, 2012). Presented Chebyshev polynomials under the 

mixed conditions of method for solving high order linear VFIDEs. The 

method depends on the approximation the truncated Chebyshev series. The 

conditions are transformed into the matrix equations, which match system of 

linear algebraic equations with the unknown Chebyshev coefficients, and then 

solving the system yields the Chebyshev coefficients of the solution function 

(Laeli and Maalek , 2012).A new method based on the Laplace Adomian 

decomposition with the Bernstein polynomial to solve the VIE and IDE of the 

first and second types, and through examples and comparison accurate and 

approximate solutions the method is adopted (Rani and Mishra, 2019). Solved 

some FIDEs with functional arguments, using a Laguerre collocation method, 

convert it into a matrix equation that corresponds to a system of linear 

algebraic equations. The efficiency of the proposed method is then proven 

through examples (Gurbuz et al., 2013). 

 

               ∫              
 

 

   ∫              
 

 

      

                                                                                                                 
 

under the mixed conditions           

 

∑   
        

            
                                                       

(1.2) 

 

Implementation of Euler Polynomials-Least-Square Method for Solving 

   Integro-Differential Equations   

  

In this section, we implement a new approach based on the Euler polynomials 

as a basis function combining with LSM to solve the equations (1.1) and (1.2)  

 

Euler Polynomials and Their Properties: 

 

We will define Euler polynomials by the following equation (Cheon, 2013), 

     

 
 

   
∑  

   

   

      (
   

 
)   

                                                             

where          is the Bernoulli number for each           
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we assume the approximate solution as 

           ∑                            

 

   

                                                 

 where    are unknown constants and        are the Euler polynomial of 

degrees ( ). Substituting equation (2.2) into equation (1.1), we get 

∑    
       

 

   

        ∫        
 

 

∑          

 

   

   ∫        
 

 

∑           

 

   

                                                        

 

Combine of Euler Polynomials with Least- Squares Method  
 

The residual equation has been given by 

                  

 ∑    
      

 

   

 

 {       ∫        
 

 

∑          

 

   

   ∫        
 

 

∑           

 

   

}                                                   

Let 

              ∫          
                                                           

 

 

        

where w( ) is the positive weight function defined in the interval [c, d]. For 

simplicity set 

 w ( )=1, thus,  

 

             

 ∫ [ {       ∫        
 

 

∑          

 

   

 

 

   ∫        
 

 

∑          

 

   

} ]

 

                                          

 

We can get the values of          by minimizing the value of   as follows:  

 

                             
  

   
                                                                                  

Then from (2.6) by applying (2.7) get: 
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 ∫ *  
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thus, (2.8) are generated ( +1) algebraic system of equations in ( +1) 

unknown  

           , or in the matrix form as follow: 

 

 
       

 ∑    
      

 

   

 

 {  ∫        
 

 

∑          
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Property (Zuppa, 2003)  :      the matrix    defined in (2.13) is non-

singular.         □ 

The equation (1.1) corresponds to a system of       ) linear algebraic 

equations with the unknown Euler coefficients                ,  

Another form of (2.13) by applying the conditions can be explained as 

                          
where  

                                                                                       
(2.14) 

The solution of (1.1) under conditions (1.2) can be get by changing the row 

matrices (2.14) by the last ( ) rows of the matrix form (2.13) we get the new 

augmented matrix (Sezer and Gulsu, 2005; Kurt and Sezer, 2008; Baykuş and 

Sezer, 2009; Yalçınbaş, 2009; Yüzbaşı and Sezer, 2011; Yüzbaşı et al., 2011). 

 
     ̃    ̃ 
therefore, the matrix A is uniquely determined. Also, the equation (1.1) with 

conditions (1.2) has a unique solution (Al-Humedi, 2020).  

 

CONVERGENCE ANALYSIS  

Now we will review an estimate of the errors above based on the numerical 

methods which introduced in the second section want to prove that as     

the approximate solution   (x) will be converge to the exact solution      of 

(1.1).  

 

Theorem  

 

(Nadir and Dilmi, 2017)   : Let             be compact operator where 

         and the equation  

                                                                                     (3.1) 

 admit a unique solution. Assume that the projections         
      satisfy to  

          as      Then, for sufficiently large  , the approximate 

equation  

                                                                                                (3.2) 

has a unique solution for all         and there holds an error estimate  

                                                                                        (3.3) 

with some positive constant   depending A.  
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ILLUSTRATIVE EXAMPLES 

 

In this section, three numerical examples are performed to check the accuracy 

and efficiency of the combination of LSM for solving high-orders linear IDEs 

with Euler polynomials as the basis functions we present some numerical 

examples then we compare the results of our method with the results of some 

other methods in (AL-Juburee, 2010; Bildik et al, 2010; Yüzbaşı et al, 2011).  

 

The examples are solved to explain them precisely and the time of 

accomplishment of the method. The absolute error has been defined    

Error =|          |                               
where      is the exact solution and       is the approximate solution . 

 

Example 1 

 

 (AL-Juburee, 2010): we considered the following linear FIDE second kind 

             ∫              
 

 

   ∫              
 

 

             

       

  The exact solution is given as         . 

Where,                                              
            
 

Solution:  
 

an approximate solution      will be applied using the combination of least-

squares with the Euler polynomial defined in the form 

     ∑       

 

   

     

if    . 

     ,       ,     
   

 
                                            ,      

  (
 

 
   

 

 
    

 

 
  

 

 
            

 

  
    

 

 
    

 

  
     

  

   
   ), 

For the given conditions         the augmented matrices are obtained 

respectively, as 

   [         
 

 
        ]   

If we replace the last first rows of the matrices         by the values of 

    in, then 

 ̃                                ,    ̃  (
 

 
   

 

 
    

 

 
  

 

 
         

 

  
       

 

 
        ), 

Thus, the Euler coefficients are calculated as 

   ̃   ̃                                , 
Therefore, the approximate solution of the problem taking     is the exact 

solution under the given conditions as follows: 
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Example 2  

 

(Batool and Ahmad, 2017): Considered the following linear VIDE second 

kind. 

              ∫              
 

 

   ∫              
 

 

             

               

Where,                                                
 

Solution: 

 

 an approximate solution      will be applied using the combination of least-

squares with the Euler polynomial defined in the form 

     ∑       

 

   

     

if    . 

    
  

 
     

          

  
       

         

  
   

     
               

  
     

 

        
  (          )

  
     , 

              
  (                   )

   
    

     
 

 
   

 

   
     

   

   
   

    

    
       

   

   
      

    

    
   

                                                                       
                                                                          
                                                                     
                                                              
                                                                  
                                                                       , 

 for the given conditions then augmented matrices are obtained respectively, as 

follows 

          
 

 
       

 

 
        

 

 
        ,                                   

 if we replace the last two rows of the matrices W and G by the values of    

and    in, then 

 ̃       
 

 
     

 

   
     

   

   
      

    

    
                

 ̃                                                                       
                                                                          
                                                                     
                                                              
                                                                                        
                                                                                                      , 
thus, Euler coefficients are calculated as 
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   ̃   ̃
                                                                           

Therefore, the approximate solution of the problem taking     is the exact 

solution under the given conditions as follows: 

  

                                    
                    

 

Example 3  
 

(Bildik et al, 2010): Consider the linear FIDEs equation. 

                   

        ∫              
 

 

   ∫              
 

 

  

           
             

Where,                                             
                    

          
Solution: 
 

 an approximate solution      will be applied using the combination of least-

squares with the Euler polynomial which defined in the form 

     ∑        

 

   

    

if    .   

                        

        (   
 

 
)  
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from the given conditions the augmented matrices are obtained respectively, 

as follows 

           
 

 
        

 

 
         

 

 
         ,                                        

 if we replace the last two rows of the matrices W and G by the values of    

and    in, then 

 ̃                                                                     
 ̃

                                                   
                                       
                                       
                                     
                                       
                                        
                                           
                                         
                                  
                                                              
                                                                    
                                                                        

   ̃   ̃
                                                                                        
Therefore, the approximate solution of the problem taking     is the exact 

solution under the given conditions as follows: 

  

                                     

                    
 

Table 1.  Exact, approximate solutions and the errors with m=2 for Example 

1. 

 

x Exact 

Solution 

Approximated 

Solutions 

|   ̃| Method 

(AL-Juburee, 2010) 
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0 0 -5.0000e-05 5.0000e-

05 

0 

0.1 0.1105 0.0778 0.0327 0.0460 

0.2 0.2443 0.198842 0.04558 0.0598 

0.3 0.4050 0.362932 0.042068 0.0451 

0.4 0.5967 0.570118 0.026582 0.0060 

0.5 0.8244 0.8204 0.004 0.0526 

0.6 1.0933 1.113778 0.020478 0.1254 

0.7 1.4096 1.450252 0.040652 0.2063 

0.8 1.7804 1.829822 0.049422 0.2881 

0.9 2.2136 2.252488 0.038888 0.3629 

1 2.7183 2.71825 3.1828e-

05 

0.4218 

 

Table 2. Exact, approximate solutions and the errors with m=5 for Example 2. 

 

  Exact 

Solution 

Approximated 

Solution 

|   ̃| 
 

Method 

(Batool and Ahmad, 2017) 

0 0 0.000025 0.2500e-

4 

0 

0.1 0.1001668 0.100190435 0.2364e-

4 

0.616e-4 

0.2 0.2013360 0.20135748 0.2148e-

4 

0.9827e-4 

0.3 0.3045203 0.304539625 0.1932e-

4 

0.2121e-4 

0.4 0.4107523 0.41076932 0.1702e-

4 

0.15231e-3 

0.5 0.5210953 0.521109375 0.1408e-

4 

0.508e-4 

 

Table 3. Exact, approximate solutions and the errors with m=6 for Example 3 

 

  Exact 

Solution 

Approximated 

Solution 

|   ̃| 
 

Method 

(Bildik et al, 2010) 

-0.1 0.3678794 0.3678 7.9441e-

05 

1.95780e-3 

-0.8 0.4493289 0.4493156096 1.3355e-

05 

9.9380e-4 

-0.6 0.5488116 0.5488054144 6.2217e-

06 

6.6730e-4 

-0.4 0.6703200 0.6703027584 1.7288e-

05 

6.6437e-4 

-0.2 0.8187307 0.8187142016 1.6551e-

05 

9.457e-5 

0 1.0000 1.0000 0 0 

0.2 1.2214027 1.2214190976 1.6339e-

05 

5.5504e-4 

0.4 1.4918246 1.4918386304 1.3933e- 5.3977e-4 
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05 

0.6 1.8221188 1.8221079424 1.0858e-

05 

2.8487e-4 

0.8 2.2255409 2.2254971136 4.3815e-

05 

6.4294e-4 

1 2.7182818 2.7182 8.1828e-

05 

2.1834e-4 

 

 

Figure 2.1:  Plot of comparison between the exact and approximate solutions 

of Example 1 for m= 2  

 
 

Figure 2.2:  Plot of comparison between the exact and approximate solutions 

of Example 2 for m = 5    
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Figure 2.3:  Plot of comparison between the exact and approximate solutions 

of Example 3 for m = 6  

 

 
CONCLUSIONS 

 In this paper, we have introduced a new technique based on the combination 

of the least-squares method (LSM) with Euler polynomials for the 

approximate solutions of integro-differential equations subject to the mixed 

conditions. The solutions of first and second-orders linear FIDEs and VIDEs 

of the second type using the LSM method are considered polynomial as a 

basis function. We concluded from the figures and tables that the numerical 

results of a proposed method are accurate, efficient, and better than (AL-

Juburee, 2010; Bildik et al, 2010; Yüzbaşı et al, 2011). 
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