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Combining B-spline least-square schemes with
different weight functions to solve the generalized
regularized long wave equation
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Abstract

For solving differential equations, a variety of numerical methods are available, accuracy, perfor-
mance, and application are all different. In this article, we proposed new numerical techniques for
solving the generalized regularized long wave equation(GRLWE) that are based on types M and M-1
of B-splines-least-square method (BSLSM) and weight function of B-splines respectively, which were
proposed previously for solving integro-differential equations [2] where M € N. We investigated
linear stability using a Fourier method.

Keywords: B-Spline method, Petrov-Galerkin method, Least-Square method, Fourier method,
generalized regularized long wave equation.

1. Introduction

Consider GRLWE has the form
Uy + Uy + auPu, — ptg,; = 0. (1.1)

The regularized long wave equation (RLWE) is a particular instance of (1.1) for p =1, and it
is used to describe a wide range of issues in numerous fields of sciences. The equation was first used
to describe the growth of undular bore[2I]. The RLWE’s exact solution for some conditions may be
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found in ([3], [5]). Finite difference methods were used to solve it numerically ([I1], [21]). Consider
the modified RLWE (MRLWE), which is a special case of (1.1 for p=2.

Uy + Uy + QUPUy — [y = 0, (1.2)

subject to the boundary conditions u — 0 as z — Fo0.
The following boundary criteria will be considered

u(a,t) = u(b,t) =0, (1.3)
and achieve a unique B-spline solution, will be applied the boundary conditions
uz(a,t) = ug(b,t) =0, Uzz (@, t) = Uge (b, t) = 0, (1.4)

the initial condition is taken as

u(z,0) = f(z), a<z<b (1.5)

where f(z) alocalized disruption that happens inside [a, b]. For the numerical solution of MRLWE,
several approaches have been utilized, such as cubic B-spline finite element method (FEM) [12],
finite difference method [16], Adomian decomposition method [I7] and collocation method [I§]. The
numerical solutions for the GRLWE are based on quartic B-spline functions, cubic B-spline Galerkin
FEM, and cubic-quadratic B-spline Petrov-Galerkin technique, as mentioned in [14], [15] and [4].

We will employ BSLSM with change weight functions to solve — in this study by introducing
an approximate simulation of five different varieties of the suggested approach. This method was
inspired by a prior articles that combined B-spline Galerkin algorithms with change weight functions
and combined B-spline least-squares algorithms with change weight functions [I] and [2] respectively.

Definition 1.1. [13] Knots are places where the spline function can change form from one polyno-
mial to another, whereas nodes are points where the spline function’s values are defined

Definition 1.2 ([8] , [22]). Given m real values x; , called knots, with xg < x1 < ... < Zp_1, a
B-spline of degree n by using the Coz-de Boor recursion formula , given by the relations

1 Zf X S T S Tjr1
By = .
0 otherwise

T —x; Titnil — T ,
Bj,O = . Bj}n,1<l’> + —]+ +l Bj+1,n71(x)7 ] = O, e, =N — 2
Ljgn — Tj Tjtnt1 — Tj41
Note that j+n+1 cannot exceed m-1, which limits both j and n .

The B-spline functions are employed as basis functions in numerical techniques for the approximate
solutions of BVPs encountered in range of scientific applications, such as FEM, collocation, Galerkin,
and least-square approaches [7].

2. Approximation of the MRLWE by B-Spline Least-Square Methods with Change
Weight Function

The schemes that are dependent on type M of the BSLSM are now applied as follows:
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2.1. Quadratic B-Spline Least-Square Method with Linear Weight Function

Outside of the interval [x,,_1, Ty 2], the quadratic B-spline B,,(z) and its fundamental derivative
vanish [22].

t b
5/ / (g + Uy + aUUy — fillge)? dz dt = 0 (2.1)
0 a
is obtained by applying the least-squares formula to ((1.2)),
h=x—x, 0<n<l1, (2.2)

a linear B-spline shape function (BSSF) in terms of 7 over each element [z,,, ,,.1] may be defined
by using local transformation [24],

An=1-n, Apn=mn, (2.3)

all splines a part from A,, and A,,; are vanish over [z, Zm,41]. The function u(n,t) variation’s

can be approximated by:
m—+1

un(n,8) = Y Ay (n)wy, (1), (2.4)

Jji=m

where w,,(t) and w,,.1(t) represent element parameters and B-spline A,,(n) and A,,1(n)
represent element shape functions. We transfer the local coordinate &, onto each time interval
[t" t"T1] where, At = t"T! — " and

t=EAL+",  0<E<T, (2.5)

using (2.2) and (2.5)) in (2.1)), we obtain

Lot alAt 1
6/ / (g + gy + Tuzm7 - ﬁunngfdndf =0, (2.6)
o Jo

with the change in u over all element [x,,,2,,,1] the integral equation takes its minimum value.
Applying variational principle equation ([2.6) becomes:

1 1
| e+ vy = B + 1+ A Busg)de =, 2.7
0 0

_ alAt 2 M
where, A = %=0° and = /3.

To apply the least-square method (LSM) which 14ns into Petrov-Galerkin method ([6] , [10]) by
([2.7), let , O0(ue + uy + Auy, — Puyye) be the weight function.

By using (2.2)), (2.4) and (2.7) approximate the variation of the function wy(z,t) over the typ-
ical element [z, Z;y1] by [9]

m—+1

un(n,€) = > Ay, () (W}, + EAw}), (2.8)

i1=m
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where wy, and w),_, are nodal parameters at the beginning of the time step Af. Aw], and
Awp ., are the incremarkent of this parameters in At. We write the weight function as

m+1
wl = Z wi, Aw;, = 6(ug + uy + Auy),
by using (2.8)) such that
m+1
dun(n,§) = Z fAz‘l(U)AwZ'
i1=m
Now, we get ) )
wl = 6(ug + uy + Ay — Buge) = Aiy () + EAi () + AEA;, (n), (2.9)
substituting (2.9)) into (2.7)) gives:
1l
| e Xy = Bt A o)+ €28 ) + A = 0 (210)
o Jo
using (2.2) and ({2.5)), we get:
m—+1
un(,€) = Y Bu(m(i, +EA3) (2.11)
io=m—1

where, B,,_1(n), Bm(n) and By,,41(n) are BSSFs, ~@ 47 and 7)., are nodal parameters at
the initial time steps, Av}_;, Ay, and A, are the incremarkent of this parameters in At. A
quadratic BSSF in terms of 1 over the element [z,,x,,.1] can be defined as

Bm—l = (1 - 77)27 Bm =1+ 277 - 2772a Bm+1 = 772a (212)

all spline a part from B,,_1, B,, and B,,;1 are zero over [T, Tm1]. Substituting (2.11)) in (2.10]),
integration with respect to ¢ and integration by part as required leads to the following system of
equations for each individual element

m+1 1 2
Z 14+ A . o 1+ A P ,
ig=m—1 70

m+1

1 , 1+M)?2 .

io=m—1

which can be written in matrix form as follows

(1+X) (14 N)?
2 3

(1+X)?
2

[Xf BN e @nmy + ( LBy - BZT} Ay [(1 NG+ Yf] =0

where, ¢ = (2 _y, v, v ,1)" is element parameter and the element matrices X7, Q$, Yy and Z§
are rectangular 2 x 3 given as:

1 1 /3 8 1 vt 1 0 —1
Xe == / AlledT] = — < ) s Ye — / A“den — ( ) 5
LA 12\1 8 3 L A -1 0 1

. L 1/-2 1 1 . - 2 -2 0
Ql :/0 AleZan = g (_1 -1 2) ) Zl = AilBizlo = <O -9 2) )
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where suffices i; take only the value 1 and 2 and iy takes values m—1,m and m+1 . Assembling
together contributions from all element, yields the global system of matrix equation:

(1+N)?
2

(14+XN)
2

(1+N)?

Q1+ (Q1)") + ( 3

{XI N LAY - /321} Ay + {(1 NG+ YI} Y=o,
(2.13)

where, v = (7_1,7%,71,---,7~5)% is a global element parameter. Identifying v =" and Ay =

A"+t —~m in (2.13)) obtain the (N + 1) x (N +2) matrix system.
2
[Xl + < _g A Q1+ (@) + (@ + B)Y1 — 521] A
(1+ ) (1+ )\)2 (2.14)

- o B2 e @on - A 4 gy - s

The matrices Xi,Y; and (); are penta-diagonal rectangular matrices with the following row
format:

1
Xl 12<1 11 117170) }/1 ( 171717 -1 0)7 Ql ( -3 37170)

Over the element [z, Tpm1] , the element constant is given by:

3At

We apply the boundary conditions (|1.3) and ([1.4)) for the system ([2.14]) to make the matrix equation

square, and therefore 7", =~ , that is, the variable 7", , may be remarkoved from this system.

Remark 2.1. To iterate system (2.14)), the initial vector of parameter v° = (7°1,79,...,9%) must
be found. The approximation
Z Bzz %2

ig=—1

is rewritten across the interval |a,b] at time t =0 as follows
N
0)= > By O
io=—1

The following conditions at the mesh points ;o

UN(SL’iQ,O) = ’U,(SL’iQ,O), ’i2 = 0, e N, ﬁN($0,0> = d(a:N,O) = 0, ’lj,N<$0,0> = ﬁ(%N,O) = O,

lead to
2 -2 7, 0
11 o u(o)
11 Yy u(rn_1)
2 =2 T u(zy)

to solve this system, must be convert to a tridiagonal matrix by remarkoving the first row, and then
use the Thomas procedure[20].
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2.2. Cubic B-Spline Least-Square Method with Quadratic Weight Function
At all element [z,,x;,41] using local transformation ([2.2)), the cubic B-spline, shape functions

in term of n over [z, x,.1] can be described as [22]:

Com1 = (1= 1), Co=1+3(1=n) +3(1—n)* = 3(1 - n)°,

Cm-‘rl =1+ 377 + 3772 - 37737 Om—i—? = 7737
all splines except from C,,_1,Cp, Crpyp1 and Cy,yo vanish over [z, x,.1] . Change of the function
u(n,t) over this element approximated by:

m—+2

= ) Ci(noy(t (2.15)

i3=m—1

The spline C,,(x) vanishes except at [T,,_2, Tpmi2)-

The variation of the function wy(z,t) over the usual element can be approximated by utilizing

" " and " [xm7$m+1] by [6]

m—+2
> Cu)(ah +EAdT), (2.16)
i3=m—1
where Cy,—1(n), Cru(n), Crny1(n) and Ci,ia(n) are BSSFs, of!
rameters in the start of the time steps At , Ac”
of this parameters at each At .

13Ty Oy and o, are nodal pa-

" :
n_1, Aoy Aoy and Aoy, are the incremarkents

We can write the weight function (2.7)) as w2(z) quadratic B-spline

m+1
w2 = Z w24, A, = 0(ue + (1 4+ Nuy — Bugye),
t2=m—1
using (2.11)) such that
m+1
dun(n,€) = > EBi(n)AYL
io=m—1

Now, we get
w2 = 5(“5 + (1 + )‘)UU - /Bunﬁ§) = Bi2 (77) + (1 + )‘)6312 (77) - BBD (77),
by inserting the previous equation in ([2.7)) yields
1 1 ,
/ / [ug + (14 ANuy = Bugye] [Bi, (n) + (1 4+ A)§Bi, (n) — BB, (n)]dndg = 0, (2.17)
o Jo

the following system of equations for each individual element is obtained by inserting ([2.16]) in (2.17)),
integrating with respect to £, and integrating by part as required:

m-+2
Z {/I[B’?C‘ +@(Bigéis_kéhcis)—’_((lg/\)z +25)Bi2éis_M(B C +B C )
0

4 ° 2
i3=m—1
;s , , e (14+N)? .
+82B;,Cy,)dn — B(B,Ci, + Bi,Cy,)| } Ao+ Y {/ [(1+\)B,Cy, + 5 B.G,
i3=m—1

~(14+ NBBLCyldn} ol =0
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which can be written in matrix form as follows

e 1 + )\ e e 1 + )\ 2 /8 1 + )\ e e e e e
s s+ o + (5 w2y - 2654 ()7 + s - 623 o
14+ M)2
+ |+ nes+ S5 ys - e nsGs7| o =0
where, 0¢ = (0},_1,00, 00 1,00 +2) is element parameter and the element matrices X§, ()5, Y5, G§
and Z5 are rectangular 3 x 4 given as:
1 1 10 71 38 1 1 ) 1 3 -7 —1
X5 = / B;,Ci,dn = 0 19 221 221 19 |, Yy = / B;,Ci,dn = 3 -2 2
0 1 38 71 10 0 -1 —7 5
1 1 -6 -7 12 1 L, -4 6 0
Q5 :/ BiQC’ dn = — 0 —-13 —41 41 13 |, G§ :/ B;,Ci,dn = 2 —6 6
0 -1 =12 7 6 0 2 —6 4
) ) 5 8 -1 0 L, 6 -6 —6 6
75 = (By,Cs, + Bi,Ci)lo=| 1 =13 =13 1 |, M§ = / B;,Cidn=1| —12 12 12 -12 |,
0O -1 8 5 0 6 -6 —6 6

where it is sufficient only for the numbers 1, 2, and 3 are used in i5. For the usual element [z, Z,11] ,
13 accepts m —1,m,m+1 and m + 2 . The global system of matrix equations is obtained by
adding the contributions of all elements:

2
[XQ V0, @)+ (A wagyy, - PN 6, 4 (o)) + 8208 - 82| Ao
+ {(1 +A)Q2 + C J;)‘) Yy — (14 N)B(Gy)" | o =0,

(2.18)
where, a global element parameter is o = (0_1,00,01,...,0n42)7. Identifying o = o™ and
Ao = o™ — o™ in the following equation to get (N + 2) x (N + 3) matrix system.

2
ot 52 @+ (H5 o - PGk (60" 4 0t - 52 o
2
R R e L e R CAU R A P

(2.19)

The matrices X5, Y5, ()2 and Zy are septa-diagonal rectangular matrices, and each row has the
following form:

1 1

Xo = 5(1,57,302, 302,57, 1,0), Y2 =5(=1,-9,10,10,-9,-1,0),
1

Qo = —10(—1, —25,—40, 40, 25,1,0), G2 =(2,2,-16,16,-2,-2,0)

1
My = —(6,-18,12,12, -18,6,0), Z>=(0,0,0,0,0,0,0).
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The element constant for A over the element [x,,,%,,11] is given by:

AL
A= T(U%—l +doy, + o).

We apply the boundary conditions (1.3]) and (1.4]) to the system ([2.19)), resultingin o_; =01, ony1 =

on—_1 , which means the variables ¢_; and oyy; can be remarkoved from the equation. The initial
vector of the parameter o0 is determined by remarkark(2.1) as follows:

3 0 =3 o, 0
1 4 1 oy u(zo)
Lo L= : : (2.20)
1 4 1 o u(zy)
3 0 -3/ \ o, 0

To solve this system, first convert it to tridiagonal form by deleting the first and last equations, and
then use the Thomas procedure to solve it.

2.8. Quartic B-Spline Least-Square Method with Cubic Weight Function

The quartic B-spline, which uses local transformation (2.2)) to define shape functions in terms of
N over every [T, Tm,i1], may be given by [22]

Dyyo = (1 - 77)47 Dyq :<2 - 77)4 - 5<]‘ - 77)47
Dy = (3—m)" =5(2—n)" +10(1 — )", Dy =(1+n)" =50*,  Dyya =",
all splines a part from D,, o, Dyy_1, D, Dyy1 and D,, .o are zero over [x,,,Z,,.1]. The variation
of the function w(n,t) over [z, x,.1] is approximated by:

m+2

un(n, ) = Y Di,(n)pi,(1). (2.21)

ig=m—2

The variation of the function wuy(x,t) over |[Z,,,Zm,+1] is approximated by [6] by utilizing (2.2)),

(2.5) and (2.21)) receptively.

m+2
un(,8) = Y Di, ()P}, + A1), (2.22)
i4=m—2

where  Dyy—2(n), Din—1(1), Din(n), Dimni1(n) and Dy,yo(n) are BSSFs, pf, o, o5 1, 0, prya and
P42 are nodal parameters at the start of each time steps At , App o App 1, App,, App, and
Apy, o are the incremarkents of this parameters at each At .

The weight function w3(z) for cubic B-spline by ([2.7)) can be expressed as follows

m—+1

uB= 3 g, = g + (1 Ny — B

i3=m—2

Using (2.7) such that

m+1

5uN 77 5 Z fcm Ang

iz3=m—2
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Now, we get
w3 = 5(“5 + (1 + )‘>UTI - BuTmE) = Cis (77) + (1 + )\)5013 (77) - 66’13 (77)7
substituting the previous equation in ({2.7)) yields
1 1 ,
| e (04 0y = B Con) + (1 NEC ) = 5 a)ndg =0, (223)
0o Jo

The following system of equations for each individual element is obtained by putting (2.22)) in (2.23]),
integrating with regard to ¢ , and integrating by part as required:

m+2 1 2 , ,
1 , , 1 ., 1 , 2 :
E {/ [CigDi4+( ;A)(CigDi4+Oi3Di4)+(( EA) +25)Cz'3Dz'4)—@(QSDMJFCQDM)
0

a=m—2

m—+2 1 2
;2 , , , 14+MN* . .
+620i3Di4] d?’]—ﬂ(CBDM +013D14)|(1)}Ap?4 + Z {/(; |i(1—|—)\)CZSDZ4 —+ ( 5 ) CisDizL —ﬁ(l"‘)\)

ig=m—2
CisDi4] d?]} IOZ =0
which can be written in matrix form as follows

(1+X) (14 N)?

; - (G5 + (G5)T) + B M; — 525 | Agf

Q5+ (Q5)7) + (
(1+A)?

14+ A
Fagg - 20N

x5

+ {(1+)\)Q§+ Yi— B+ NM]| pf=0

where, p® = (plh_o, Ply_1, Py Py, Prs)’ 1 element parameter and the element matrices
X$,Q%, Yy, G5, MS and ZS are rectangular 4 x 5 given as:

35 594 892 158 1
. 1 | 211 4794 10196 3190 89
X3:/0 CisDisdn = 5251 g9 3190 10106 4794 211 |
1 158 892 594 35
10 61 -33 —37 -1
. b 1| 9 141 33 —165 —18
¥ :/0 CoDudn=21 19 165 33 141 9 |
1 —37 —33 61 10

20 —109 69 59 1
1
e e 1 129 —1059 255 873 60
Q3_/0 O”’D“dn_% —60 —873 —255 1059 129 |’
~1 =59 —69 109 20
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36 —6 114 —66 —6

. Lo 1| —42 —162 378 —102 —72

G3:/0 CoDudn=21" 79 100 _378 162 42 |°
6 66 —114 6 36

18 12 —72 36 6
1
e [tas . | =30 12 2 —60 o6
Ms _/0 CoDudn=1"6" 60 72 12 —30 |’
6 36 —72 12 18

-7 45 21 -1 O

16 41 -93 37 1

1 =37 =93 41 16 |’
0O -1 21 45 7

Z5 = (Ciy Dy + Ci, D)o =

where it is sufficient i3 only accepts the values 1, 2, 3, and 4, while i, accepts the values
m—2m—1mm+1 and m+2 for [z,,2,.1]. The global system of matrix equations is
obtained by adding all contributions from all elements:

(1+X)
2

(1+MN)?
3

B(1+ )2
2

{Xg ; Qs+ (Q)) + (

(1+ )2

+26)Y; — (Gs+ (G3)") + B°Ms — BZ3| Ap

+{(1+A)Q3+ Yz — B(1+NMI|p=0,

(2.24)

where, p = (p_2,p_1,00,p1,---,PNs+2)] is a global element parameter. Identifying p = p" and
Ap = p"™ — p™ in (2.30) obtain the (N + 3) x (N +4) matrix system.

[Xs + & ; M+ @) + (U EA)Q +2p)Y; — —m; N G+ (Ga)T) + 52Ma — B2 o1 =
o+ P g Qo) - A sy - 6 4 6y + o,

+(14+ NM) — 8Zs] p",
(2.25)

The rectangular nonic-diagonal matrices X3, Y3, Q3,G3, M3 and Z3 have the following row form:

1 1
X3 = 5g5(1,247,4293, 15619, 15619, 4293, 247,1,0), Y3 = =(~1, 55, ~189, 245,245, ~189, ~55,~1,0),

Q3

1 1
= £(—1, —119,—-1071, —1225,1225,1071,119,1,0), G3 = 5(6, 138, —54, —570, 570, 54, —138, —6, 0),

M, = (6,42, —162, 114, 114, —162, 42, 6, 0).
The element constant for A over [x,,,Z,41] is given by:

A= == (Pra + 1y + 1005, + )
To make matrix equation be square we applying the boundary condition ([1.3|) and (1.4)) to the system

[£25). s0, p"y = —p"y . p" = Lo}, Piss = 3pk_y . that is mean the variables p",,p", and p},,
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can be eliminated from the system (2.25)). By remarkark(2.1) the initial vector of parameter p° is
then determined as:

12 —-12 —12 12

0
4 12 —12 4 Pe2 8
1 11 11 1 P
Po _ u(o)
1 11 11 1 ; '
4 12 -12 4 P “(f)m
12 —12 —12 12 PN+

To solve this system, first reduce it to four-diagonal form by remarkoving the first pair and last
equation, then use the Thomas procedure to solve it.

2.4. Quintic B-Spline Least-Square Method with Quartic Weight Function

The quintic B-spline, which uses local transformation (2.2)) to shape functions in terms of 7 over
[T, Tmy1], may be defined as [22]

Ep o= (1-1)°,

Ep1 = (2-1)" = 6(1-n),
En=(3-n)—6(2-n)°+15(1-1n),

Epi1 = (4=n)" = 6(3 —n)° +15(2 — n)° — 20(1 — n)°,

Epyo = (5—n)" = 6(4 —n)° +15(3 = 1) — 20(2 — n)° + 15(1 — n)?,

Epts = 775'

The variation of the function w(n,t) over [z,,zm11] is approximated by:

m+3

UN(UJ): Z Ei5(n)gi5(t)7 (2‘26)

is=m—2

which may be approximated by utilizing (2.2) and .

m+3

un(n,§) = Y En(n)(gh +£Ag), (2.27)

i5=m—2

where Ev2(1), Em-1(1), Em(n), Em11(n), Emi2(n) and En3(n) are BSSFs, g7 o, 95 1, 95 G
gm.o and g, . s are nodal parameters at the initial of the time steps At , Agp o, Agy 1, Agy,,
Agp 1, Agn. o and Agp 5 are the incremarkents of the nodal parameters in At .

We can write the weight function w4(x) quartic B-spline using (2.7)as

m—+2

owd = Z wdi, Agiy = 0(ug + (1 + Auy — Buge),

ig=m—2

using (2.22) such that

m+3

Sun(n,§) = > &Di(n)Agy

ig=m—2
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Now, we get

wd = 6(“5 + (1 + )‘)un - ﬂum]{) = Di4(n) + (1 + /\)5[7@4(77) - BD;M(”)?

substituting above equation into (2.7)) gives

/0 / (1 + (1 + Nty — Binge) (Diy() + (1 + NEDy (n) — BDy (n))dnd = 0, (2.28)

The following system of equations for each individual element is obtained by replacing (2.27) in
(2.28), integrating with respect to ¢ , and integrating by part when required:

m+3 1 2 , ,
1 )\ 4 z ]_ A 7z 7z 1 )\ ’ 7 7 s
E {/ [D14Ei5 + %(Dmﬂs + Dy, Eiy) + (( 2 ) +28D;, Eiy) — @(DME% + Dy, Eig)+
0

i5=m—2

m+3 1 2
;e , , " , 1+,
BQDME%} dn — B(Ds, B + Di4Ei5)|(1)} Agit + E {/ [(1 + AN D, Ei; + ( 5 ) D, E;; — B(1+))
0

i5=m—2

which can be written in matrix form as follows

2
i @+ @ + A a6 o + s - 621] g
{(1 @+ S e s ] g =0

where, ¢¢ = (90 0, 90 1, G, G i1s Grios Oris)” 1 element parameter and the element matrices
X5, Q%Y G My and Z§ are rectangular 5 x 6 given as:

126 4747 15962 8772 632 1
) 1931 89797 376002 281662 36467 381

X6 — / Dy Endp = —— | 2601 155637 839682 839682 155637 2601
0 1260 | 391 36467 281662 376002 89797 1931

1 632 8772 15962 4747 126

35 559 208  —734 —157 —1

1 176 4024 5104 —6272 —2944 —88

Yf = / DuEisdnzﬁ —122 —1482 1604 1604 —1482 —122
0 —88 —2044 —6272 5104 4024 176

—1 =157 =734 298 559 35

-70  —1051 —460 1330 250 1
—1121 —-21689 —20186 31550 11195 251

)

Y

1
Q5 = / DZ-4EZ-5dn = 1% —1581 —41415 —67434 67434 41415 1581 |,
0 —251 —11195 —31550 20186 21689 1121
-1 —-250  —1330 460 1051 70

—20 -89 178 —10 —58 —1

, —109 —841 1136 628 —755 —59
Gj:/ DuEisdn:? 69 117 —696 696 —117 —69 |,

0 59 755 —628 —1136 841 109

1 58 10 —178 89 20
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10 51 94 -4 36 1
L, -1 81 -14 -194 111 17

Mg = / DyEydy=4| —27 279 306 306 —279 —27 |,
0 17 111 —194 -14 81 -1
1 3 -4 -9 51 10

9 154 264 54  —1 0

67 853 638  —502 —97 1
Z¢ = (Di,Ei, + Di,E )t = | 43 171 —1654 —1654 171 43 |,

1 —97 —502 638 853 67

0 —1 54 264 154 9

where it is sufficient 44 only accepts the values 1, 2, 3, 4, and 5, while 5 accepts the values

m—2m—1m,m+1,m+2 and m+3 for the typical element [z,,,z,1]. The global system of
matrix equation is obtained by combining contributions from all elements:

0+ G @+ (2 sy - M6 (60 + 2 - 52 A
s (R LRSVAYH) PR
(2.29)

n

where, g = (g1,...,9n4+2)" is a global element parameter. Identifying g = ¢" and Ag = ¢g""'—g
in (2.29) obtain the (N +4) x (N 4 5) matrix system.

[X‘l + ! ; 2 Qs+ (Qu)") + (<1 J;)\>2 +28)Yy — a ; o (Ga+ (G)T) + B My — 24| g™ =
s 0 @) - A sy - B 6 )+ s+ (14 )
—B2Z4) 9",

(2.30)

the matrices Xy, Yy, Q4, G4, My and Z; are rectangular 11-diagonal and row of each has the

following form:

Xy = %60(1’ 1013,47840, 455172, 13103540, 13103540, 455192, 47840, 1013, 1, 0),
Y, = 1—14(—1, —245, —3800, —7280, 11326, 11326, —7280, —3800, —245, —1, 0),
Q4= %(—1, —501, —14106, —73626, —67956, 67956, 73626, 14106, 501, 1, 0),
Gy = Z—1(1, 117,834, —798, —2604, 2604, 798, —834, —117, —1,0),

7
M, = 4(1, 53,80, —568, 434,434, —568, 80, 53, 1, 0).

The element constant for A over [x,,,Z,1] is given by:

A= —— (9o + 26951 + 669, + 269, 1 + g 0)’.
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Applying the boundary conditions (1.3) and (1.4)) to the system (2.30), we can make the matrix
equation square, so, ¢", = 1297 — g5, 9”1 = =395 — 97, 9n41 = —9n_1 — 39N, and gy, =
—9gn_o + 129}, that is mean the variable ¢",, ¢";, gy, and gx,,, can be eliminated from this
system. By remarkark (2.1) the initial vector of parameter ¢° is then determined as:

20 40 —120 40 20 g%, 0
5 50 0 —50 =5 9%, 0
1 26 66 26 1 a9 u(zo)
1 26 66 26 1 9% u(y)

50 0 —50 —5 I+ 0

20 40 —120 40 20 I+ 0

To solve this system, first convert it to penta-diagonal form by remarkoving the first and last pair of
equations, and then use the Thomas procedure.

2.5. Sextic B-Spline Least-Square Method with Quintic Weight Function

By employing local transformation ({2.2)), the sextic B-spline, shape functions in terms of 1 over
[, Tm1], may be defined as [22]

1—n)°  Fno=2-7)°"-71-n)°

3—n)°—17(2—n)°+21(1—1n)°

4—n)° =73 =n)°+21(2 —n)° =351 —n)°,
n) 7( 1—n)°+21(=n)°,

m+2

(
(
(
(=2
(-1
(=

n)
The function w(n,t) variation over [z,,,x,+1] and is approximated by:

m+3

un(n,t) =Y Fig(n)7is(t). (2.31)

tg=m—3

Outside the interval [z,,_3, T4 , the spline F,,(z) vanishes. The variation of the function

uy(z,t) over [x,,,T,+1] may be approximated by utilizing (2.2)), (2.5) and ({2.31])

m+3

S B+ €arh), (2.32)

ig=m—3

where  Fy_5(n), Fia (1), Frn1(1), Fn (1), Fins1(1); Frn2() and Fry3(n) ave BSSFs, 77 s, 770 o,
T 1y Toes Tonats Tmyo and 7, .. are nodal parameters at the beginning of the time steps At |
ATh o AT o AT Ay AR AT 5 and A7) o The nodal parameter increases with each

At . The weight function w5(:1:) is employed, which for a quintic B-spline can be expressed as

m+3

owb = Z w5 Agis = 6(ug + (1 4+ Ny — Biyne),

is=m—2
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using ([2.27)) such that

m—+3

> &BL(n

i5=m—2

5UN T] 5 Ag7,5

Now, we get

wh = 8ug + (1+ Nty — Buigne) = By, (1) + (L+ NEE, () — BE; (1),

substituting above equation into (2.7) gives

/01/01(u§+(1+)\)

For each individual element, substituting (2.32)) in (2.33)), integration with respect to &, and integra-
tion by part as required results in the following system of equations:

Uy — Bnne) (Ei () + (1 4+ N)EE;, (n) — Bi; (n))dndé = 0, (2.33)

m+3

Z{/EFJr

tg=m—3

(1+N)? B(1+N)

+28)E; Fy,) — (BiuFry + EinE)+

A s ’
>(E2'5Fi6 + Ei5Fi6) + (

m—+3 (

Yy {/ [(1+ \NE;, Fi, +

ig=m—3

TN B B BN

ﬂQE,is / ]dn /B(EZQEG + ElsFZG

EZ5Fi6]dn}Tin6 =
It can be represented as follows in matrix form

(1+ )2 B(1+N)

€ 1 + )\ € € € € € € € €
xe+ S M v @)+ (A oy - PN e ) 4 g - pzglar
+ A
[(1+M)Q% + u 5 ! YE— B+ M =0
the element parameter is 7° = (7% 4,77 o 7o 1, To Toh i1 To o, Tito3)?. The element matrices

XE, Q8 Y, GE, M and Zf are rectangular 6 x 7 are written as follows:

76900 2503 1
6128395 375559 1580

462 36959 244205 304250

1

1
Xe= | B Fydy=
g /0 e = 554y

1

1
Ye= | By Fudy=—
g /0 TR

—1

16171 1537535
51014 5748218

25812 3704026
1580 375559
1 2503
162 4621
1805 83245
670 65170
—2220 —116950
—380  —35455

—631

11886590 17975130
52521800 96528940
42334750 96528940

6128395 17975130
76900 304250
11215 —=7190
274990 87150
397840 94340
—438850 94340
—237055 —87150
—8140  —7190

42334750 3704026 25812
5251800 5748218 51014 |~

11886590 1537535 16171
244205 36959 462

—8140 —631 -1
—237055 —35455 —380
—438850 —116950 —2220

397840 65170 670 ’

274990 83245 1805

11215 4621 126
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—252 —8861 —20445 14060 14480 1017 -1
—9113 —38R8303 —1161290 486520 950545 120623 1018
. ! , 1 —29558 —1529148 —5905750 861980 5530290 1056688 15498
Q5: Ei5F1i6d77:_
0

962 | —15498 —1056688 —5530290 —861980 5905750 1529148 29558 |’
—1018  —120623 —950545 —486520 1161290 388303 9113

-1 —1017 —14480  —14060 20445 8861 252
—70 —981 991 1790 —1080  —249 -1
—1051 —19587 912 49946  —19275 —10695 —250
Ge 1E/< F d _ 9 —460 —19266 —27522 83132 —5664 —28890 —1330
R T 1330 28890 0664  —83132 27522 19266 460 ’

250 10695 19275 —49946 —912 19587 1051
1 249 1080  —1790  —591 981 70

35 524 261 —1032 577 156 1
141 3324 1341 —10344 2751 2700 87
L,y 15 — _ _ _
M = / By Fydy = = 298 5208 2006 11376 6014 1496 34 ’
0 7 34 —1496 —-6414 11376 2006 —5208 —289
87 2700 2751 —10344 1341 3324 141
1 156 577 —1032 —261 524 35
11 435 1750 1270 135 -1 0
206 6739 20905 7110 —2320 —-241 1
e (p 1 £ N 396 9694 9090 —37180 —18760 654 106
Zs = (Ei Fig + Eis Fi ) o = 106 654 —18760 —37180 9090 9694 396 |’
1 —-24 -2320 7110 20905 6739 206
0 -1 135 1270 1750 435 11

where it is sufficient 45 only accepts the values 1, 2, 3, 4, and 5, while ig accepts the values

m—3,m—2m—1mm+1,m+2 and m+ 3 for the typical element [z,,,z,1]. The global
system of matrix equation is the sum of all contributions from all elements.

5+ LN ;4 Qo)+ (EAL gy, - BN (i 4 g2ty — i) Ars
[(1+M)Qs + Chs A)25/5 — B+ NMI)r =0,

(2.34)

where, 7= (7_3,...,7n43)] is a global element parameter. Identifying 7 = 7" and A7 = 77+t —7
in (2.34) obtain the (N +5) x (N + 6) matrix system.

(14 M)

[X5 + 5 (Qs+(Qs)") + ((1 EA)Q +26)Ys — M(C% +(G5)") + B2M5 — BZs] 7" = [ X5+
WEN s+ Qo) ~ M oy, - I G 4Gy 4 (ot + (1 + 00D - 251

(2.35)
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the matrices X5, Y;, @5, G5, M5 and Z; are rectangular 13-diagonal and row of each has the

following form:

1
X5 = (1,4083,478271, 10187685, 66318474, 162512286, 162512286, 66318414, 10187685, 478271, 4083, 1,0)

9544

= 15(—1,—1011, —45815, ~360525, —447810, 855162, 855162, ~447810, ~360525, ~45815, ~1011,~1,0)

1
Q5 = 355(~1. 2035, ~150601, ~2050851, ~ 7534626, ~5986134, 5986134, 7534626, 2050851, 150601, 2035, 1,0)

21
Gs = g(l, 499, 13105, 45915, —65190, —130242, 130242, 65190, —45915, —13105, —499, —1, 0)

7
Ms = 1—5(1, 243,3311, —75, —22086, 18606, 18606, —22086, —75, 3311, 243, 1, 0).

The element constant for A over the element [x,,, Z;,4+1] is given by:

3At
A= (T BTy 4+ 30277y + 30270 4+ BT 4+ T o)2

h
We apply the boundary conditions (1.3) and (1.4) to the system 1} T :41%7'{} —i—l 7%7‘{” + %72",

n _ 520, n , 271 _n 13 n n _ 134 _n__ 50 n_ 2 _n n _ _1_n _ 41 n _ 1711 n _ 131 _n
+t35172, T i T 572> TN+1 = T16'N-3 ~16'N-2 " 16 'N—1 — 16 N>

T-2 = 5070 54T Fo5 b 9%, Ot ao1
Y, making the matrix equation square, that is mean

n _ 7. .n n n
and Ty, o = —16Tn_3 1T G67N_—21 75 TN_1 T 567N
the variable 7”3, 7", 7", 75, and Ty, o, can be taken out of this system. The initial vector of the

parameter 7° is determined as follows by remarkark (2.1):

70 0
30 270 —300 —300 270 30 0 0
6 150 240 —240 —150 —60 s 0
1 57 302 302 57 1 o
. . . 7—0 — U(mO)
1 57 302 302 57 1 A wlan)
6 150 240 240 -150 —6| | ¢V .
30 270 —300 —300 270 30/ |7+ 0

TN+2

to solve this system, first reduce it to six-diagonal form by eliminating the first three and last pair of
equations and then apply Thomas algorithm.

3. Stability Analysis of Least-Square B-Spline Methods with Different Weight Function

We apply the Von Neumann stability method for the stability of all schemes in this paper, since this
method is applicable to linear schemes, the nonlinear term wu2u, is linearized by taking u as locally constant

value [19].

3.1. Stability of Quadratic B-Spline Least-Square Method with Linear B-Spline as a Weight Function
A typical member of the matrix system (2.14) can be written in terms of the nodal parameters 7" as

n+1 n+1 n+1 n+1l __ n n n n
1Yo + Q27,1 + a2y, a1V = a3Ym—o T @41+ @4V, + A3V,

where,

1 (14 ))? 11 (1+))2 1 (14 ))? 11 (1+/\)2_5

@M =157 3 -5, a2:E+T+57 G3:E—T+ﬁa a4 =715" 6
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substitution of 7! = Ylne"mh, where r is the mode number and h is size of the element , leads to

}/1(@1672“% + ageﬂrh +as + alezrh) _ a36721rh + (1467”% +ay + agezrh7

then, Y7 = Mt where,

K1+iQ1°
M, = 1—12 — (12/\)2 — B + cosh(rh) + (% + (1+6A)2 + B)cos(2rh),
Ni=(-1g+ W +28)sin(rh) + (2 - (HGA)z _ B)sin(2rh),
Ky= 1ot (”3”2 + B+ cos(rh) + (35 (1?)2 ~ B)eos(2rh),
Q1= (-1 - 2(1;:”2 ~ 26)sin(rh) + (~5 - (1?)2 4 B)sin(2rh),

after simplification, we obtain that |Y7| = 1 and the linearized numerical scheme for the MRLWE is uncon-
ditionally stable.

Remark 3.1. In like manner we can prove that all other numerical schemes for the MRLWE are uncondi-
tionally stable.l]

4. Conclusion

We developed a new B-spline least-square technique for solving the generalized regularized long wave
equation with change weight functions in this paper, which provided new approximate simulations of five
different types of the proposed scheme. These strategies were based on previous researchs [I] and [2] that
combined B-spline Galerkin algorithms with change weight functions, as well as a B-spline least-squares
algorithm with change weight functions.
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