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Abstract

For solving differential equations, a variety of numerical methods are available, accuracy, perfor-
mance, and application are all different. In this article, we proposed new numerical techniques for
solving the generalized regularized long wave equation(GRLWE) that are based on types M and M-1
of B-splines-least-square method (BSLSM) and weight function of B-splines respectively, which were
proposed previously for solving integro-differential equations [2] where M ∈ N . We investigated
linear stability using a Fourier method.

Keywords: B-Spline method, Petrov-Galerkin method, Least-Square method, Fourier method,
generalized regularized long wave equation.

1. Introduction

Consider GRLWE has the form

ut + ux + αupux − µuxxt = 0. (1.1)

The regularized long wave equation (RLWE) is a particular instance of (1.1) for p = 1 , and it
is used to describe a wide range of issues in numerous fields of sciences. The equation was first used
to describe the growth of undular bore[21]. The RLWE’s exact solution for some conditions may be
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found in ([3], [5]). Finite difference methods were used to solve it numerically ([11], [21]). Consider
the modified RLWE (MRLWE), which is a special case of (1.1) for p = 2 .

ut + ux + αu2ux − µuxxt = 0, (1.2)

subject to the boundary conditions u → 0 as x → ±∞.
The following boundary criteria will be considered

u(a, t) = u(b, t) = 0, (1.3)

and achieve a unique B-spline solution, will be applied the boundary conditions

ux(a, t) = ux(b, t) = 0, uxx(a, t) = uxx(b, t) = 0, (1.4)

the initial condition is taken as
u(x, 0) = f(x), a < x < b (1.5)

where f(x) a localized disruption that happens inside [a, b]. For the numerical solution of MRLWE,
several approaches have been utilized, such as cubic B-spline finite element method (FEM) [12],
finite difference method [16], Adomian decomposition method [17] and collocation method [18]. The
numerical solutions for the GRLWE are based on quartic B-spline functions, cubic B-spline Galerkin
FEM, and cubic-quadratic B-spline Petrov-Galerkin technique, as mentioned in [14], [15] and [4].
We will employ BSLSM with change weight functions to solve (1.2)-(1.5) in this study by introducing
an approximate simulation of five different varieties of the suggested approach. This method was
inspired by a prior articles that combined B-spline Galerkin algorithms with change weight functions
and combined B-spline least-squares algorithms with change weight functions [1] and [2] respectively.

Definition 1.1. [13] Knots are places where the spline function can change form from one polyno-
mial to another, whereas nodes are points where the spline function’s values are defined

Definition 1.2 ([8] , [22]). Given m real values xi , called knots, with x0 ≤ x1 ≤ . . . ≤ xm−1 , a
B-spline of degree n by using the Cox-de Boor recursion formula , given by the relations

Bj,0 =

{
1 if xj ≤ x ≤ xj+1

0 otherwise

Bj,0 =
x− xj

xj+n − xj

Bj,n−1(x) +
xj+n+1 − x

xj+n+1 − xj+1

Bj+1,n−1(x), j = 0, . . . ,m− n− 2

Note that j + n+ 1 cannot exceed m-1, which limits both j and n .

The B-spline functions are employed as basis functions in numerical techniques for the approximate
solutions of BVPs encountered in range of scientific applications, such as FEM, collocation, Galerkin,
and least-square approaches [7].

2. Approximation of the MRLWE by B-Spline Least-Square Methods with Change
Weight Function

The schemes that are dependent on type M of the BSLSM are now applied as follows:
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2.1. Quadratic B-Spline Least-Square Method with Linear Weight Function

Outside of the interval [xm−1, xm+2], the quadratic B-spline Bm(x) and its fundamental derivative
vanish [22].

δ

∫ t

0

∫ b

a

(ut + ux + αu2ux − µuxxt)
2 dx dt = 0 (2.1)

is obtained by applying the least-squares formula to (1.2),

hη = x− xm, 0 ≤ η ≤ 1, (2.2)

a linear B-spline shape function (BSSF) in terms of η over each element [xm, xm+1] may be defined
by using local transformation [24],

Am = 1− η, Am+1 = η, (2.3)

all splines a part from Am and Am+1 are vanish over [xm, xm+1]. The function u(η, t) variation’s
can be approximated by:

uN(η, t) =
m+1∑
j1=m

Aj1(η)wj1(t), (2.4)

where wm(t) and wm+1(t) represent element parameters and B-spline Am(η) and Am+1(η)
represent element shape functions. We transfer the local coordinate ξ, onto each time interval
[tn, tn+1] where, ∆t = tn+1 − tn and

t = ξ∆t+ tn, 0 ≤ ξ ≤ 1, (2.5)

using (2.2) and (2.5) in (2.1), we obtain

δ

∫ 1

0

∫ 1

0

(uξ + uη +
α∆t

h
û2uη −

µ

h2
uηηξ)

2dηdξ = 0, (2.6)

with the change in u over all element [xm, xm+1] the integral equation takes its minimum value.
Applying variational principle equation (2.6) becomes:∫ 1

0

∫ 1

0

(uξ + uη + λuη − βuηηξ)δ(uξ + uη + λuη − βuηηξ)dηdξ = 0, (2.7)

where, λ = α∆t
h
û2 and β = µ

h2 .

To apply the least-square method (LSM) which 14ns into Petrov-Galerkin method ([6] , [10]) by
(2.7), let , δ(uξ + uη + λuη − βuηηξ) be the weight function.

By using (2.2), (2.4) and (2.7) approximate the variation of the function uN(x, t) over the typ-
ical element [xm, xm+1] by [9]

uN(η, ξ) =
m+1∑
i1=m

Ai1(η)(w
n
i1
+ ξ∆wn

i1
), (2.8)
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where wn
m and wn

m+1 are nodal parameters at the beginning of the time step ∆t. ∆wn
m and

∆wn
m+1 are the incremarkent of this parameters in ∆t. We write the weight function as

δw1 =
m+1∑
i1=m

wi1∆wi1 = δ(uξ + uη + λuη),

by using (2.8) such that

δuN(η, ξ) =
m+1∑
i1=m

ξAi1(η)∆wn
i1
.

Now, we get
w1 = δ(uξ + uη + λuη − βuηηξ) = Ai1(η) + ξÁi1(η) + λξÁi1(η), (2.9)

substituting (2.9) into (2.7) gives:∫ 1

0

∫ 1

0

(uξ + uη + λuη − βuηηξ)(Ai1(η) + ξÁi1(η) + λξ)dηdξ = 0, (2.10)

using (2.2) and (2.5), we get:

uN(η, ξ) =
m+1∑

i2=m−1

Bi2(η)(γ
n
i2
+ ξ∆γn

i2
) (2.11)

where, Bm−1(η), Bm(η) and Bm+1(η) are BSSFs, γn
m−1, γ

n
m and γn

m+1 are nodal parameters at
the initial time steps, ∆γn

m−1,∆γn
m and ∆γn

m+1 are the incremarkent of this parameters in ∆t. A
quadratic BSSF in terms of η over the element [xm, xm+1] can be defined as

Bm−1 = (1− η)2, Bm = 1 + 2η − 2η2, Bm+1 = η2, (2.12)

all spline a part from Bm−1, Bm and Bm+1 are zero over [xm, xm+1]. Substituting (2.11) in (2.10),
integration with respect to ξ and integration by part as required leads to the following system of
equations for each individual element

m+1∑
i2=m−1

{∫ 1

0

[
Ai1Bi2 +

(1 + λ)

2
(Ai1B́i2 + Ái1B́i2) + (

(1 + λ)2

3
+ β)Ái1B́i2

]
dη − βAi1B́i2|10

}
∆γn

i2

+
m+1∑

i2=m−1

{∫ 1

0

[
(1 + λ)Ai1B́i2 +

(1 + λ)2

2
Ái1B́i2

]
dη

}
γn
i2
= 0

which can be written in matrix form as follows[
Xe

1 +
(1 + λ)

2
(Qe

1 + (Qe
1)

T ) + (
(1 + λ)2

3
+ β)Y e

1 − βZe
1

]
∆γe +

[
(1 + λ)Qe

1 +
(1 + λ)2

2
Y e
1

]
γe = 0

where, γe = (γn
m−1, γ

n
m, γ

n
m+1)

T is element parameter and the element matrices Xe
1 , Q

e
1, Y

e
1 and Ze

1

are rectangular 2× 3 given as:

Xe
1 =

∫ 1

0

Ai1Bi2dη =
1

12

(
3 8 1
1 8 3

)
, Y e

1 =

∫ 1

0

Ái1B́i2dη =

(
1 0 −1
−1 0 1

)
,

Qe
1 =

∫ 1

0

Ai1B́i2dη =
1

3

(
−2 1 1
−1 −1 2

)
, Ze

1 = Ai1B́i2|10 =
(
2 −2 0
0 −2 2

)
,
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where suffices i1 take only the value 1 and 2 and i2 takes values m−1,m and m+1 . Assembling
together contributions from all element, yields the global system of matrix equation:[

X1 +
(1 + λ)

2
(Q1 + (Q1)

T ) + (
(1 + λ)2

3
+ β)Y1 − βZ1

]
∆γ +

[
(1 + λ)Q1 +

(1 + λ)2

2
Y1

]
γ = 0,

(2.13)
where, γ = (γ−1, γ0, γ1, . . . , γN)

T is a global element parameter. Identifying γ = γn and ∆γ =
γn+1 − γn in (2.13) obtain the (N + 1)× (N + 2) matrix system.[

X1 +
(1 + λ)

2
(Q1 + (Q1)

T ) + (
(1 + λ)2

3
+ β)Y1 − βZ1

]
γn+1

=

[
X1 +

(1 + λ)

2
(−Q1 + (Q1)

T )− (
(1 + λ)2

6
+ β)Y1 − βZ1

]
γn,

(2.14)

The matrices X1, Y1 and Q1 are penta-diagonal rectangular matrices with the following row
format:

X1 =
1

12
(1, 11, 11, 1, 0), Y1 = (−1, 1, 1,−1, 0), Q1 =

1

3
(−1,−3, 3, 1, 0).

Over the element [xm, xm+1] , the element constant is given by:

λ =
3∆t

h
(γn

m−1 + γn
m)

2.

We apply the boundary conditions (1.3) and (1.4) for the system (2.14) to make the matrix equation
square, and therefore γn

−1 = γn
0 , that is, the variable γn

−1 , may be remarkoved from this system.

Remark 2.1. To iterate system (2.14), the initial vector of parameter γ0 = (γ0
−1, γ

0
0 , . . . , γ

0
N) must

be found. The approximation

uN(x, t) =
N∑

i2=−1

Bi2(x)γi2(t)

is rewritten across the interval [a, b] at time t = 0 as follows

uN(x, 0) =
N∑

i2=−1

Bi2γ
0
i2
.□

The following conditions at the mesh points xi2

uN(xi2, 0) = u(xi2, 0), i2 = 0, . . . , N, úN(x0, 0) = ú(xN , 0) = 0, ´́uN(x0, 0) = ´́u(xN , 0) = 0,

lead to 
2 −2
1 1

. . . . . .

1 1
2 −2




γ0
−1

γ0
0
...

γ0
N−1

γ0
N

 =


0

u(x0)
...

u(xN−1)
u(xN)


to solve this system, must be convert to a tridiagonal matrix by remarkoving the first row, and then
use the Thomas procedure[20].
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2.2. Cubic B-Spline Least-Square Method with Quadratic Weight Function
At all element [xm, xm+1] using local transformation (2.2), the cubic B-spline, shape functions

in term of η over [xm, xm+1] can be described as [22]:

Cm−1 = (1− η)3, Cm = 1 + 3(1− η) + 3(1− η)2 − 3(1− η)3,

Cm+1 = 1 + 3η + 3η2 − 3η3, Cm+2 = η3,

all splines except from Cm−1, Cm, Cm+1 and Cm+2 vanish over [xm, xm+1] . Change of the function
u(η, t) over this element approximated by:

uN(η, t) =
m+2∑

i3=m−1

Ci3(η)σi3(t). (2.15)

The spline Cm(x) vanishes except at [xm−2, xm+2].

The variation of the function uN(x, t) over the usual element can be approximated by utilizing
(2.2), (2.5) and (2.15) [xm, xm+1] by [6]

uN(η, ξ) =
m+2∑

i3=m−1

Ci3(η)(σ
n
i3
+ ξ∆σn

i3
), (2.16)

where Cm−1(η), Cm(η), Cm+1(η) and Cm+2(η) are BSSFs, σn
m−1, σ

n
m, σ

n
m+1 and σn

m+2 are nodal pa-
rameters in the start of the time steps ∆t , ∆σn

m−1,∆σn
m,∆σn

m+1 and ∆σn
m+2 are the incremarkents

of this parameters at each ∆t .

We can write the weight function (2.7) as w2(x) quadratic B-spline

δw2 =
m+1∑

i2=m−1

w2i2∆γi2 = δ(uξ + (1 + λ)uη − βuηηξ),

using (2.11) such that

δuN(η, ξ) =
m+1∑

i2=m−1

ξBi2(η)∆γn
i2

Now, we get

w2 = δ(uξ + (1 + λ)uη − βuηηξ) = Bi2(η) + (1 + λ)ξB́i2(η)− β
´́
Bi2(η),

by inserting the previous equation in (2.7) yields∫ 1

0

∫ 1

0

[uξ + (1 + λ)uη − βuηηξ][Bi2(η) + (1 + λ)ξB́i2(η)− β
´́
Bi2(η)]dηdξ = 0, (2.17)

the following system of equations for each individual element is obtained by inserting (2.16) in (2.17),
integrating with respect to ξ , and integrating by part as required:

m+2∑
i3=m−1

{∫ 1

0

[Bi2Ci3 +
(1 + λ)

2
(Bi2Ći3 + B́i2Ci3) + (

(1 + λ)2

3
+ 2β)B́i2Ći3 −

β(1 + λ)

2
(B́i2

´́
Ci3 +

´́
Bi2Ći3)

+β2 ´́Bi2
´́
Ci3 ]dη − β(Bi2Ći3 + B́i2Ci3)|10

}
∆σn

i3
+

m+2∑
i3=m−1

{∫ 1

0

[(1 + λ)Bi2Ći3 +
(1 + λ)2

2
B́i2Ći3

−(1 + λ)β
´́
Bi2Ći3 ]dη

}
σn
i3
= 0
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which can be written in matrix form as follows[
Xe

2 +
(1 + λ)

2
(Qe

2 + (Qe
2)

T ) + (
(1 + λ)2

3
+ 2β)Y e

2 − β(1 + λ)

2
(Ge

2 + (Ge
2)

T ) + β2M e
2 − βZe

2

]
∆σe

+

[
(1 + λ)Qe

2 +
(1 + λ)2

2
Y e
2 − (1 + λ)β(Ge

2)
T

]
σe = 0

where, σe = (σn
m−1, σ

n
m, σ

n
m+1, σ

n
m+2)

T is element parameter and the element matrices Xe
2 , Q

e
2, Y

e
2 , G

e
2

and Ze
2 are rectangular 3× 4 given as:

Xe
2 =

∫ 1

0

Bi2Ci3dη =
1

60

 10 71 38 1
19 221 221 19
1 38 71 10

 , Y e
2 =

∫ 1

0

B́i2Ći3dη =
1

2

 3 5 −7 −1
−2 2 2 −2
−1 −7 5 3

 ,

Qe
2 =

∫ 1

0

Bi2Ći3dη =
1

10

 −6 −7 12 1
−13 −41 41 13
−1 −12 7 6

 , Ge
2 =

∫ 1

0

B́i2
´́
Ci3dη =

 −4 6 0 −2
2 −6 6 −2
2 0 −6 4

 ,

Ze
2 = (Bi2Ći3 + B́i2Ci3)|10 =

 5 8 −1 0
1 −13 −13 1
0 −1 8 5

 , M e
2 =

∫ 1

0

´́
Bi2

´́
Ci3dη =

 6 −6 −6 6
−12 12 12 −12
6 −6 −6 6

 ,

where it is sufficient only for the numbers 1, 2, and 3 are used in i2. For the usual element [xm, xm+1] ,
i3 accepts m − 1,m,m + 1 and m + 2 . The global system of matrix equations is obtained by
adding the contributions of all elements:[

X2 +
(1 + λ)

2
(Q2 + (Q2)

T ) + (
(1 + λ)2

3
+ 2β)Y2 −

β(1 + λ)

2
(G2 + (G2)

T ) + β2M2 − βZ2

]
∆σ

+

[
(1 + λ)Q2 +

(1 + λ)2

2
Y2 − (1 + λ)β(G2)

T

]
σ = 0,

(2.18)

where, a global element parameter is σ = (σ−1, σ0, σ1, . . . , σN+2)
T . Identifying σ = σn and

∆σ = σn+1 − σn in the following equation to get (N + 2)× (N + 3) matrix system.[
X2 +

(1 + λ)

2
(Q2 + (Q2)

T ) + (
(1 + λ)2

3
+ 2β)Y2 −

β(1 + λ)

2
(G2 + (G2)

T ) + β2M2 − βZ2

]
σn+1

=

[
X2 +

(1 + λ)

2
(−Q2 + (Q2)

T )− (
(1 + λ)2

6
− 2β)Y2 −

β(1 + λ)

2
(G2 − (G2)

T ) + β2M2 − βZ2

]
σn,

(2.19)

The matrices X2, Y2, Q2 and Z2 are septa-diagonal rectangular matrices, and each row has the
following form:

X2 =
1

60
(1, 57, 302, 302, 57, 1, 0), Y2 =

1

2
(−1,−9, 10, 10,−9,−1, 0),

Q2 =
1

10
(−1,−25,−40, 40, 25, 1, 0), G2 =(2, 2,−16, 16,−2,−2, 0)

M2 =
1

10
(6,−18, 12, 12,−18, 6, 0), Z2 =(0, 0, 0, 0, 0, 0, 0).
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The element constant for λ over the element [xm, xm+1] is given by:

λ =
3∆t

h
(σn

m−1 + 4σn
m + σn

m+1)
2.

We apply the boundary conditions (1.3) and (1.4) to the system (2.19), resulting in σ−1 = σ1 , σN+1 =
σN−1 , which means the variables σ−1 and σN+1 can be remarkoved from the equation. The initial
vector of the parameter σ0 is determined by remarkark(2.1) as follows:

3 0 −3
1 4 1

. . . . . . . . .

1 4 1
3 0 −3




σ0
−1

σ0
0
...
σ0
N

σ0
N+1

 =


0

u(x0)
...

u(xN)
0

 . (2.20)

To solve this system, first convert it to tridiagonal form by deleting the first and last equations, and
then use the Thomas procedure to solve it.

2.3. Quartic B-Spline Least-Square Method with Cubic Weight Function

The quartic B-spline, which uses local transformation (2.2) to define shape functions in terms of
η over every [xm, xm+1] , may be given by [22]

Dm−2 = (1− η)4, Dm−1 =(2− η)4 − 5(1− η)4,

Dm = (3− η)4 − 5(2− η)4 + 10(1− η)4, Dm+1 =(1 + η)4 − 5η4, Dm+2 = η4,

all splines a part from Dm−2, Dm−1, Dm, Dm+1 and Dm+2 are zero over [xm, xm+1]. The variation
of the function u(η, t) over [xm, xm+1] is approximated by:

uN(η, t) =
m+2∑

i4=m−2

Di4(η)ρi4(t). (2.21)

The variation of the function uN(x, t) over [xm, xm+1] is approximated by [6] by utilizing (2.2),
(2.5) and (2.21) receptively.

uN(η, ξ) =
m+2∑

i4=m−2

Di4(η)(ρ
n
i4
+ ξ∆ρni4), (2.22)

where Dm−2(η), Dm−1(η), Dm(η), Dm+1(η) and Dm+2(η) are BSSFs, ρnm−2, ρ
n
m−1, ρ

n
m ρnm+1 and

ρnm+2 are nodal parameters at the start of each time steps ∆t , ∆ρnm−2,∆ρnm−1,∆ρnm,∆ρnm+1 and
∆ρnm+2 are the incremarkents of this parameters at each ∆t .

The weight function w3(x) for cubic B-spline by (2.7) can be expressed as follows

δw3 =
m+1∑

i3=m−2

w3i4∆ρi3 = δ(uξ + (1 + λ)uη − βuηηξ),

Using (2.7) such that

δuN(η, ξ) =
m+1∑

i3=m−2

ξCi3(η)∆ρni3
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Now, we get

w3 = δ(uξ + (1 + λ)uη − βuηηξ) = Ci3(η) + (1 + λ)ξĆi3(η)− β
´́
Ci3(η),

substituting the previous equation in (2.7) yields∫ 1

0

∫ 1

0

(uξ + (1 + λ)uη − βuηηξ)(Ci3(η) + (1 + λ)ξĆi3(η)− β
´́
Ci3(η))dηdξ = 0, (2.23)

The following system of equations for each individual element is obtained by putting (2.22) in (2.23),
integrating with regard to ξ , and integrating by part as required:

m+2∑
i4=m−2

{∫ 1

0

[
Ci3Di4 +

(1 + λ)

2
(Ci3D́i4 + Ći3Di4) + (

(1 + λ)2

3
+ 2β)Ći3D́i4)−

β(1 + λ)

2
(Ći3

´́
Di4 +

´́
Ci3D́i4)

+β2 ´́Ci3
´́
Di4

]
dη − β(Ci3D́i4 + Ći3Di4)|10

}
∆ρni4 +

m+2∑
i4=m−2

{∫ 1

0

[
(1 + λ)Ci3D́i4 +

(1 + λ)2

2
Ći3D́i4 − β(1 + λ)

´́
Ci3D́i4

]
dη

}
ρni4 = 0

which can be written in matrix form as follows[
Xe

3 +
(1 + λ)

2
(Qe

3 + (Qe
3)

T ) + (
(1 + λ)2

3
+ 2β)Y e

3 − β(1 + λ)

2
(Ge

3 + (Ge
3)

T ) + β2M e
3 − βZe

3

]
∆ρe

+

[
(1 + λ)Qe

3 +
(1 + λ)2

2
Y e
3 − β(1 + λ)MT

3

]
ρe = 0

where, ρe = (ρnm−2, ρ
n
m−1, ρ

n
m, ρ

n
m+1, ρ

n
m+2)

T is element parameter and the element matrices
Xe

3 , Q
e
3, Y

e
3 , G

e
3,M

e
3 and Ze

3 are rectangular 4× 5 given as:

Xe
3 =

∫ 1

0

Ci3Di4dη =
1

280


35 594 892 158 1
211 4794 10196 3190 89
89 3190 10196 4794 211
1 158 892 594 35

 ,

Y e
3 =

∫ 1

0

Ći3D́i4dη =
1

5


10 61 −33 −37 −1
9 141 33 −165 −18

−18 −165 33 141 9
−1 −37 −33 61 10

 ,

Qe
3 =

∫ 1

0

Ci3D́i4dη =
1

35


−20 −109 69 59 1
−129 −1059 255 873 60
−60 −873 −255 1059 129
−1 −59 −69 109 20

 ,
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Ge
3 =

∫ 1

0

Ći3
´́
Di4dη =

1

5


−36 −6 114 −66 −6
−42 −162 378 −102 −72
72 102 −378 162 42
6 66 −114 6 36

 ,

M e
3 =

∫ 1

0

´́
Ci3

´́
Di4dη =


18 12 −72 36 6
−30 12 72 −60 6
6 −60 72 12 −30
6 36 −72 12 18

 ,

Ze
3 = (Ci3D́i4 + Ći3Di4)|10 =


−7 45 21 −1 0
16 41 −93 −37 1
1 −37 −93 41 16
0 −1 21 45 7

 ,

where it is sufficient i3 only accepts the values 1, 2, 3, and 4, while i4 accepts the values
m − 2,m − 1,m,m + 1 and m + 2 for [xm, xm+1]. The global system of matrix equations is
obtained by adding all contributions from all elements:[

X3 +
(1 + λ)

2
(Q3 + (Q3)

T ) + (
(1 + λ)2

3
+ 2β)Y3 −

β(1 + λ)2

2
(G3 + (G3)

T ) + β2M3 − βZ3

]
∆ρ

+

[
(1 + λ)Q3 +

(1 + λ)2

2
Y3 − β(1 + λ)MT

3

]
ρ = 0,

(2.24)

where, ρ = (ρ−2, ρ−1, ρ0, ρ1, . . . , ρN+2)
T is a global element parameter. Identifying ρ = ρn and

∆ρ = ρn+1 − ρn in (2.30) obtain the (N + 3)× (N + 4) matrix system.[
X3 +

(1 + λ)

2
(Q3 + (Q3)

T ) + (
(1 + λ)2

3
+ 2β)Y3 −

β(1 + λ)

2
(G3 + (G3)

T ) + β2M3 − βZ3

]
ρn+1 =[

X3 +
(1 + λ)

2
(−Q3 + (Q3)

T )− (
(1 + λ)2

6
+ 2β)Y3 −

β(1 + λ)

2
(G3 + (G3)

T ) + β(βM3

+(1 + λ)MT
3 )− βZ3

]
ρn,

(2.25)

The rectangular nonic-diagonal matrices X3, Y3, Q3, G3,M3 and Z3 have the following row form:

X3 =
1

280
(1, 247, 4293, 15619, 15619, 4293, 247, 1, 0), Y3 =

1

5
(−1,−55,−189, 245, 245,−189,−55,−1, 0),

Q3 =
1

35
(−1,−119,−1071,−1225, 1225, 1071, 119, 1, 0), G3 =

1

5
(6, 138,−54,−570, 570, 54,−138,−6, 0),

M3 = (6, 42,−162, 114, 114,−162, 42, 6, 0).

The element constant for λ over [xm, xm+1] is given by:

λ =
3∆t

h
(ρnm−2 + 11ρnm−1 + 11ρnm + ρnm+1)

2.

To make matrix equation be square we applying the boundary condition (1.3) and (1.4) to the system
(2.25), so, ρn−2 = −ρn−1 , ρ

n
−1 =

1
3
ρn1 , ρ

n
N+1 = 3ρnN−1 , that is mean the variables ρn−2, ρ

n
−1 and ρnN+1
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can be eliminated from the system (2.25). By remarkark(2.1) the initial vector of parameter ρ0 is
then determined as:

12 −12 −12 12
4 12 −12 4
1 11 11 1

. . .

1 11 11 1
4 12 −12 4
12 −12 −12 12





ρ0−2

ρ0−1

ρ00
...
ρ0N
ρ0N+1


=



0
0

u(x0)
...

u(xN)
0


,

To solve this system, first reduce it to four-diagonal form by remarkoving the first pair and last
equation, then use the Thomas procedure to solve it.

2.4. Quintic B-Spline Least-Square Method with Quartic Weight Function

The quintic B-spline, which uses local transformation (2.2) to shape functions in terms of η over
[xm, xm+1], may be defined as [22]

Em−2 = (1− η)5,

Em−1 = (2− η)5 − 6(1− η)5,

Em = (3− η)5 − 6(2− η)5 + 15(1− η)5,

Em+1 = (4− η)5 − 6(3− η)5 + 15(2− η)5 − 20(1− η)5,

Em+2 = (5− η)5 − 6(4− η)5 + 15(3− η)5 − 20(2− η)5 + 15(1− η)5,

Em+3 = η5.

The variation of the function u(η, t) over [xm, xm+1] is approximated by:

uN(η, t) =
m+3∑

i5=m−2

Ei5(η)gi5(t), (2.26)

which may be approximated by utilizing (2.2) and (2.5)

uN(η, ξ) =
m+3∑

i5=m−2

Ei5(η)(g
n
i5
+ ξ∆gni5), (2.27)

where Em−2(η), Em−1(η), Em(η), Em+1(η), Em+2(η) and Em+3(η) are BSSFs, gnm−2, g
n
m−1, g

n
m gnm+1,

gnm+2 and gnm+3 are nodal parameters at the initial of the time steps ∆t , ∆gnm−2,∆gnm−1,∆gnm,
∆gnm+1,∆gnm+2 and ∆gnm+3 are the incremarkents of the nodal parameters in ∆t .

We can write the weight function w4(x) quartic B-spline using (2.7)as

δw4 =
m+2∑

i4=m−2

w4i4∆gi3 = δ(uξ + (1 + λ)uη − βuηηξ),

using (2.22) such that

δuN(η, ξ) =
m+3∑

i4=m−2

ξDi4(η)∆gni4
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Now, we get

w4 = δ(uξ + (1 + λ)uη − βuηηξ) = Di4(η) + (1 + λ)ξD́i4(η)− β
´́
Di4(η),

substituting above equation into (2.7) gives∫ 1

0

∫ 1

0

(uξ + (1 + λ)uη − βuηηξ)(Di4(η) + (1 + λ)ξD́i4(η)− β
´́
Di4(η))dηdξ = 0, (2.28)

The following system of equations for each individual element is obtained by replacing (2.27) in
(2.28), integrating with respect to ξ , and integrating by part when required:

m+3∑
i5=m−2

{∫ 1

0

[
Di4Ei5 +

(1 + λ)

2
(Di4Éi5 + D́i4Ei5) + (

(1 + λ)2

3
+ 2βD́i4Éi5)−

β(1 + λ)

2
(D́i4

´́
Ei5 +

´́
Di4Éi5)+

β2 ´́Di4
´́
Ei5

]
dη − β(Di4Éi5 + D́i4Ei5)|10

}
∆gni5 +

m+3∑
i5=m−2

{∫ 1

0

[
(1 + λ)Di4Éi5 +

(1 + λ)2

2
D́i4Éi5 − β(1 + λ)

´́
Di4Éi5

]
dη

}
gni5 = 0

which can be written in matrix form as follows[
Xe

4 +
(1 + λ)

2
(Qe

4 + (Qe
4)

T ) + (
(1 + λ)2

3
+ 2β)Y e

4 − β(1 + λ)

2
(Ge

4 + (Ge
4)

T ) + β2M e
4 − βZe

4

]
∆ge+[

(1 + λ)Qe
4 +

(1 + λ)2

2
Y e
4 − β(1 + λ)MT

4

]
ge = 0

where, ge = (gnm−2, g
n
m−1, g

n
m, g

n
m+1, g

n
m+2, g

n
m+3)

T is element parameter and the element matrices
Xe

4 , Q
e
4, Y

e
4 , G

e
4,M

e
4 and Ze

4 are rectangular 5× 6 given as:

Xe
4 =

∫ 1

0

Di4Ei5dη =
1

1260


126 4747 15962 8772 632 1
1931 89797 376002 281662 36467 381
2601 155637 839682 839682 155637 2601
381 36467 281662 376002 89797 1931
1 632 8772 15962 4747 126

 ,

Y e
4 =

∫ 1

0

D́i4Éi5dη =
1

14


35 559 298 −734 −157 −1
176 4024 5104 −6272 −2944 −88
−122 −1482 1604 1604 −1482 −122
−88 −2944 −6272 5104 4024 176
−1 −157 −734 298 559 35

 ,

Qe
4 =

∫ 1

0

Di4Éi5dη =
1

126


−70 −1051 −460 1330 250 1
−1121 −21689 −20186 31550 11195 251
−1581 −41415 −67434 67434 41415 1581
−251 −11195 −31550 20186 21689 1121
−1 −250 −1330 460 1051 70

 ,

Ge
4 =

∫ 1

0

D́i4
´́
Ei5dη =

4

7


−20 −89 178 −10 −58 −1
−109 −841 1136 628 −755 −59
69 117 −696 696 −117 −69
59 755 −628 −1136 841 109
1 58 10 −178 89 20

 ,
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M e
4 =

∫ 1

0

´́
Di4

´́
Ei5dη = 4


10 51 −94 −4 36 1
−1 81 −14 −194 111 17
−27 −279 306 306 −279 −27
17 111 −194 −14 81 −1
1 36 −4 −94 51 10

 ,

Ze
4 = (Di4Éi5 + D́i4Ei5)|10 =


9 154 264 54 −1 0
67 853 638 −502 −97 1
43 171 −1654 −1654 171 43
1 −97 −502 638 853 67
0 −1 54 264 154 9

 ,

where it is sufficient i4 only accepts the values 1, 2, 3, 4, and 5, while i5 accepts the values
m− 2,m− 1,m,m+1,m+2 and m+3 for the typical element [xm, xm+1]. The global system of
matrix equation is obtained by combining contributions from all elements:[

X4 +
(1 + λ)

2
(Q4 + (Q4)

T ) + (
(1 + λ)2

3
+ 2β)Y4 −

β(1 + λ)2

2
(G4 + (G4)

T ) + β2M4 − βZ4

]
∆g+[

(1 + λ)Q4 +
(1 + λ)2

2
Y4 − β(1 + λ)MT

4

]
g = 0,

(2.29)

where, g = (g1, . . . , gN+2)
T is a global element parameter. Identifying g = gn and ∆g = gn+1−gn

in (2.29) obtain the (N + 4)× (N + 5) matrix system.[
X4 +

(1 + λ)

2
(Q4 + (Q4)

T ) + (
(1 + λ)2

3
+ 2β)Y4 −

β(1 + λ)2

2
(G4 + (G4)

T ) + β2M4 − βZ4

]
gn+1 =[

X4 +
(1 + λ)

2
(−Q4 + (Q4)

T )− (
(1 + λ)2

6
+ 2β)Y4 −

β(1 + λ)2

2
(G4 + (G4)

T ) + β(βM4 + (1 + λ)MT
4 )

−βZ4] g
n,

(2.30)

the matrices X4, Y4, Q4, G4, M4 and Z4 are rectangular 11-diagonal and row of each has the
following form:

X4 =
1

1260
(1, 1013, 47840, 455172, 13103540, 13103540, 455192, 47840, 1013, 1, 0),

Y4 =
1

14
(−1,−245,−3800,−7280, 11326, 11326,−7280,−3800,−245,−1, 0),

Q4 =
1

126
(−1,−501,−14106,−73626,−67956, 67956, 73626, 14106, 501, 1, 0),

G4 =
4

7
(1, 117, 834,−798,−2604, 2604, 798,−834,−117,−1, 0),

M4 = 4(1, 53, 80,−568, 434, 434,−568, 80, 53, 1, 0).

The element constant for λ over [xm, xm+1] is given by:

λ =
3∆t

h
(gnm−2 + 26gnm−1 + 66gnm + 26gnm+1 + gnm+2)

2.
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Applying the boundary conditions (1.3) and (1.4) to the system (2.30), we can make the matrix
equation square, so, gn−2 = 12gn0 − gn2 , gn−1 = −3gn0 − gn1 , gnN+1 = −gnN−1 − 3gnN , and gnN+2 =
−gnN−2 + 12gnN , that is mean the variable gn−2, g

n
−1, g

n
N+1 and gnN+2, can be eliminated from this

system. By remarkark (2.1) the initial vector of parameter g0 is then determined as:

20 40 −120 40 20
5 50 0 −50 −5
1 26 66 26 1

. . .

1 26 66 26 1
5 50 0 −50 −5
20 40 −120 40 20





g0−2

g0−1

g00
...
g0N
g0N+1

g0N+2


=



0
0

u(x0)
...

u(xN)
0
0


,

To solve this system, first convert it to penta-diagonal form by remarkoving the first and last pair of
equations, and then use the Thomas procedure.

2.5. Sextic B-Spline Least-Square Method with Quintic Weight Function

By employing local transformation (2.2), the sextic B-spline, shape functions in terms of η over
[xm, xm+1], may be defined as [22]

Fm−3 = (1− η)6, Fm−2 = (2− η)6 − 7(1− η)6,

Fm−1 = (3− η)6 − 7(2− η)6 + 21(1− η)6,

Fm = (4− η)6 − 7(3− η)6 + 21(2− η)6 − 35(1− η)6,

Fm+1 = (−2− η)6 − 7(−1− η)6 + 21(−η)6,

Fm+2 = (−1− η)6 − 7(−η)6,

Fm+3 = (−η)6.

The function u(η, t) variation over [xm, xm+1] and is approximated by:

uN(η, t) =
m+3∑

i6=m−3

Fi6(η)τi6(t). (2.31)

Outside the interval [xm−3, xm+4] , the spline Fm(x) vanishes. The variation of the function
uN(x, t) over [xm, xm+1] may be approximated by utilizing (2.2), (2.5) and (2.31)

uN(η, ξ) =
m+3∑

i6=m−3

Fi6(η)(τ
n
i6
+ ξ∆τni6), (2.32)

where Fm−3(η), Fm−2(η), Fm−1(η), Fm(η), Fm+1(η), Fm+2(η) and Fm+3(η) are BSSFs, τnm−3, τ
n
m−2,

τnm−1, τ
n
m, τ

n
m+1, τnm+2 and τnm+3 are nodal parameters at the beginning of the time steps ∆t ,

∆τnm−3,∆τnm−2,∆τnm−1, ∆τnm, ∆τnm+1,∆τnm+2 and ∆τnm+3 The nodal parameter increases with each
∆t . The weight function w5(x) is employed, which for a quintic B-spline can be expressed as

δw5 =
m+3∑

i5=m−2

w5i5∆gi5 = δ(uξ + (1 + λ)uη − βuηηξ),
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using (2.27) such that

δuN(η, ξ) =
m+3∑

i5=m−2

ξEi5(η)∆gni5

Now, we get

w5 = δ(uξ + (1 + λ)uη − βuηηξ) = Ei5(η) + (1 + λ)ξÉi5(η)− β
´́
Ei5(η),

substituting above equation into (2.7) gives∫ 1

0

∫ 1

0

(uξ + (1 + λ)uη − βuηηξ)(Ei5(η) + (1 + λ)ξÉi5(η)− β
´́
Ei5(η))dηdξ = 0, (2.33)

For each individual element, substituting (2.32) in (2.33), integration with respect to ξ, and integra-
tion by part as required results in the following system of equations:

m+3∑
i6=m−3

{
∫ 1

0

[Ei5Fi6 +
(1 + λ)

2
(Ei5F́i6 + Éi5Fi6) + (

(1 + λ)2

3
+ 2β)Éi5F́i6)−

β(1 + λ)

2
(Éi5

´́
Fi6 +

´́
Ei5F́i6)+

β2 ´́Ei5
´́
Fi6 ]dη − β(Ei5F́i6 + Éi5Fi6)|10}∆τni6 +

m+3∑
i6=m−3

{
∫ 1

0

[(1 + λ)Ei5F́i6 +
(1 + λ)2

2
Éi5F́i6 − β(1 + λ)

´́
Ei5F́i6 ]dη}τni6 = 0

It can be represented as follows in matrix form

[Xe
5 +

(1 + λ)

2
(Qe

5 + (Qe
5)

T ) + (
(1 + λ)2

3
+ 2β)Y e

5 − β(1 + λ)

2
(Ge

5 + (Ge
5)

T ) + β2M e
5 − βZe

5 ]∆τ e+

[(1 + λ)Qe
5 +

(1 + λ)2

2
Y e
5 − β(1 + λ)MT

5 ]τ
e = 0

the element parameter is τ e = (τnm−3, τ
n
m−2, τ

n
m−1, τ

n
m, τ

n
m+1, τ

n
m+2, τ

n
m+3)

T . The element matrices
Xe

5 , Q
e
5, Y

e
5 , G

e
5,M

e
5 and Ze

5 are rectangular 6× 7 are written as follows:

Xe
5 =

∫ 1

0

Ei5Fi6dη =
1

5544


462 36959 244205 304250 76900 2503 1
16171 1537535 11886590 17975130 6128395 375559 1580
51014 5748218 52521800 96528940 42334750 3704026 25812
25812 3704026 42334750 96528940 5251800 5748218 51014
1580 375559 6128395 17975130 11886590 1537535 16171
1 2503 76900 304250 244205 36959 462

 ,

Y e
5 =

∫ 1

0

Éi5F́i6dη =
1

42


162 4621 11215 −7190 −8140 −631 −1
1805 83245 274990 −87150 −237055 −35455 −380
670 65170 397840 94340 −438850 −116950 −2220

−2220 −116950 −438850 94340 397840 65170 670
−380 −35455 −237055 −87150 274990 83245 1805
−1 −631 −8140 −7190 11215 4621 126

 ,
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Qe
5 =

∫ 1

0

Ei5F́i6dη =
1

962


−252 −8861 −20445 14060 14480 1017 −1
−9113 −388303 −1161290 486520 950545 120623 1018
−29558 −1529148 −5905750 861980 5530290 1056688 15498
−15498 −1056688 −5530290 −861980 5905750 1529148 29558
−1018 −120623 −950545 −486520 1161290 388303 9113
−1 −1017 −14480 −14060 20445 8861 252

 ,

Ge
5 =

∫ 1

0

Éi5
´́
Fi6dη =

5

21


−70 −981 591 1790 −1080 −249 −1
−1051 −19587 912 49946 −19275 −10695 −250
−460 −19266 −27522 83132 −5664 −28890 −1330
1330 28890 5664 −83132 27522 19266 460
250 10695 19275 −49946 −912 19587 1051
1 249 1080 −1790 −591 981 70

 ,

M e
5 =

∫ 1

0

´́
Ei5

´́
Fi6dη =

15

7


35 524 −261 −1032 577 156 1
141 3324 1341 −10344 2751 2700 87
−298 −5208 2006 11376 −6014 −1496 34
34 −1496 −6414 11376 2006 −5208 −289
87 2700 2751 −10344 1341 3324 141
1 156 577 −1032 −261 524 35

 ,

Ze
5 = (Ei5F́i6 + Éi5Fi6)|10 =


11 435 1750 1270 135 −1 0
206 6739 20905 7110 −2320 −241 1
396 9694 9090 −37180 −18760 654 106
106 654 −18760 −37180 9090 9694 396
1 −24 −2320 7110 20905 6739 206
0 −1 135 1270 1750 435 11

 ,

where it is sufficient i5 only accepts the values 1, 2, 3, 4, and 5, while i6 accepts the values
m − 3,m − 2,m − 1,m,m + 1,m + 2 and m + 3 for the typical element [xm, xm+1]. The global
system of matrix equation is the sum of all contributions from all elements.

[X5 +
(1 + λ)

2
(Q5 + (Q5)

T ) + (
(1 + λ)2

3
+ 2β)Y5 −

β(1 + λ)2

2
(G5 + (G5)

T ) + β2M5 − βZ5]∆τ+

[(1 + λ)Q5 +
(1 + λ)2

2
Y5 − β(1 + λ)MT

5 ]τ = 0,

(2.34)

where, τ = (τ−3, . . . , τN+3)
T is a global element parameter. Identifying τ = τn and ∆τ = τn+1−τn

in (2.34) obtain the (N + 5)× (N + 6) matrix system.

[X5 +
(1 + λ)

2
(Q5 + (Q5)

T ) + (
(1 + λ)2

3
+ 2β)Y5 −

β(1 + λ)2

2
(G5 + (G5)

T ) + β2M5 − βZ5]τ
n+1 = [X5+

(1 + λ)

2
(−Q5 + (Q5)

T )− (
(1 + λ)2

6
− 2β)Y5 −

β(1 + λ)2

2
(G5 + (G5)

T ) + β(βM5 + (1 + λ)MT
5 )− βZ5]τ

n,

(2.35)
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the matrices X5, Y5, Q5, G5, M5 and Z5 are rectangular 13-diagonal and row of each has the
following form:

X5 =
1

5544
(1, 4083, 478271, 10187685, 66318474, 162512286, 162512286, 66318414, 10187685, 478271, 4083, 1, 0)

Y5 =
1

42
(−1,−1011,−45815,−360525,−447810, 855162, 855162,−447810,−360525,−45815,−1011,−1, 0)

Q5 =
1

462
(−1,−2035,−150601,−2050851,−7534626,−5986134, 5986134, 7534626, 2050851, 150601, 2035, 1, 0)

G5 =
21

5
(1, 499, 13105, 45915,−65190,−130242, 130242, 65190,−45915,−13105,−499,−1, 0)

M5 =
7

15
(1, 243, 3311,−75,−22086, 18606, 18606,−22086,−75, 3311, 243, 1, 0).

The element constant for λ over the element [xm, xm+1] is given by:

λ =
3∆t

h
(τnm−3 + 57τnm−2 + 302τnm−1 + 302τnm + 57τnm+1 + τnm+2)

2.

We apply the boundary conditions (1.3) and (1.4) to the system (2.35), τn−3 = 2800
54 τn0 + 2425

54 τn1 + 151
4 τn2 ,

τn−2 =
520
54 τ

n
0 + 271

54 τ
n
1 + 13

54τ
n
2 , τn−1 =

134
54 τ

n
0 − 50

54τ
n
1 − 2

54τ
n
2 , τnN+1 = − 1

16τ
n
N−3 −

41
16τ

n
N−2 −

171
16 τ

n
N−1 −

131
16 τ

n
N ,

and τnN+2 = − 7
16τ

n
N−3 +

225
16 τ

n
N−2 +

1699
16 τnN−1 +

291
16 τ

n
N , making the matrix equation square, that is mean

the variable τn−3, τn−2, τn−1, τnN+1 and τnN+2, can be taken out of this system. The initial vector of the
parameter τ0 is determined as follows by remarkark (2.1):



30 270 −300 −300 270 30
6 150 240 −240 −150 −60
1 57 302 302 57 1

. . .
. . .

. . .

1 57 302 302 57 1
6 150 240 −240 −150 −6
30 270 −300 −300 270 30





τ0−3

τ0−2

τ0−1

τ00
...
τ0N
τ0N+1

τ0N+2


=



0
0
0

u(x0)
...

u(xN )
0
0


,

to solve this system, first reduce it to six-diagonal form by eliminating the first three and last pair of
equations and then apply Thomas algorithm.

3. Stability Analysis of Least-Square B-Spline Methods with Different Weight Function

We apply the Von Neumann stability method for the stability of all schemes in this paper, since this
method is applicable to linear schemes, the nonlinear term u2ux is linearized by taking u as locally constant
value [19].

3.1. Stability of Quadratic B-Spline Least-Square Method with Linear B-Spline as a Weight Function

A typical member of the matrix system (2.14) can be written in terms of the nodal parameters γnm as

a1γ
n+1
m−2 + a2γ

n+1
m−1 + a2γ

n+1
m + a1γ

n+1
m+1 = a3γ

n
m−2 + a4γ

n
m−1 + a4γ

n
m + a3γ

n
m+1,

where,

a1 =
1

12
− (1 + λ)2

3
− β, a2 =

11

12
+

(1 + λ)2

3
+ β, a3 =

1

12
− (1 + λ)2

6
+ β, a4 =

11

12
− (1 + λ)2

6
− β,
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substitution of γnm = Y n
1 eirmh, where r is the mode number and h is size of the element , leads to

Y1(a1e
−2irh + a2e

−irh + a2 + a1e
irh) = a3e

−2irh + a4e
−irh + a4 + a3e

irh,

then, Y1 =
M1+iN1
K1+iQ1

, where,

M1 =
1

12
− (1 + λ)2

6
− β + cosh(rh) + (

1

12
+

(1 + λ)2

6
+ β)cos(2rh),

N1 = (−10

12
+

2(1 + λ)2

6
+ 2β)sin(rh) + (− 1

12
− (1 + λ)2

6
− β)sin(2rh),

K1 =
11

12
+

(1 + λ)2

3
+ β + cos(rh) + (

1

12
− (1 + λ)2

3
− β)cos(2rh),

Q1 = (−10

12
− 2(1 + λ)2

3
− 2β)sin(rh) + (− 1

12
− (1 + λ)2

3
+ β)sin(2rh),

after simplification, we obtain that |Y1| = 1 and the linearized numerical scheme for the MRLWE is uncon-
ditionally stable.

Remark 3.1. In like manner we can prove that all other numerical schemes for the MRLWE are uncondi-
tionally stable.□

4. Conclusion

We developed a new B-spline least-square technique for solving the generalized regularized long wave
equation with change weight functions in this paper, which provided new approximate simulations of five
different types of the proposed scheme. These strategies were based on previous researchs [1] and [2] that
combined B-spline Galerkin algorithms with change weight functions, as well as a B-spline least-squares
algorithm with change weight functions.
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