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Abstract

The goal of this study is to expand the usage of a collection method based on shifted Legendre
polynomials in matrix form to approximate the derivative to obtain numerical solutions for the
unsteady state one-dimensional bioheat equation. The proposed methodology is used to two examples
to illustrate its utility and accuracy. The numerical results shown that the techniques used are
effective as well as gives high accuracy and good convergence

Keywords: collocation method, bioheat equation, Legendre polynomials, accuracy.

1. Introduction

Ordinary and partial differential equations (ODEs and PDEs) have a wide range of applications
in physics, biology, chemistry, and engineering, in addition to their contribution to the study of
mathematical analysis and their value in economics and sciences. The physical, geometric, and
mathematical relationships and laws that bind the variables. Biological issues can be found in differ-
ential equations in a variety of ways, and they play a significant role in the development of differential
equations. In addition, there are linear and nonlinear phenomena that are translated into differential
equations, such as the bioheat model. As a result, ODEs and PDEs have emerged as one of the most
intriguing subjects for many researchers.

Continuous or piecewise polynomials are incredibly useful mathematical tools as they are precisely
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defined, calculated rapidly on a modern computer system and can represent a great variety of func-
tions. They can be differentiated and integrated without difficulty, and can be put together to form
spline curves that can approximate any function to any accuracy desired [11]. The studies that have
been achieved for solving various types of the differential equations in the last half century are still
an active research area to develop, apply and combination some better polynomials in the matrix
form for finding approximation solutions for these equations.

Yalçibas and et al. [17] developed a new Hermite collocation method to find approximate solu-
tions for the generalized pantograph equations dependent on Hermite polynomials. The numerical
results show that the accuracy and efficiency of the method improves when N is increased. Bhrawy
and Alof [5] employed shifted Jacobi polynomials for solving nonlinear Lane-Emden type equation
by using a shifted Jacobi−Gauss collocation spectral method The results show that the method is
simple and accurate by selecting few collocation points. Tohidi and et al. [15] utilized a collocation
method based on Bernoulli polynomials for solving the generalized pantograph equation, the results
shows that the method is a powerful mathematical tool for finding the numerical solutions of a gen-
eralized pantograph equation.

Heydari and et al. [10] presented a numerical method for approximating solutions of the telegraph
type equations by combining Chebyshev wavelets with their operational matrices of differentiation, in
the proposed method a small number of grid points guarantees the necessary accuracy. Alshbool and
et al. [3] introduced an approximate solution depending on collocation method and Bernstein polyno-
mials for numerical solution of a singular nonlinear differential equations with the mixed conditions.
The accuracy and efficiency of this technique are dependent on the size of the set of Bernstein poly-
nomials, which that gives excellent agreement, is found between the exact and approximate solutions.
Bahşi and Yalçibas [4] found a numerical scheme to solve the telegraph equation by using Fibonacci
polynomials, the results show that the method yields either the exact solution or a high accuracy
approximate solution for the telegraph equations. Gürbüz and Sezer [9] improved a matrix method
based on collocation points and Laguerre polynomials to obtain the numerical approximations of the
one dimensional nonlinear Klein-Gordon equations, the results demonstrated the accuracy and the
effectiveness of the method. Khan and Ali [12] obtained an approximate solution for delay differential
equation and stochastic delay differential equation based on Legendre spectral-collocation method,
the result show that the presented method is high efficiency and accuracy.
In recent years, the Legendre polynomials in the matrix form has been used to find the approximate
solutions of various types of differential equations [1, 2, 8, 12, 14, 16, 18]. The basic motivation of this
work is to add a new application of collocation method based on the shifted Legendre polynomials
for solving unsteady state one dimensional bioheat equation.

2. Governing equation

Pennes unsteady state one dimensional bioheat model is implemented to study the heat transfer
in skin tissue[13]

ρc
∂T (x, t)

∂t
−K∂2T (x, t)

∂x2
+Wbcb(T (x, t)− Ta) = Qext +Qmet, , 0 ≤ x ≤ b, t > 0 (1)

where ρ, c,K, T, t, x, Ta,Wb = ρbωb, Qext and Qmet represents density, specific heat, thermal con-
ductivity, temperature, time, distance, artillery temperature ,blood perfusion rate, metabolic heat
generation in skin tissue and external heat source in skin tissue respectively. The units of the symbols
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Symbol Ta ρ and ρb c and cb k ωb Qmet

Unit ◦C kg/m3 J/kg◦C W/m◦C m3/s/m3 W/m3

Value 37 1000 4000 0.5 0.0005 420

Table 1: The unit of the symbols expressed in the Pennes equation

expressed in this equation are listed in Table 1. The Pennes bioheat transfer equation appeared in
the pioneering work of Pennes. To the best of our knowledge, in the general form the exact solution
of this equation does not exist especially for the Pennes equation that the terms are changed during
the domain. Therefore the numerical methods are needed to solve this equation. In the test Cases 1
and 2. with initial and boundary conditions

T (x, 0) = Tc (2)

−K∂T

∂x
|x=0 = q0 (3)

−K∂T

∂x
|x=b = 0 (4)

where, q0 is the heat flux on the skin surface.

3. Shifted Legendre Polynomials

The nth−order Legendre polynomials which are orthogonal in the interval [−1, 1] are defined as

Pn+1(x) =
2n+ 1

n+ 1
Pn(x)− n

n+ 1
Pn−1(x), , n = 1, 2, · · · (5)

with L0(x) = 1, L1(x) = x.
In order to use these polynomials on the interval [0, 1], one can apply the change of variables x =
2t− 1 in the above relation. Therefore, the shifted Legendre polynomials are constructed as follows
Ln(t) = Pn(2t− 1), t ∈ [0, 1]. The analytic form of the shifted Legendre polynomial Ln(t) of degree
n is given by

Ln(t) = (−1)n+1

n∑
i=0

(n+ i)!

(i!)2(n− i)!
ti, n ∈ N (6)

where Ln(0) = (−1)n, Ln(0) = 1, The orthogonal property of shifted Legendre polynomials is given
by ∫ 1

0

Ln(t)Lm(t)dt =


0 n 6= m

1
2n+1

n = m
(7)

A function T (x, y) may be expressed in term of shifted Legendre polynomials as:

T (x, t) =
∞∑
i=0

∞∑
j=0

aijLi(x)Lj(t)
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In practice, we consider the (n+ 1) and (m+ 1)−terms shifted Legendre polynomial with respect to
x, t so that

T (x, t) =
n∑

i=0

m∑
j=0

aijLi(x)Lj(t)

= φ(x)′Aφ(t) (8)

where,

aij = (2i+ 1)(2j + 1)

∫ 1

0

∫ 1

0

T (x, t)Li(x)Lj(t)dxdt (9)

where the shifted Legendre coefficient matrix A when n = m, the shifted Legendre vector φ(x) and
φ(t) are given by

A = {aij}n,ni,j=0 , φ(x) = [L0(x), L1(x), · · · , Ln(x)]′, φ(t) = [L0(t), L1(t), · · · , Ln(t)]′

respectively.

4. The Two Dimensional Shifted Legendre Operational Matrix of Differentiation

The shifted Legendre polynomials have an interesting property (a relation between shifted Leg-
endre polynomials and their derivatives) which was used in many papers for solving different types
of problems [2, 16]. This relation is as follows

d

dx
φ(x) =

d

dx
[L0(x), L1(x), · · · , Ln(x)]

can be denoted in the matrix form by

φ(1)(x) = Dxφ(x) (10)

where, if n is even and odd we get

Dx =



0 0 · · · 0 0 0 0
2 0 · · · 0 0 0 0
0 6 · · · 0 0 0 0
2 0 · · · 0 0 0 0
...

...
. . .

...
...

...
...

2 0 · · · 4n− 6 0 0 0
0 6 · · · 0 4n− 2 0 0


(n+1)×(n+1)

Dx =



0 0 · · · 0 0 0 0
2 0 · · · 0 0 0 0
0 6 · · · 0 0 0 0
2 0 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 6 · · · 4n− 6 0 0 0
2 0 · · · 0 4n− 2 0 0


(n+1)×(n+1)



The numerical solution of bioheat equation ... 12 (2021) No. 2, 1061-1070 1065

respectively.
Accordingly, the k − th derivative with respect to x of φ(x) can be obtained by

φ(2)(x) = (Dx)2φ(x)
φ(3)(x) = (Dx)3φ(x)

...
φ(k)(x) = (Dx)kφ(x)

 (11)

In the same manner we can conclude that

φ(k)(t) = (Dt)
kφ(t)

5. Method of the Solution

We will structure the numerical solution methodology of Equation (1), under the given conditions,
in the series form of Equation (8) or in the matrix form T (x, t) = φ(x)′Aφ(t). Can be approximate
the first , second spatial derivatives and first thermal derivative as follows:

∂T (x,t)
∂x

= φ′(x)D′xAφ(t)

∂2T (x,t)
∂x2 = φ′(x)(D′x)2Aφ(t)

∂T (x,t)
∂t

= φ′(x)ADtφ(t)


(12)

The right side of equation (1) is given as g(x, y) = Qext +Qmet +WbcbTa , we can approximate as

G(x, t) =
n∑

i=0

n∑
j=0

gijLi(x)Lj(t)

= φ(x)′Gφ(t) (13)

where,
G = {gij}n,ni,j=0 .

Substituting the equations (8), (12) and (13) into the bioheat equation (1) and simplifying the result,
we have the matrix equation

ρcφ′(x)ADtφ(t)−Kφ′(x)(D′x)2Aφ(t) +Wbcbφ
′(x)Aφ(t) = φ′(x)Qextφ(t) + φ′(x)Qmetφ(t)+

φ′(x)WbcbTaφ(t) (14)

with initial condition,

T (x, 0) = Tc

Aφ(0) = F, F = [f0 f1, · · · , fn]′, fj = (2j + 1)

∫ 1

0

T (x, 0)Lj(x)dx

and boundary conditions,

−Kφ′(0)D′xA = K ′, K ′ = [k0 k1, · · · , kn], kj = (2j + 1)

∫ 1

0

Tx(0, t)Lj(t)dt

−Kφ′(b)D′xA = H ′, H ′ = [h0 h1, · · · , hn], hj = (2j + 1)

∫ 1

0

Tx(b, t)Lj(t)dt
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and,

G = Q1 +Q2 +Q3

where,
Q1 = {(qext)ij}n,ni,j=0 , Q2 = {(qmet)ij}n,ni,j=0 and Q3 = {(ωbρbcbTa)ij}n,ni,j=0

which can be compute it by depending on (9).

6. Applications and Numerical Results

We offer some numerical results acquired using the algorithms provided in the preceding part in
this part. The collocation method is used to solve the Pennes bioheat equation based on Legendre
polynomials in two instances in this section. Cases 1 and 2 are offered to demonstrate the collocation
method’s capacity to achieve high accuracy. The solution produced using this method is compared
to the exact solution in these problems. As mentioned before, the exact solution for this equation
does not exist in the general form so we assume unrealistic Qext to deriving the exact solution in
Cases 1 and 2.

Case 1 Consider the bioheat equation (1) has the following exact solution [6]:

T (x, t) = exp(−t) cos(πx) + tanh(x) + 37 (15)

we can get the scours function Qext as follows:

Qext(x, t) = (−3998000 +
1

2
π2) exp(−t) cos(πx) +

tanh(x)

cosh2(x)
+ 2000 tanh(x)− 420. (16)

Case 2 Consider (1) has the following exact solution[7] :

T (x, t) = t
3
2x2(

3

2
− x) + 37 (17)

also, we can get Qext as follows:

Qext(x, t) = (6000000
√
tx2 − t

3
2 + 2000t

3
2x2)(

3

2
− x) + 2xt

3
2 − 420. (18)

We take n = 4,

T (x, t) =
4∑

i=0

4∑
j=0

aijLi(x)Lj(t)

A(ρcDt + ωbρbcbI)−K(D′x)2A = G

where,

Dx = Dt =


0 0 0 0 0
2 0 0 0 0
0 6 0 0 0
2 0 10 0 0
0 6 0 14 0

 ,

G =


7.4868e+ 04 0 0 0 0
3.0735e+ 06 −1.5114e+ 06 2.5011e+ 05 −2.4913e+ 04 1.7750e+ 03
−1.1024e+ 02 0 0 0 0
−5.6836e+ 05 2.7955e+ 05 −4.6262e+ 04 4.6080 + 03 −3.2831e+ 02

4.2458 0 0 0 0


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so,

A


2000 0 0 0 0

8000000 2000 0 0 0
0 24000000 2000 0 0

8000000 0 4000000 2000 0
0 24000000 0 56000000 2000

 +


0 0 −6 0 −20
0 0 0 −30 0
0 0 0 0 −70
0 0 0 0 0
0 0 0 0 0

A = G

The initial condition obtain as T (x, 0) = Tc where Tc = cos(πx) + tanh(x) + 37.

Then, Aφ(0) = F,

fi = (2i+ 1)

∫ 1

0

TcL(x)dx

= [3.7434e+ 01 − 8.2999e− 01 − 5.5052e− 02 2.1989e− 01 2.1181e− 03]′

At the boundary conditions , when x = 0 get q0 = 1 then −kφ′(0)D′xA = H ′ where,

hj = (2j + 1)

∫ 1

0

q0L(t)dt = [1 0 0 0 0], and φ(0) = [1 − 1 1 − 1 1]′.

At x = b then −kφ′(b)D′xA = R′ where,

rj = (2j + 1)

∫ 1

0

∂

∂x
T (b, t)L(t)dt

= [4.1997e− 01 1.1962e− 16 − 1.9796e− 17 1.9718e− 18 − 1.4049e− 19]

Now, by substituting the columns φ(0) and fj in fourth columns of temporal derivative and the
matrix G respectively also substituting the row −kφ′(0)D′x and column hj in third rows of spatial
derivative and the matrix G respectively. Finally, substituting the row −kφ′(b)D′x and column rj
in fourth rows of spatial derivative and the matrix G respectively.

Then solve the resulting system by using Sylvester equation to find A .

In cases 1 and 2 we consider the following data b = 0.1 and b = 1 . Tables 2-3 show the er-
rors obtained from solving the bioheat equation by using shifted Legendre polynomial at x ∈ [0, b]
for different values of n = 4, 5, 7 and 9. Figures 1-4 clarify a comparison between exact solution
and numerical solutions of the present cases. The results show that the numerical solutions have a
high accuracy and good convergence when increasing order the numerical solutions .
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Table 2: Absolute error for case 1 with b=0.1
(x, t) n = 4 n = 5 n = 7 n = 9
(0,0) 9.0494e-03 3.4101e-04 1.5974e-06 2.0436e-07
(0.01,0.01) 8.4316e-03 3.0690e-04 7.0173e-07 1.9844e-07
(0.02,0.02) 6.0203e-03 2.5357e-04 6.7483e-07 1.8422e-07
(0.03,0.03) 6.8141e-03 1.8702e-04 2.1923e-06 1.7001e-07
(0.04,0.04) 5.8355e-03 1.1248e-04 3.6038e-06 1.6049e-07
(0.05,0.05) 4.7578e-03 3.4474e-05 4.7406e-06 1.5774e-07
(0.06,0.06) 3.5920e-03 4.3110e-05 5.4988e-06 1.6199e-07
(0.07,0.07) 2.3490e-03 1.1701e-04 5.8269e-06 1.7229e-07
(0.08,0.08) 1.0398e-03 1.8454e-04 5.7159e-06 1.8697e-07
(0.09,0.09) 3.2461e-04 2.4352e-04 5.1889e-06 2.0408e-07
(0.1,0.1) 1.7332e-03 2.9226e-04 4.2936e-06 2.2161e-07

Table 3: Absolute error for case 2 with b=0.1
(x, t) n = 4 n = 5 n = 7 n = 9
(0,0) 1.0567e-08 2.9547e-03 9.5384e-04 4.2242e-04
(0.01,0.01) 1.9610e-04 2.9713e-03 9.7892e-04 4.4318e-04
(0.02,0.02) 3.6351e-04 2.9763e-03 9.9188e-04 4.5100e-04
(0.03,0.03) 5.0033e-04 2.9707e-03 9.9485e-04 4.5149e-04
(0.04,0.04) 6.0537e-04 2.9554e-03 9.8978e-04 4.4435e-04
(0.05,0.05) 6.7804e-04 2.9317e-03 9.7829e-04 4.3372e-04
(0.06,0.06) 7.1824e-04 2.9005e-03 9.6177e-04 4.2070e-04
(0.07,0.07) 7.2629e-04 2.8627e-03 9.4137e-04 4.0646e-04
(0.08,0.08) 7.0284e-04 2.8192e-03 9.1803e-04 3.9186e-04
(0.09,0.09) 6.4889e-04 2.7706e-03 8.9254e-04 3.7747e-04
(0.1,0.1) 5.6571e-04 2.7176e-03 8.6551e-04 3.6371e-04
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Figure 1: Solutions of Legendre Polynomial for case 1 at t = 0.1, 2 in (a)− (b) and for case 2 at t = 0.5, 1 in
(c)− (d) respectively.
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7. Conclusions

To solve the bioheat equation successfully in this article, we used a shifted Legendre polynomial
in matrix form. The numerical results reveal that by employing fewer grid points, the current
methodology offers improved accuracy, good convergence, and reasonable stability, as well as a lower
computational workload. The numerical results reveal that by employing fewer grid points, the
current methodology offers improved accuracy, good convergence by increasing n and noting that
the accuracy will be increasing when increasing the time t , and reasonable stability, as well as a
lower computational workload .
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