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CONTRIBUTION TO THE LATTICE THERMAL 
CONDUCTIVITY DUE TO THE THREE PHONON 

NORMAL PROCESSES IN THE PRESENCE 
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A. H. AWAD 

Department of PhydeJ, CNlege o/Edur U~deer#ity of Baarah 
B ~ ~ ,  1ma 

(Receivecl 23 February 1988) 

The contribution of the correction term due to the three phonon normal processe• 
has been studied fora samp[e hsving core dislocation in the frame of Callaway integral 
by obtaining an analytical expression for it. To test the applicability of the expre$sion 
obtained, the contribution of the correction terrn toward total phonon conductivity has been 
calculated in the temperature range of 0.2-5 K owing to which a negligible contribution 
has been found. 

I. Introduction 

The expression of the lattice thermal conductivity proposed by CaUaway [1] 
was based on the two mode conduction of phonon. The first one gives the lattice 
thermal conducitivity of an insulator due to the combined scattering relaxation rate, 
while the second term has a complicated forro known as the correction term due 
to the three phonon normal processes. It was found that the contribution of the 
correction term (AK) is usually small enough compared to the total lattice thermal 
conductivity [2, 5]. 

Recently, the lattice therrnal conductivity due to the correction terrn has been 
studied by several workers [6--8] using the Callaway expression of the correction term 

in which no distinction is ro�91 between transverse and longitudinal phonons. These 

studies are confined to samples having boundary, point defect and phonon-phonon 

scattering processes only. 

The �91 of the present work is to derive ah analytica] expression for AK in 
the frame of the Callaway integral at very low temperatures in the presence of core 
dislocations. The cont¡ of the correction term (AK} to the lattice thermal 
conductivity was calculated also in the frame of Callaway integral for the dit[erent 
values of P which is the ratio of the three pho¡ normal and umklapp processes 
scattering strengths. 
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2. T h e o r y  

The generalized Callaway expression of the lattice thermal conductivity is 

where 

o/r 

0 

(1) 

A K  = coT~ /T3, (2) 
o/r 

T 2 = f T�9209 1 -~ T~I)--I~4ez(e z - -  1)-2dz  ' 

o 
O/T 

T 3 .~ / T R I T � 9 2 0 9  1 -{- TRl)- lx .4ez(e  z _ 1)-2dz ' 

o 

co = ( K s / 2 ~ v ) ( K s T / h )  3, x = h w / K B T ,  

(3) 

(4) 

where Ks is the Boltsmann constant, h is the Planck constant divided by 2r, # 

is the Debye temperature of the specimen under study, v i s  the average phonon 
velocity, r -1 = B I w 2 T  3 is the three phonon normal process scattering relaxation 
rate, r~ 1 = r[~ 1 + Aw 4 + B2w2T 3 + aw 3 is the combined scattering relaxation 
rate of umklapp processes, r~ 1 is the bound�91 scattering [9], Aw 4 is the point 
defect scattering relaxation rate [10], B2w2T 3 is the three phonon umklapp process 
scattering relaxation rate and aw 3 is the core dislocation relaxation rate [10]. A, a, 
B1, B2 �91 scattering strengths of point defect, core dislocation and three phonon 
normal and umklapp processes, respectively. The r�9 I and r~ I can be expressed as 

r~ I = BIw2T 3 = blz  2, (5) 

r~ I = AW 4 = D z  4, (6) 

~~I = B2w2T 3 = b2z 2, (7) 

C d  I = a w  3 = o z  3, (s) 
E = b~ + 52. (9) 

It is necessary to mention here that through the numerical analysis of above 
integral for r~ I, ir is found that at low temperatures, either r~ I dominates over 
~'B 1 or 1"cd Iis dominated by r~ I. Therefore, the analyticM expressions �91 obtained 
under two different approximations, i. e. rc~ 1 :~ r~ 1 and r~ I :~ rc~ I. 

(A) Ir T~ 1 >>, T/~ 1" 
In the above approximations, the integrals T2 and T3 can be reexpressed as 

follows 
e/r  

T~ hi / ( l - r ; ' z - 3  D ~ ) . . . .  x - '  z3eX(e= 1)d=, (10) 
C C C Z -  - -  

0 
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which reduces to 

T2 = blI3c 1 - Tl~c 1 F~3 - =F~ - F~ , (11) 

where 
O/T 

F p  = I . , / I~ ,  
O 

rn, n and �9 �91 integers. Similarly 

I~ = f z~eZ( e= - l)-2dx. 

( PA3 F~ (2 + P) A2~'�91 - = ~ ~ - ~  - A I F  ~ - T3 blle 1 ( I +  p ) A 2 A 3  2 o 2A1A2F 4 _  2 s 
~ J 

(2 -t- P ) - 2  A~ 
- A~A~~-TN-"~ l + p / .  (12) 

At low temperatures, the contribution o f  TU l i8 very small compared to T~ 1 
snd it can be ignored in this case, Eq. (2) reduces to 

K = c~ (1 - 2A1F ~ - 2A2F~ - 2A3F~ - A3F~), 
C 2 

(13) 

where 
A1 TB 1 D E hi = , A 2 - - - - ,  A3 = -  and P = - - .  

c c c b2 

For this case, *.he integrals T2 and T3 can be expressed as 

T2 = blTBIe(1 - CTSF ~ -- DTBF~ ~ -- ETBFs),  (14) 

T3 = b1I~(1 - b ,TsF~ _~2  2~1~TB,6 -- 2 W T ~ F p  -- {E  + b~)~T]F 1 ~ -  

�9 -,2 2=12 b2)DT~). (15) -u r~r~ - ( E +  

Using these equations A K  can be approximated as 

A K = cobl T~ Ie ( 1 -  2crs Fg - 2DrB F 1 ~  ETB FS (2( I + P) + P)  

2E2 P 
F~ F~ + 2 P E  r~FS(cF~ e _ DF~O ) (1 + P)  r~ s s {1 + P) 

n 2  2 ~ 1 2 - -  
2 2 r~12 (1 + P) 

+ P) 2~ +~)EDT~~.+ 06) 
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Neglecting 1.~1 as well as the term of lower values, Eq. (16) becomes 

A K  = coblr~I6 (1 - 2crBF~ - 2DrB F~ ~ - b l rBF~) .  (17) 

Due to the very low value of t empera ture  and the l�91 value of 0, one can evaluate 
integral I ' s  with the help of the Riemann zeta  function, and one gets ah expression 
for A K  

A K  = 720 --+ coblr~(1 - 1008crB - 10080DrB - 56b~rB). 

In the absence of dislocations, the expression for A K  stated in Eq. (17) becomes 

A K  = coblr~Is{1 - 2DrB F~ ~ - blrBF~),  (18) 

which is the same as obta ined  by Dubey [4] f o r a  pure sample. 

8. R e s u l t s  a n d  d i s c u s s i o n  

Using the above expression, AK is calculated in the temperature range of 

0.2-5 K for a sample having core dislocations for different values of P (103 to 10 -3) 

as shown in Tal)le I. The values of constants r~ I, A anda �91 taken from the 

e�91 report of Dubey [11], butan approximate value of E has been calculated as 

E = 1.0 x I0-23s. deg -3. To test the applicability of the analytical expressions, the 

value of AK has been calculated in the temperature range of 0.2-5 K. 

Prom Table I, it is cleax that the contribution of AK to the total phonon con- 

ductivity is very small in compaxison with K, thus we can neglect its contribution, 

which is similar to the eaxlier ¡ of [2-5]. With the help of Table II, the values 

of AK obtained in the frame of the analytical expression �91 very close to those 

obtained using numerical integrations. 

Table II  
Phonon conductivity correction term AK in the frarne 
of Callaway integral, (AK)sn~I. is the value of AK 

obtained in the frame of analytical expression, (AK)num. int. 
is the value of AK based on numerical integration 

T K (AK)anal. (AK) .... iat. Percentage ditference ~ 

0.2 2.819 I0 -14 2.819 I0 -~4 0 
0.4 7.217 I0 -12 7.218 10 -12 1.385 
0.6 1.849 10 -1o 1.850 10 -1o 5.405 
0.8 1.847 10 -0 1.849 10 -0 0.108 
1.0 1.099 10 -s 1.102 10 -s 0.272 
2.0 2.786 10 -s 2.816 10 -s 1.065 
3.0 6.910 10 -�91 7.125 10 -~ 3.017 
4.0 6.389 10 -4 7.532 10 -4 15.175 
5.0 3.237 10 -3 4.148 10 -3 21.962 

10--2 
10-~ 

*Percentage dilference = (AK) .... x,t.-(4g)~n,~.. 100. 
(AK)num. Int. 
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With the help of Eq. (17), it can be concluded that for ~~I �87 r~1 AK or 

blr~, which indicates that AK mainly depends on r~ I and rfl~h. N. The present 

results �91 in good accord with the ¡ of previous works [4, 12]. At the same 

time, with the help of Eq. (13), it is clear that for r~ I �87 r AK or Bt/c 2, which 
shows that AK is mainly governed by r~~,h, N and r~ I. 
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