CONTRIBUTION TO THE LATTICE THERMAL CONDUCTIVITY DUE TO THE THREE PHONON NORMAL PROCESSES IN THE PRESENCE OF CORE DISLOCATIONS IN THE FRAME OF THE CALLAWAY INTEGRAL

A. H. AWAD
Department of Physics, College of Education, University of Basah
Basrah, Iraq
(Received 23 February 1988)

Abstract

The contribution of the correction term due to the three phonon normal processes has been studied for a sample having core dislocation in the frame of Callaway integral by obtaining an analytical expression for it. To test the applicability of the expression obtained, the contribution of the correction term toward total phonon conductivity has been calculated in the temperature range of $0.2-5 \mathrm{~K}$ owing to which a negligible contribution has been found.

1. Introduction

The expression of the lattice thermal conductivity proposed by Callaway [1] was based on the two mode conduction of phonon. The first one gives the lattice thermal conducitivity of an insulator due to the combined scattering relaxation rate, while the second term has a complicated form known as the correction term due to the three phonon normal processes. It was found that the contribution of the correction term (ΔK) is usually small enough compared to the total lattice thermal conductivity $[2,5]$.

Recently, the lattice thermal conductivity due to the correction term has been studied by several workers [6-8] using the Callaway expression of the correction term in which no distinction is made between transverse and longitudinal phonons. These studies are confined to samples having boundary, point defect and phonon-phonon scattering processes only.

The aim of the present work is to derive an analytical expression for ΔK in the frame of the Callaway integral at very low temperatures in the presence of core dislocations. The contribution of the correction term (ΔK) to the lattice thermal conductivity was calculated also in the frame of Callaway integral for the different values of P which is the ratio of the three phonon normal and umklapp processes scattering strengths.

2. Theory

The generalized Callaway expression of the lattice thermal conductivity is

$$
\begin{equation*}
K=c_{0} \cdot \int_{0}^{\theta / T}\left(\tau_{N}^{-1}+\tau_{R}^{-1}\right)^{-1} x^{4} e^{x}\left(e^{x}-1\right)^{-2} d x+\Delta K \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\Delta K=c_{0} T_{2}^{2} / T_{3} \tag{2}\\
T_{2}=\int_{0}^{\theta / T} \tau_{N}^{-1}\left(\tau_{N}^{-1}+\tau_{R}^{-1}\right)^{-1} x^{4} e^{x}\left(e^{x}-1\right)^{-2} d x \tag{3}\\
T_{3}=\int_{0}^{\theta / T} \tau_{R}^{-1} \tau_{N}^{-1}\left(\tau_{N}^{-1}+\tau_{R}^{-1}\right)^{-1} x^{4} e^{x}\left(e^{x}-1\right)^{-2} d x \tag{4}\\
c_{0}=\left(K_{B} / 2 \pi^{2} v\right)\left(K_{B} T / \hbar\right)^{3}, \quad x=\hbar w / K_{B} T
\end{gather*}
$$

where K_{B} is the Boltamann constant, \hbar is the Planck constant divided by $2 \pi, \theta$ is the Debye temperature of the specimen under study, v is the average phonon velocity, $\tau^{-1}=B_{1} w^{2} T^{3}$ is the three phonon normal process scattering relaxation rate, $\tau_{R}^{-1}=\tau_{B}^{-1}+A w^{4}+B_{2} w^{2} T^{3}+a w^{3}$ is the combined scattering relaxation rate of umklapp processes, τ_{B}^{-1} is the boundary scattering [9], $A w^{4}$ is the point defect scattering relaxation rate [10], $B_{2} w^{2} T^{3}$ is the three phonon umklapp process scattering relaxation rate and $a w^{3}$ is the core dislocation relaxation rate [10]. A, a, B_{1}, B_{2} are scattering strengths of point defect, core dislocation and three phonon normal and umklapp processes, respectively. The τ_{N}^{-1} and τ_{R}^{-1} can be expressed as

$$
\begin{align*}
\tau_{N}^{-1} & =B_{1} w^{2} T^{3}=b_{1} x^{2}, \tag{5}\\
\tau_{p t}^{-1} & =A w^{4}=D x^{4}, \tag{6}\\
\tau_{U}^{-1} & =B_{2} w^{2} T^{3}=b_{2} x^{2}, \tag{7}\\
\tau_{c d}^{-1} & =a w^{3}=c x^{3}, \tag{8}\\
E & =b_{1}+b_{2} . \tag{9}
\end{align*}
$$

It is necessary to mention here that through the numerical analysis of above integral for τ_{R}^{-1}, it is found that at low temperatures, either $\tau_{c d}^{-1}$ dominates over τ_{B}^{-1} or $\tau_{c d}^{-1}$ is dominated by τ_{B}^{-1}. Therefore, the analytical expressions are obtained under two different approximations, i. e. $\tau_{c d}^{-1} \gg \tau_{B}^{-1}$ and $\tau_{B}^{-1} \gg \tau_{c d}^{-1}$.
(A) If $\tau_{c d}^{-1} \gg \tau_{B}^{-1}$:

In the above approximations, the integrals T_{2} and T_{3} can be reexpressed as follows

$$
\begin{equation*}
T_{2}=\frac{b_{1}}{c} \int_{0}^{\theta / T}\left(1-\frac{\tau_{B}^{-1}}{c} x^{-3}-\frac{D}{c} x-\frac{E}{c} x^{-1}\right) x^{3} e^{x}\left(e^{x}-1\right) d x \tag{10}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
T_{2}=\frac{b_{1} I_{3}}{c}\left(1-\frac{\tau_{B}^{-1}}{c} F_{3}^{0}-\frac{D}{c} F_{3}^{4}-\frac{E}{c} F_{3}^{2}\right) \tag{11}
\end{equation*}
$$

where

$$
F_{n}^{m}=I_{m} / I_{n}, \quad I_{r}=\int_{0}^{\theta / T} x^{r} e^{x}\left(e^{x}-1\right)^{-2} d x
$$

m, n and r are integers. Similarly

$$
\begin{gather*}
T_{3}=b_{1} I_{6}\left(1-\frac{P A_{3}}{1+P} F_{6}^{5}-\frac{(2+P)}{(1+P)} A_{2} A_{3}-A_{1}^{2} F_{6}^{0}-2 A_{1} A_{2} F_{6}^{4}-A_{2}^{2} F_{6}^{8}-\right. \\
\left.-A_{1} A_{3} \frac{(2+P)}{(1+P)} F_{6}^{2}-\frac{A_{3}^{2}}{1+P}\right) \tag{12}
\end{gather*}
$$

At low temperatures, the contribution of τ_{U}^{-1} is very small compared to τ_{R}^{-1} and it can be ignored in this case, Eq. (2) reduces to

$$
\begin{equation*}
K=\frac{c_{0} E I_{3} F_{6}^{3}}{c^{2}}\left(1-2 A_{1} F_{3}^{0}-2 A_{2} F_{3}^{4}-2 A_{3} F_{3}^{2}-A_{3} F_{6}^{5}\right), \tag{13}
\end{equation*}
$$

where

$$
A_{1}=\frac{\tau_{B}^{-1}}{c}, \quad A_{2}=\frac{D}{c}, \quad A_{3}=\frac{E}{c} \quad \text { and } \quad P=\frac{b_{1}}{b_{2}}
$$

(B) If $\tau_{B}^{-1}>\tau_{c d}^{-1}$:

For this case, the integrals T_{2} and T_{3} can be expressed as

$$
\begin{align*}
& T_{2}=b_{1} \tau_{B} I_{6}\left(1-c \tau_{B} F_{6}^{9}-D \tau_{B} F_{6}^{10}-E \tau_{B} F_{6}^{8}\right) \tag{14}\\
& T_{3}=b_{1} I_{6}\left(1-b_{1} \tau_{B} F_{6}^{8}-c^{2} \tau_{B}^{2} F_{6}^{12}-2 D c \tau_{B}^{2} F_{6}^{10}-\left(E+b_{2}\right) c \tau_{B}^{2} F_{6}^{11}-\right. \\
& \left.\quad-D^{2} \tau_{B}^{2} F_{6}^{12}-\left(E+b_{2}\right) D \tau_{B}^{2}\right) \tag{15}
\end{align*}
$$

Using these equations ΔK can be approximated as

$$
\begin{align*}
\Delta K=c_{0} b_{1} \tau_{B}^{2} I_{6}(1 & -2 c \tau_{B} F_{6}^{9}-2 D \tau_{B} F_{6}^{10}-E \tau_{B} F_{6}^{8} \frac{(2+P)}{(1+P)}- \\
& -\frac{2 P E}{(1+P)} \tau_{B}^{2} F_{8}^{8}\left(c F_{B}^{9}-D F_{6}^{10}\right)-\frac{2 E^{2} P}{(1+P)} \tau_{B}^{2} F_{6}^{8} F_{6}^{8}+ \\
& +c^{2} \tau_{B}^{2} F_{6}^{12}+2 D c \tau_{B}^{2} F_{6}^{10}+\frac{(2+P)}{(1+P)} E c \tau_{B}^{2} F_{6}^{11}+D^{2} \tau_{B}^{2} F_{6}^{12}+ \\
& \left.+\frac{(2+P)}{(1+P)} E D \tau_{B}^{2}\right) \tag{16}
\end{align*}
$$

Table 1*
Contribution of the correction term ΔK to the total phonon conductivity in the temperature

TK	K^{*}		$10^{-2} \quad 10^{-1} \quad \Delta K$								10		10^{2}		10^{3}	
0.2	4.08	10^{-4}	3.02	10^{-16}	2.99	10^{-15}	2.81	10^{-14}	1.51	10^{-13}	2.75	10^{-13}	2.99	10^{-13}	3.02	10^{-13}
0.4	3.26	10^{-3}	7.92	10^{-14}	7.85	10^{-13}	7.21	10^{-12}	3.96	10^{-11}	7.21	10^{-11}	7.85	10^{-11}	7.92	10^{-1}
0.6	1.10	10^{-2}	2.03	10^{-12}	2.01	10^{-14}	1.85	10^{-10}	1.01	10^{-9}	1.84	10^{-9}	2.01	10^{-9}	2.03	10^{-9}
0.8	2.61	10^{-2}	2.03	10^{-11}	2.01	10^{-10}	1.84	10^{-9}	1.01	10^{-8}	1.84	10^{-8}	2.01	10^{-8}	2.03	10^{-8}
1.0	5.09	10^{-2}	1.21	10^{-10}	1.20	10^{-9}	1.01	10^{-8}	1.01	10^{-7}	1.10	10^{-7}	2.20	10^{-7}	1.21	10^{-7}
2.0	4.07	10^{-1}	3.09	10^{-8}	3.06	10^{-7}	2.81	10^{-6}	6.06	10^{-6}	2.80	10^{-5}	3.06	10^{-5}	3.09	10^{-5}
3.0	1.37		7.82	10^{-7}	7.75	10^{-6}	7.12	10^{-5}	1.54	10^{-4}	7.12	10^{-4}	7.75	10^{-4}	7.82	10^{-4}
4.0	3.20		8.27	10^{-6}	8.20	10^{-5}	7.53	10^{-4}	4.14	10^{-3}	7.53	10^{-3}	8.20	10^{-3}	8.27	10^{-3}
5.0	6.14		4.55	10^{-5}	4.51	10^{-4}	4.14	10^{-3}	2.28	10^{-2}	4.14	10^{-2}	4.51	10^{-2}	4.55	10^{-2}

*From the earlier report of Dubey [11]

Neglecting τ_{U}^{-1} as well as the term of lower values, Eq. (16) becomes

$$
\begin{equation*}
\Delta K=c_{0} b_{1} \tau_{B}^{2} I_{6}\left(1-2 c \tau_{B} F_{6}^{9}-2 D \tau_{B} F_{6}^{10}-b_{1} \tau_{B} F_{6}^{8}\right) . \tag{17}
\end{equation*}
$$

Due to the very low value of temperature and the large value of θ, one can evaluate integral I 's with the help of the Riemann zeta function, and one gets an expression for ΔK

$$
\Delta K=720 \rightarrow c_{0} b_{1} \tau_{B}^{2}\left(1-1008 c \tau_{B}-10080 D \tau_{B}-56 b_{1} \tau_{B}\right)
$$

In the absence of dislocations, the expression for ΔK stated in Eq. (17) becomes

$$
\begin{equation*}
\Delta K=c_{0} b_{1} \tau_{B}^{2} I_{6}\left(1-2 D \tau_{B} F_{6}^{10}-b_{1} \tau_{B} F_{6}^{8}\right) \tag{18}
\end{equation*}
$$

which is the same as obtained by Dubey [4] for a pure sample.

3. Results and discussion

Using the above expression, ΔK is calculated in the temperature range of $0.2-5 \mathrm{~K}$ for a sample having core dislocations for different values of $P\left(10^{3}\right.$ to $\left.10^{-3}\right)$ as shown in Table I. The values of constants τ_{B}^{-1}, A and a are taken from the earlier report of Dubey [11], but an approximate value of E has been calculated as $E=1.0 \times 10^{-23} \mathrm{~s} . \mathrm{deg}^{-3}$. To test the applicability of the analytical expressions, the value of ΔK has been calculated in the temperature range of $0.2-5 \mathrm{~K}$.

From Table 1 , it is clear that the contribution of ΔK to the total phonon conductivity is very small in comparison with K, thus we can neglect its contribution, which is similar to the earlier finding of [2-5]. With the help of Table II, the values of ΔK obtained in the frame of the analytical expression are very close to those obtained using numerical integrations.

Table II
Phonon conductivity correction term ΔK in the frame of Callaway integral, $(\Delta K)_{\text {anal. }}$ is the value of ΔK obtained in the frame of analytical expression, $(\Delta K)_{\text {num. int }}$. is the value of ΔK based on numerical integration

$T \mathrm{~K}$	$(\Delta K)_{\text {anal. }}$					
0.2	2.819	10^{-14}	2.819	10^{-14}	0	
0.4	7.217	10^{-12}	7.218	10^{-12}	1.385	10^{-2}
0.6	1.849	10^{-10}	1.850	10^{-10}	5.405	10^{-2}
0.8	1.847	10^{-9}	1.849	10^{-9}	0.108	
1.0	1.099	10^{-8}	1.102	10^{-8}	0.272	
2.0	2.786	10^{-6}	2.816	10^{-6}	1.065	
3.0	6.910	10^{-5}	7.125	10^{-5}	3.017	
4.0	6.389	10^{-4}	7.532	10^{-4}	15.175	
5.0	3.237	10^{-3}	4.148	10^{-3}	21.962	

With the help of Eq. (17), it can be concluded that for $\tau_{B}^{-1} \gg \tau_{c d}^{-1}, \Delta K \propto$ $b_{1} \tau_{B}^{2}$, which indicates that ΔK mainly depends on τ_{B}^{-1} and $\tau_{3 P h . N}^{-1}$. The present results are in good accord with the findings of previous works $[4,12]$. At the same time, with the help of Eq. (13), it is clear that for $\tau_{c d}^{-1} \gg \tau_{B}^{-1}, \Delta K \propto B_{1} / c^{2}$, which shows that ΔK is mainly governed by $\tau_{3 P h, N}^{-1}$ and $\tau_{c d}^{-1}$.

Acknowledgement

The author wishes to express his thanks to Dr. K. S. Magdy, Dr. C. A. Emshary and J. S. Saif for their interest in the present work.

References

1. J. Callaway, Phys. Rev., 113, 1046, 1959.
2. K. S. Dubey, Sol. Stat. Comms., 23, 963, 1977.
3. K. S. Dubey, Phys. Stat. Sol., (b) 79, K119, 1977.
4. K. S. Dubey, Phys. Stat. Sol., (b) 81, K83, 1977.
5. Y. P. Joshi, M. D. Tiwari and G. S. Verma, Physica, 47, 213, 1970.
6. B. K. Agrawal and G. S. Verma, Phys. Rev., 128, 603, 1962.
7. J. Callaway and C. V. Baeyer, Phys. Rev., 120, 1149, 1960.
8. R. M. Samuel, R. H. Misho and K. S. Dubey, Current Sciences, 46, 220, 1977.
9. H. B. G. Casimir, Physica, 5, 495, 1938.
10. P. G. Klemens, Sol. Stat. Phys., 1, 7, 1958.
11. K. S. Dubey, Current Science, 49, 508, 1980.
12. A. F. Saleh, R. H. Misho and K. S. Dubey, Acta Phys. Hung., 47, 325, 1979.
