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Abstract This paper adopts the inverse fractional differential operator method for obtaining
the explicit particular solution to a linear sequential fractional differential equation, involving
Jumarie’s modification of Riemann–Liouville derivative, with constant coefficient s. This
method depends on the classical inverse differential operator method and it is independent
of the integral transforms. Several examples are then given to demonstrate the validity of our
main results.

Keywords Fractional differential equations · Riemann–Liouville derivative · Jumarie’s
fractional derivation · Inverse differential operators · Inverse fractional differential operators

Introduction

Fractional differential equations are a generalization of the ordinary differential equation to
arbitrary non-integer order . Fractional differential equations arise in many complex systems
in nature and society with many dynamics, such as rheology, porous media, viscoelastic-
ity, electrochemistry, electromagnetism, signal processing, dynamics of earthquakes, optics,
geology, viscoelastic materials, biosciences, bioengineering, medicine, economics, proba-
bility and statistics, astrophysics, chemical engineering, physics, splines, tomography, fluid
mechanics, electromagneticwaves, nonlinear control, control of power electronic, converters,
chaotic dynamics, polymer science, proteins, polymer physics, electrochemistry, statisti-
cal physics, thermodynamics, neural networks and many more [10,13,14,30,31,37,39] . In
recent years, there has been a significant development in the techniques of solving fractional
differential equations, some recent contributions can be seen in [1–6,8–12,17,18,24–29,32–
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40], and the references therein. A wide description of the problem of the existence and
uniqueness of solutions of Cauchy-type problems for fractional order differential equations
together with its applications can be found in the literature [1,6,8,27,30,33–37].

Motivated and inspired by the on-going research in this field,wewill consider the following
non-homogeneous linear fractional differential equation with constant coefficients

(
Dn α

x + a1D(n−1) α
x + a2D(n−2) α

x + · · · + an−1Dα
x + an

)
y(x) = Q(x) (1.1)

where q = 1
α is integer number, ak, k = 1, 2, . . . , n are real constant,Dn α

x = Dα
xD

α
x · · ·Dα

x︸ ︷︷ ︸
n−times

and

Dα
x denotes Jumarie’s fractional derivation [19–23], which is a modified Riemann–Liouville

derivative defined as

Dα
xf(x) = 1

�(1 − α)

d

dx

∫ x

0
(x − ζ)− α(f(ζ) − f(0))d ζ, 0 < α < 1 (1.2)

and

Dα
xf(x) = dn

dxn
(D(α −n)f(x)), n < α < n + 1, n ≥ 1 (1.3)

Eq. (1.1) is called fractional linear differential equation with constant coefficients of order
(n, q), or more briefly, a fractional differential equation of order (n, q) [34]. If α = 1, then
Eq. (1.1) become nth order ordinary differential equations.

This paper is organized as follows: Sect. 2 presents Jumarie’s Modification of Riemann–
Liouville Derivative and their main properties. In Sect. 3, we study some properties of linear
fractional differential operators with constant coefficients. In Sect. 4, we adopt the method of
inverse fractional differential operators to find the particular solution to non-homogeneous
LSFDEwith constant coefficients while in Sect. 5, several examples are given to demonstrate
the validity of our main results.

Jumarie’s Modification of Riemann–Liouville Derivative

The fractional derivative has different definitions [27,33–36], and exploiting any of them
depends on the boundary conditions and the specifics of the considered physical systems
and processes. The first definition of fractional derivative which has been proposed in the
literature is the so-called Riemann–Liouville definition which reads as follows

Definition 2.1 (Riemann–Liouville derivative) [34] Let f(x) : R → R be a continuous
function then the fractional derivative of order α is defined by

Dα
xf(x) = 1

�(− α)

∫ x

0
(x − ζ)− α −1f(ζ)d ζ, α < 0 (2.1)

and

Dα
xf(x) = 1

�(n − α)

dn

dxn

∫ x

0
(x − ζ)n−α −1f(ζ)d ζ, n < α < n + 1 (2.2)

where �(.) is the Gamma function.

It is well known that the fractional derivative, in the sense of Riemann–Liouville definition
of fractional derivative, of a constant is not zero. This encourages Caputo to introduce Caputo
derivative such that the fractional derivative of a constant is zero [7].
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Definition 2.2 (Caputo derivative) [34] Let f(x) : R → R be a continuous function then the
fractional derivative of order α is defined by

Dα
xf(x) = 1

�(n − α)

∫ x

0
(x − ζ)n−α −1 d

nf(ζ)

d ζn
d ζ, n < α < n + 1 (2.3)

Definition 2.3 (Grunwald–Letnikov) [34] The Grunwald–Letnikov definition is given by

GL
t0 Dα

t x(t) = lim
h→0

[
t−t0

h

]
∑
j=0

(−1) j
(

α

j

)
x(t − jh),

Where [.] means the integer part.

WithCaputo definition, a fractional derivativewould be defined for differentiable functions
only. In order to deal with non-differentiable functions, Jumarie have recently proposed a
modification of theRiemann–Liouville definition [19–23]. This fractional derivative provides
a Taylor’s series of fractional order for non differentiable functions.

Definition 2.4 (Jumarie’s modification of Riemann–Liouville derivative) [19–23] Let
f(x) := R → R be a continuous function then the fractional derivative of order α is defined
by

Dα
xf(x) = 1

�(− α)

∫ x

0
(x − ζ)− α −1(f(ζ) − f(0))d ζ, α < 0 (2.4)

and

Dα
xf(x) = 1

�(n − α)

dn

dxn

∫ x

0
(x − ζ)n−α −1(f(ζ) − f(0))d ζ, n < α < n + 1 (2.5)

He et al. [15] introduce the geometrical explanation of fractional complex transform and
derivative chain rule for fractional calculus in the sense of Jumarie’s modification of
Riemann–Liouville derivative. Remark the main difference between Definitions (2.2) and
(2.3). The second one involves the constant f(0) while the first one does not. Also, the frac-
tional Riemann–Liouville derivative of a constant is not zero while the fractional Jumarie
derivative of a constant is zero. In the rest of the paper, Dα

x will be used to refer to Jumarie’s
modification of Riemann–Liouville derivative

Definition 2.5 (Principle of Derivative increasing orders) [22] The functional derivative
of fractional Dα +β

x expressed in terms of Dα
x and Dβ

x is defined by the equality Dα+β
x f(x) =

Dmax(α,β)
x (Dmin(α,β)

x f(x)).

The function Eα(t) was defined by Mittag–Leffler in the year 1903. These functions will
play the main role in investigating the stability of fractional order system.

Definition 2.6 (Mittag–Leffler function) [27] The one-parameter and two-parameterMittag–
Leffler functions are defined as, respectively

Eα(t) =
∞∑

k=0

tk

�(kα + 1)
, (α > 0),

Eα,β(t) =
∞∑

k=0

tk

�(kα + β)
, (α > 0, β > 0),

For β = 1, we have Eα(t) = Eα,1(t). Also, E1,1(t) = et .
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Proposition 2.7 Assume that the continuous function f(x) : R → R has a fractional deriva-
tive of order α k for any positive integer k and 0 < α < 1, then the following equality holds
[21],

f(x+h) =
∞∑
k=0

hα k

�(α k + 1)
f(α k)(x), 0 < α ≤ 1 (2.6)

where f(α k)(x) is the fractional Jumarie derivative of order α k of f(x). Formally, Eq. (2.6)
can be written f(x+h) = Eα(h

αDα
x)f(x), 0 < α ≤ 1.

Corollary 2.8 The following equalities hold [22], which are

Dαxγ = �(γ +1)�−1(γ +1 − α)xγ − α, γ > 0 (2.7)

or, what amounts to the same (we set α = n + θ)

Dn+θxγ = �(γ +1)�−1(γ +1 − n − θ)x
γ −n−θ, 0 < θ < 1 (2.8)

Dα
x(u(x)v(x)) = Dα

xu(x)v(x) + u(x)Dα
xv(x) (2.9)

Lemma 2.9 The following various formulae are hold [22]

1.

Eα(x
αyα) = (Eα(y

α))x (2.10)

2.

Dα
xEα(λ xα) = λ Eα(λ xα) (2.11)

3.

Eα(ix) = cosα x + i sinα x (2.12)

4.

Eα(x) = coshα x + sinhα x (2.13)

5.

Dα
x cosα xα = − sinα xα, Dα

x sinα xα = cosα xα (2.14)

6.

Dα
x coshα xα = − sinhα xα, Dα

x sinhα xα = coshα xα (2.15)

Some Properties of Linear Fractional Differential Operators with
constant Coefficients:

Consider the following linear non homogeneous LSFDE with constant coefficients of order
(n, q)

(Dn α
x + a1D(n−1) α

x + a2D(n−2) α
x + · · · + an−1Dα

x + an)y(x) = Q(x) (3.1)

where α = 1
q is constant rational number, ak, k = 1, 2, . . . , n are real constant, Dn α

x =
Dα
xD

α
x · · ·Dα

x︸ ︷︷ ︸
n−times

.

123



Differ Equ Dyn Syst

Rewrite Eq. (3.1) in the form
P(Dα

x )y(x) = Q(x) (3.2)

where P(Dα
x ) is a linear fractional differential operator.

Lemma 3.1 (The Exponential Mittag–Leffler shift) Eα(λ xα)P(Dα
x )y(x) = P(Dα

x −
λ)Eα(λ xα)y(x) where Eα(u) = ∑∞

k=0
uk

�(α k+1)
is the Exponential Mittag–Leffler function.

Proof Consider the effect of the operator Dα
x − λ on the product of Eα(λ xα) and a function

y(x), one can have

(Dα
x − λ)Eα(λ xα)y(x) = Dα

xEα(λ xα)y(x) − λEα(λ xα)y(x)

= (Dα
xEα(λ xα))y(x) + Eα(λ xα)Dα

xy(x) − λEα(λ xα)y(x)

= λEα(λ xα)y(x) + Eα(λ xα)Dα
xy(x) − λEα(λ xα)y(x)

= Eα(λxα)Dα
x y(x).

and

(Dα
x − λ)2Eα(λ xα)y(x) = (Dα

x − λ)(Dα
x − λ)Eα(λ xα)y(x)

= (Dα
x − λ)(Eα(λ xα)Dα

xy(x))

= Eα(λ xα)Dα
xDα

xy(x)

= Eα(λ xα)D2 α
x y(x).

Repeating the operation, one have

(Dα
x − λ)kEα(λ xα)y(x) = Eα(λ xα)Dk α

x y(x), k = 1, 2, . . . (3.3)

Using the linearity of fractional differential operators, we conclude that when P(Dα
x ) is a

polynomial in Dα
x with constant coefficients, then

Eα(λ xα)P(Dα
x )y(x) = P(Dα

x − λ)Eα(λ xα)y(x) (3.4)

��
As a direct computation, one has the following :

Lemma 3.2 The following various formulae are hold

1.

P(Dα
x )Eα(λxα) = P(λ)Eα(λxα) (3.5)

2.

P(D2 α
x ) cosα bxα = P(−b2) cosα bxα, (3.6)

3.

P(D2 α
x ) sinα bxα = P(−b2) sinα bxα, (3.7)

4.

P(D2 α
x ) coshα bxα = P(−b2) coshα bxα, (3.8)

5.

P(D2 α
x ) sinhα bxα = P(−b2) sinhα bxα, (3.9)

123



Differ Equ Dyn Syst

Particular Solution of Nonhomogeneous LSFDE with Constant
Coefficients by Using Inverse Fractional Differential Operators

In seeking a particular solution of Eq. (3.2), it is natural to write

y(x) = 1

P(Dα
x )
Q(x) (4.1)

and to try to define an operator 1
P(Dα

x )
so that the function y(x) of Eq.(4.1) will have meaning

and will satisfy Eq. (3.2).
Instead of building a theory of such inverse fractional differential operators, we shall adopt

the followingmethod of attack. Purely formal (unjustified) manipulations of the symbols will
be performed, thus leading to a tentative evaluation of 1

P(Dα
x )
Q(x). After all, the only thing

that we require of evaluation is that

P(Dα
x )

1

P(Dα
x )

Q(x) = Q(x) (4.2)

Hence the proof will be placed on a direct verification of the Eq. (4.2) in each instance.
By using Lemma 3.2, one has the following:

Lemma 4.1 The following various formulae are hold

1.

1

P(Dα
x )

Eα(λ xα) = 1

P(λ)
Eα(λ xα), such that P(λ) �= (4.3)

2.

1

P(D2 α
x )

sinα bxα = 1

P(−b2)
sinα bxα, such that P(−b2) �= 0 (4.4)

3.

1

P(D2α
x )

cosα bxα = 1

P(−b2)
cosα bxα, such that P(−b2) �= 0 (4.5)

4.

1

P(D2 α
x )

sinhα bxα = 1

P(−b2)
sinhα bxα, such that P(−b2) �= 0 (4.6)

5.

1

P(D2 α
x )

coshα bxα = 1

P(−b2)
coshα bxα, such that P(−b2) �= 0 (4.7)

By using Lemma 3.1, one has the following :

Lemma 4.2 The following various formulae are hold for any f(x)

1.

1

P(Dα
x )

f(x)

Eα(λ xα)
= 1

Eα(λ xα)

1

P(Dα
x − λ)

f(x), (4.8)
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2.

1

P(Dα
x )

Eα(λ xα)f(x) = Eα(λ xα)
1

P(Dα
x + λ)

f(x), (4.9)

Proof To prove (1), let y(x) = 1
P(Dα

x )

f(x)

Eα(λxα)
. So, one can have

P(Dα
x )y(x) = f(x)

Eα(λ xα)

So, Eα(λ xα)P(Dα
x )y(x) = f(x) . By using Lemma 3.1, we have

P(Dα
x − λ)Eα(λ xα)y(x) = f(x)

So, Eα(λ xα)y(x) = 1
P(Dα

x−λ)
f(x). Then y(x) = 1

Eα(λxα)

1
P(Dα

x−λ)
f(x)

Hence (1) is satisfied . ��
To prove (2), let y(x) = 1

P(Dα
x )
Eα(λ xα)f(x)

So, y(x) = Eα(λxα)

Eα(λxα)

1
P(Dα

x )
Eα(λ xα)f(x). According to (1), we have

y(x) = Eα(λ xα)
1

P(Dα
x + 1)

Eα(λ xα)

Eα(λ xα)
f(x)

y(x) = Eα(λ xα)
1

P(Dα
x + 1)

f(x)

Hence (2) is satisfied.

Lemma 4.3 Let P(m) be a polynomial of degree n and its roots are βk, k = 1, 2, . . . , n, i.e.
P(m) = ∏n

k=1 (m − βk) then

1

P(Dα
x )

f(x) =
∏n

k=1

(
D(q−1) α
x + βkD(q−2) α

x + β2kD
(q−3) α
x + · · · + β

q−1
k

)
∏n

k=1

(
D − β

q
k

) f(x) (4.10)

where D = d
dx and q = 1

α is integer number.

Proof Note that

n∏
k=1

(D − β
q
k)

=
n∏

k=1

(Dq α
x − β

q
k)

=
n∏

k=1

(Dα
x − βk)

(
D(q−1) α
x + βkD(q−2) α

x + βk2D(q−3) α
x + · · · + βqk−1

)

=
(

n∏
k=1

(Dα
x − βk)

) (
n∏

k=1

(
D(q−1) α
x + βkD(q−2) α

x + βk2D(q−3) α
x + · · · + β

q−1
k

))

= P(Dα
x )

(
n∏

k=1

(
D(q−1) α
x + βkD(q−2) α

x + β2kD(q−3) α
x + · · · + β

q−1
k

))
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So, one can have

n∏
k=1

(D − β
q
k)f(x) = P(Dα

x )

(
n∏

k=1

(D(q−1) α
x + βkD(q−2) α

x + βk2D
(q−3) α
x + · · · + β

q−1
k )

)
f(x)

This imply Eq. (4.10). ��

Remark that Lemma 4.3 is very important specially, when the right member of Eq. (3.2) is
eax, cos(ax), cosh(ax), sin(ax), sinh(ax), xm or any combination of these functions. In fact,
Lemma 4.3 will be used the classical inverse differential operator in order to compute the
inverse fractional differential operator. In the next section, we adopt several examples to
illustrate the advantage of Method.

Illustrated Examples

Example 1 we consider the nonhomogeneous fractional differential equation
(
D 1

2 − 2
)
y(x) = ex (5.1)

Clearly, the auxiliary equation is p(m) = m − 2 = 0 and its root is m = 2. Then by using
Lemma 4.2, one have

yp(x) = D 1
2 + 2

D − 4
ex

yp(x) =
(
D 1

2 + 2
) 1

−3
ex since

1

D − 4
ex = 1

−3
ex

yp(x) = −1

3
D 1

2 ex − 2

3
ex

yp(x) = −1

3
D 1

2

∞∑
k=0

xk

�(k + 1)
− 2

3
ex

yp(x) = −1

3

∞∑
k=1

xk− 1
2

�
(
k + 1

2

) − 2

3
ex

yp(x) = −1

3

∞∑
j=0

xj+ 1
2

�
(
j + 3

2

) − 2

3

∞∑
j=0

xj

�(j + 1)

yp(x) = −1

2
E1

2

(
x

1
2

)
− 1

6
E1

2

(
−x

1
2

)
(5.2)

It is easily verify that yp(x) in Eq. (5.2) is particular solution to Eq. (5.1)

Example 2 we consider the homogeneous fractional differential equation
(
D + D 1

2 − 2
)
y(x) = cos(x) (5.3)

Clearly, the auxiliary equation is p(m) = m2 +m−2 = 0 and its roots are m = 1,−2. Then
by using Lemma 4.2, one have

123



Differ Equ Dyn Syst

yp(x) =
(
D 1

2 + 1
) (

D 1
2 − 2

)

(D2 − 4)(D2 − 1)
cos(x)

yp(x) =
(
D 1

2 + 1
) (

D 1
2 − 2

)

10
cos(x) since

1

(D2 − 4)(D2 − 1)
cos(x) = cos(x)

10

yp(x) =
(
D − D 1

2 − 2
)

10
cos(x)

yp(x) = − sin(x) − D 1
2 cos(x) − 2 cos(x)

10

yp(x) =
− sin(x) − 2 cos(x) − D 1

2

∞∑
k=0

(−1)kx2k

�(2k+1)

10

yp(x) =
− sin(x) − 2 cos(x) −

∞∑
k=1

(−1)kx2k− 1
2

�
(
2k+ 1

2

)

10
(5.4)

It is easily verify that yp(x) in Eq. (5.4) is particular solution to Eq. (5.3).

Example 3 we consider the homogeneous fractional differential equation
(
D 3

2 + 2D 1
2 − 2

)
y(x) = E1

2

(
x

1
2

)
(5.5)

By using Lemma 4.1, one can have

yp(x) = 1(
D 3

2 + 2D 1
2 − 2

)E1
2

(
x

1
2

)

yp(x) = 1

(1 + 2 − 2)
E1

2

(
x

1
2

)

yp(x) = E1
2

(
x

1
2

)
(5.6)

It is easily verify that yp(x) in Eq. (5.6) is particular solution to Eq. (5.5).

Example 4 we consider the homogeneous fractional differential equation
(
D + 2D 1

2 − 3
)
y(x) = E1

2

(
x

1
2

)
(5.7)

By using Lemma 4.1, one can have

yp(x) = 1(
D + 2D 1

2 − 3
)E1

2

(
x

1
2

)

yp(x) = 1(
D 1

2 + 3
) (

D 1
2 − 1

)E1
2

(
x

1
2

)

yp(x) = 1

4
(
D 1

2 − 1
)E1

2

(
x

1
2

)

yp(x) =
E1

2

(
x

1
2

)

4D 1
2

=
E1

2

(
x

1
2

)
D 1

2

4

1

D
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yp(x) =
E1

2

(
x

1
2

)
D 1

2 x

4
since

1

D
= x

yp(x) =
E1

2

(
x

1
2

) √
x

2
√

π
(5.8)

It is easily verify that yp(x) in Eq. (5.8) is particular solution to Eq. (5.7).

Conclusion

Depending on the roots of the characteristic polynomial of the corresponding homogeneous
equation, the inverse fractional differential operators method is established to obtain an
explicit particular solution to a linear sequential fractional differential equation (LSFDE),
involving Jumarie’smodification ofRiemann–Liouville derivative,with constant coefficients.
This method is independent of the integral transforms but it is applicable when, and only
when, the rightmember of the Eq. (1) is eax, cos(ax), cosh(ax), sin(ax), sinh(ax), xa,Eα(ax),
Eb(axb) or any combination of these functions.
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