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Abstract 
The differential transformation method (DTM) is applied to solve the second-order random diffe-
rential equations. Several examples are represented to  demonstrate the effectiveness of the pro-
posed method. The results show that  DTM is an efficient and accurate technique for finding exact 
and approximate  solutions.  
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1. Introduction 
The ordinary differential equations which contain random constant or random  variables are well known topics 
which are called the random ordinary  differential equations. The subject of second-order random differential 
equations  is one of much current interests due to the great importance of many applications  in engineering, bi-
ology and physical phenomena (see, e.g. Chil’es and Delfiner [1], Cort’es et al. [2], Soong [3] and references 
therein). Recently, several first-order random differential models have been solved by using the Mean 
Square  Calculus [2] [4]-[11]. Variety scientific problems have been modeled by using the  nonlinear second-or- 
der random differential equations. However, most of these  equations cannot be solved analytically. Thus, accu-
rate and efficient numerical  techniques are needed. There are several semi-numerical techniques which have 
been  considered to obtain exact and approximate solutions of linear and nonlinear  differential equations, such as 
adomian decomposition method (ADM) [12],  variational iteration method (VIM) [13] and homotopy perturba-
tion method   (HPM) [14]. We observe that semi-numerical methods are very prevalent in the  current literature, cf. 
[12]-[14].  

The object of this work is to describe how to implement the differential  transformation method (DTM) for 
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finding exact and approximate solutions of  the second-order random differential equations. To this end, the 
second-order  random differential equations and the concept of the differential transformation  method are pre-
sented in Section 2. In Section 3, we consider the statistical  functions of the mean square solution of the second- 
order random differential  equation. Section 4 is devoted to numerical examples.  

2. Differential Transform Method 
The differential transform method (DTM) has been used by Zhou [15]. This method is effective to obtain exact 
and approximate solutions of linear and nonlinear differential equations. To describe the basic ideas of DTM, we 
consider the second order random differential equation, 
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In fact, ( )x t  is a differential inverse transform of the form 
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It is clear from (3) and (4) that the concept of differential transform is derived from Taylor series expansion. 
That is  
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Differential transform for some functions. 
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Notes that, the derivatives in differential transform method does not evaluate symbolically. 
In keeping with Equations (3) and (4), let ( )X k , ( )Y k  and ( )U k , respectively, are the transformed func-

tions of ( )x t , ( )y t  and ( )u t . The fundamental mathematical operations of differential transformation are 
listed in the following table. 

3. Statistical Functions of the Mean Square Solution  
Before proceeding to find the computation of the main statistical functions of the mean square solution of Equa-
tions (1) and (2) we briefly clarify some concept, notation, and results belonging to the so-called PL  calculus. 
The reader is referred to the books by Soong [3], Loeve [16], and Wong and Hajek [17]. Throughout the paper,  
we deal with the triplet Probabilistic space ( ), ,F PΩ . Thus, suppose ( )2 2 , ,L L F P= Ω  is the set of second  
order random variables. Then the random variable 2:X R LΩ→ ∈ , if 2E X  < ∞  , where [ ]E   is an ex-
pectation operator. The norm on is denoted by 

2
. For example, for the random variable X we define  

( )
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2X E X =   , in such way that ( )2 2,L X  is a Banach space. In addition, let T (real interval) represent  

the space of times, we say that ( ){ },X t t T∈  is a second order stochastic process, if the random variable 
( ) 2X t L∈  for each t T∈ . 
A sequence of second order random variables { }, 0nX n ≥  converges to ( ) 2X t L∈ , if 
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To proceed from (4), we truncate the expansion of at the term as follows 
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By using the independence between 0,A y  and 1y  we have 
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where ( ) ( )( ) ( ) ( )( ) ( ) ( )cov , , , 0,1, , .X i X j E X i X j E X i E X j i j N= − ∀ =         
The following Lemma guarantee the convergent of the sequence ( )NE X t    to ( )E X t    and the se-

quence ( )NV X t    to ( )V X t    if the sequence the ( )NX t  converges to ( )X t . 
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4. Numerical Examples 
In this section, we adopt several examples to illustrate the using of differential transform method for approx-
imating the mean and the variance. 

Example 1: Consider random initial value problem 
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where ( )2 2, 1A Be α β= =  and independently of the initial conditions 0Y  and 1Y  which satisfy [ ] 1oE Y = , 
2 2oE Y  =  , [ ]1 1E Y = , 2

1 3E Y  =   and [ ]0 1 0E Y Y = . 
The approximate mean and variance are 

( ) 2 3 4 5 6 7 81 1 1 1 1 1 11
3 9 48 240 1800 12600 120960

E x t t t t t t t t t= + − − + + − − + +     
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( ) 2 3 4 5 6 7 84 8 19 67 103 41 2471 2
3 9 72 540 4050 4725 172800

V x t t t t t t t t t= − + + − − + + − −   

 
Figure 1 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while Fig-

ure 2 explain the Graph of variance approximation solution by using DTM with n = 18. 

Example 2: Consider random initial value problem 
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where A is a Beta r.v. with parameters 2α =  and 3β = , i.e. ( )2, 3A Be α β= =  and the initial conditions 
oY  and 1Y  are independent r.v.’s such as [ ] 1oE Y = , 2 2oE Y  =  , [ ]1 2E Y = , 2

1 5E Y  =  . 
The approximate mean and variance are 
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Figure 3 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while Fig-
ure 4 explain the Graph of variance approximation solution by using DTM with n = 18. 

Example 3: Consider the problem 
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conditions oY  and 1Y  which are independent r.v.’ satisfy [ ] 1oE Y = , 2 2oE Y  =  , [ ]1 1E Y = , 2
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The approximate mean and variance are 

( ) 2 3 4 5 6 7 811 23 13 59 83 37 1431
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Figure 1. Graphs of the expectation approximation solution of the 
DTM with n = 18. 
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Figure 2. Graphs of variance approximation solution of the DTM 
with n = 18. 

 

 
Figure 3. Graphs of the expectation approximation solution of the 
DTM with n = 18. 
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Figure 4. Graphs of variance approximation solution of the DTM 
with n = 18. 

 
Figure 5 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while Fig-

ure 6 explain the Graph of variance approximation solution by using DTM with n = 18. 

Example 4: Consider the problem 
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uniform r.v. with parameters 0α =  and 1β = , i.e. ( )0, 1A U α β= =  and independently of the initial 
conditions oY  and 1Y  which are independent r.v.’s satisfy [ ] 1oE Y = , 2 2oE Y  =  , [ ]1 1E Y = , 2

1 1E Y  =  . 
The approximate mean and variance are 
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Figure 7 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while Fig-

ure 8 explain the Graph of variance approximation solution by using DTM with n = 18. 

Example 5: Consider the problem 
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conditions oY  and 1Y  which are independent r.v.’s satisfy [ ] 1oE Y = , 2 4oE Y  =  , [ ]1 1E Y = , 2

1 2E Y  =  . 
The approximate mean and variance are 
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Figure 9 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while Fig-

ure 10 explain the Graph of variance approximation solution by using DTM with n = 18. 
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Figure 5. Graphs of the expectation approximation solution of the 
HAM with n = 18. 

 

 
Figure 6. Graphs of variance approximation solution of the HAM 
with n = 18. 
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Figure 7. Graphs of the expectation approximation solution of the 
DTM with n = 18. 

 

 
Figure 8. Graphs of variance approximation solution of the DTM with 
n = 18. 
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Figure 9. Graphs of the expectation approximation solution of the 
DTM with n = 18. 

 

 
Figure 10. Graphs of variance approximation solution of the DTM 
with n = 18. 
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( ) 2 3 4 5 6 7 85 10 293 67 185 12221 1984191 2
2 3 144 40 288 30240 1814400

V x t t t t t t t t t= − + + − − + + − −   

 
Figure 11 explain the Graph of the expectation approximation  solution by using DTM with n = 18, while 

Figure 12 explain the Graph of variance approximation solution by using DTM with n = 18. 

5. Conclusion 
In this paper, we successfully applied the differential transform method to solve the second-order random  

 

 
Figure 11. Graphs of the expectation approximation solution 
of the DTM with n = 18. 

 

 
Figure 12. Graphs of variance approximation solution of the 
DTM with n = 18. 
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differential Equations (1)-(2) with coefficients which depend on a random variable A which has been assumed to 
be independent of the random initial conditions 0y  and 1y . This includes the computation of approximations 
of the mean and variance functions to the random solution. These approximations not only agree but also im-
prove those provided by the Adomian Decomposition  Method [12], Variational Iteration  Method [13] and Ho-
motopy Perturbation Method [14] as we have illustrated through different examples. Otherwise, the differential 
transform method is very effective and powerful tools for the second-order random differential equation because 
it is a direct way without using linearization, perturbation or restrictive assumptions. 
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