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Abstract

The Homotopy analysis method is implemented by Golmankhanehi et al. to find the expectation
and variance of the approximate solutions of the second-order random differential equations [1].
In this note, we reused the Homotopy analysis method to solve the same problem and we draw
some very important improvements and comments on the paper [1]. The results in this paper
are coinciding with the results in [2, 3, 4, 5].
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1 Introduction

The papers by Golmankhanehi et al. [1], present the Homotopy analysis method for finding the
expectation and variance of the approximate solutions of the second-order random differential
equations. These authors work on computation of the main statistical functions of the mean square
solution, where some basic properties of variance are applied in equation (10) in [1].

The present authors are not aware of the following properties, which is used in equation (10) in [1],

V (

n∑
i=0

Xi) ̸=
n∑

i=0

V (Xi).

Although, It is well known that, in probability theory and statistic [6], the variance of a random
variable must be nonnegative since the variance is given by [1].

V ar(X) = E((X − µ)2), where E(X) = µ

Golmankhanehi et al. [1] discussed six illustrative examples in section 3. The numerical results
are presented graphically in Figs. 1-12. We observed that the numerical results of the variance
approximation solution by using HAM in [1] are ambiguous since the variance curve is negative as
shown in Figs. 4, 6, and 12.

It is worth noting that from equation (2) in [1], the homotopy analysis method coincides with the
homotopy Perturbation method when ~ = −1. As a result the expectation and the variance of the
approximate solutions must be consistent with that found by Khalaf [2].

The goal of this work is to improve equation (10) in [1]. A variety of examples using the correct
expression will be presented. In order to achieve this we let

xN (t) = X0(t)+
N∑

n=1

Xn(t) (equation (7) in [1]), be an approximate solution of equation (2) by using

the homotopy analysis method . Then we utilize the independence between Y0, Y1 and A, to yield

E[xN (t)] = E[X0(t)] +

N∑
n=1

E[Xn(t)],

V [xN (t)] =

N∑
j=0

N∑
i=0

Cov(Xi(t), Xj(t)),

where
Cov(Xi(t), Xj(t)) = E(Xi(t)Xj(t))− E(Xi(t))E(Xj(t)), i, j = 0, 1, 2, ..., n.

2 Homotopy Analysis Method

The homotopy analysis method (HAM) has been introduced by Liao [7]. This method is a powerful
and useful semi-numerical method for finding approximate solutions of linear and nonlinear differential
equations. We observe that HAM is very prevalent in the current literature, see e.g. the accounts
in the books by Liao [8, 9], and the recent papers by Dehghan and Salehi [10], Hassan and Mehdi
[11], Das et al. [12], and references therein. To clarify the basic ideas of HAM, we consider the
following differential equation

L[X(t)] +N [X(t), A] = g(t), (2.1)

with initial conditions

X(0) = Y0,
dX(t)

dt
|t=0 = Y1,, (2.2)
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where L[X(t)] = d2X(t)
/
dt2, N [X(t), A] is a nonlinear operator and g(t) is the source inhomogeneous

term, and A, Y0, and Y1 are the random variables.

We now construct the zero-order deformation equation,

(1− q){L[X(t)]− L[x0(t)]} = q~{L[X(t)] +N [X(t), A]− g(t)}, (2.3)

where q ∈ [0, 1] is the embedding parameter, ~ a nonzero auxiliary parameter, L an auxiliary linear
operator, and x0(t) is an initial approximation of the equation (2.1).

Expanding X(t) in Taylor series with respect to q, we have

X(t) = X0(t) +

∞∑
n=1

Xn(t)q
n, (2.4)

where

Xn(t) =
1

n!

∂nX(t)

∂qn

∣∣∣∣
q=0

. (2.5)

The convergence of the equation (2.4) depends on the auxiliary operator ~. If it is convergent at
q = 1, one have

X(t) = X0(t) +

∞∑
n=1

Xn(t). (2.6)

Throughout the paper, we deal with the triplet Probabilistic space (Ω,F ,P). Thus, suppose L2 =
L2 (Ω,F ,P) is the set of second order random variables. Then the random variable X : Ω → R ∈
L2, if E[X2] < +∞, where E[·] is an expectation operator.

The norm on L2 is denoted by ∥·∥2. For example, for the random variable X we define

∥X∥2 = (E[X2])
1
2 , in such way that (L2, ∥X∥2) is a Banach space.

In addition, let T (real interval) represent the space of times, we say that {X(t), t ∈ T} is a second
order stochastic process, if the random variable X(t) ∈ L2 for each t ∈ T .

A sequence of second order random variables {Xn : n ≥ 0} converges to X ∈ L2 , if

lim
n→∞

∥Xn −X∥2 = lim
n→∞

(
E
[
Xn −X2]) 1

2 = 0

To proceed from (2.6), we truncate the expansion of Xn(t) at the n = Nth term as follows

X(t) = X0(t) +

N∑
n=1

Xn(t). (2.7)

By using the independence between Y0, Y1, and A, we have

E[xN (t)] = E[X0(t)] +

N∑
n=1

E[Xn(t)], (2.8)

V [xN (t)] =
N∑

j=0

N∑
i=0

Cov(Xi(t), Xj(t)), (2.9)

where
Cov(Xi(t), Xj(t)) = E(Xi(t)Xj(t))− E(Xi(t))E(Xj(t)), i, j = 0, 1, 2, ..., n.
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The following Lemma guarantee the convergent of the sequenceE[xN (t)] to E[X(t)] and the sequence
V [xN (t)] to V [X(t)] if the sequence xN (t) converges to X(t).

Lemma: [6], Let {XN} and {YN} be two sequences of second order random variables X and Y
respectively, this means,

lim
N→∞

XN = X and lim
N→∞

YN = Y then lim
N→∞

E[XNYN ] = E[XY ]. If XN = YN then

lim
N→∞

E[X2
N ] = E[X2], lim

N→∞
E[XN ] = E[X] and lim

N→∞
V [XN ] = V [X].

3 Test Examples

In this section, we adopt several examples which is considered in [1, 2, 3, 4, 5] to illustrate the using
of homotopy analysis method for approximating the expectation and the variance. The results
coincide with results in [2, 3, 4, 5].

3.1 Example 1

Consider the random initial value problem

d2X(t)

dt2
+A2X(t) = 0, X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.1)

where,

A2 is a Beta random variable, A2 ∼ Be(α = 2, β = 1), and independently of the initial conditions
Y0 and Y1 which satisfy E[Y0] = 1, E[Y 2

0 ] = 2, E[Y1] = 1, E[Y 2
1 ] = 3 and E[Y0Y1] = 0.

To obtain the expectation and the variance of the approximate solutions of equation (3.1), we
Construct the following zero-order deformation

(1− q)[
d2X(t)

dt2
− d2X0(t)

dt2
] = q~[d

2X(t)

dt2
+A2 X(t)]. (3.2)

Next, Let

X(t) = X0(t) +

∞∑
k=1

Xk(t) q
k. (3.3)

By substituting into equation (3.2), one can have

(1− q)[

∞∑
k=1

d2Xk(t)

dt2
qk] = q~[d

2X0(t)

dt2
+

∞∑
k=1

d2Xk(t)

dt2
qk +A2 X0(t) +

∞∑
k=1

A2 Xk(t) q
k],

which leads to

(

∞∑
k=1

d2Xk(t)

dt2
qk − (1 + ~)

∞∑
k=1

d2Xk(t)

dt2
qk+1) = q~[d

2X0(t)

dt2
+A2 X0(t)] + ~

∞∑
k=1

A2 Xk(t) q
k+1.

Upon equating the corresponding coefficients of qk, we have

d2X1(t)

dt2
= (1 + ~)d

2X0(t)

dt2
+ ~d

2X0(t)

dt2
+ (1 + ~)A2 X0(t),

and
d2Xk(t)

dt2
− (1 + ~)d

2Xk−1(t)

dt2
= ~A2 Xk−1(t), k = 2, 3, . . .
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Choosing X0(t) = Y0 + Y1 t, the foregoing equations yield

d2X1(t)

dt2
= (1 + ~)(A2 Y0 + Y1 t),

d2Xk(t)

dt2
= (1 + ~)d

2Xk−1(t)

dt2
+ ~A2 Xk−1(t), k = 2, 3, . . .

(3.4)

Now, we solve the differential equation (3.4) to obtain

X1(t) =
1

6
~A2Y1t

3 +
1

2
~A2Y0t

2,

X2(t) =
1

120
~2A4Y1t

5 +
1

24
~2A4Y0t

4 +
1

6
(1 + ~) ~A2Y1t

3 +
1

2
(1 + ~) ~A2Y0t

2,

X3(t) =
1

5040
~3A6Y1t

7 +
1

720
~3A6Y0t

6 +
1

60
(1 + ~) ~2A4Y1t

5 +
1

12
(1 + ~) ~2A4Y0t

4

+
1

6
(1 + ~)2 ~A2Y1t

3 +
1

2
(1 + ~)2 ~A2Y0t

2,

...
And so on.

Setting q = 1 into equation (3.3), we have

X(t) = X0(t) +

∞∑
k=1

Xk(t),

and the approximate solution is

xN (t) = X0(t) +

N∑
k=1

Xk(t).

By taking the expectation to the both sides of the foregoing equation, one can have

E[xN (t)] = E[X0(t)] +

N∑
k=1

E[Xk(t)].

For N = 2 and by using the independence between Y0, Y1, and A, we have

E[x2(t)] = E[Y0] + E[Y1]t+
1

6
~E[A2]E[Y1]t

3 +
1

2
~E[A2]E[Y0]t

2 +
1

120
~2E[A4]E[Y1]t

5+

1

24
~2E[A4]E[Y0]t

4 +
1

6
(1 + ~) ~E[A2]E[Y1]t

3 +
1

2
(1 + ~) ~E[A2]E[Y0]t

2.

Since A2 ∼ Be(α = 2, β = 1), then we have E[A2] = 2
3
, and E[A4] = 1

2
. Also by using the initial

conditions Y0 and Y1 which satisfy E[Yo] = 1, E[Y 2
o ] = 2, E[Y1] = 1, E[Y 2

1 ] = 3, and E[Y0Y1] = 0,
we have

E[x2(t)] = 1 + t+
2

9
~t3 + 2

3
~t2 + 1

240
~2t5 + 1

48
~2t4 + 1

9
~2t3 + 1

3
~2t2. (3.5)

When ~ = −1, we have

E[x2(t)] = 1 + t− 1

9
t3 − 1

3
t2 +

1

240
t5 +

1

48
t4.

Now, we intend to find E[(x2(t))
2] as follows
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First, we find (x2(t))
2

(x2(t))
2 = Y 2

0 + 2Y0Y1 t+
1

1440
~4A4Y1Y0 t

9 + (
1

576
~4A4Y 2

0 +
1

360
~4A3Y 2

1 +
1

180
~3A3Y 2

1 )t
8

+
1

14400
~4A4Y 2

1 t
10 + (

4

3
Y0~2AY1 +

8

3
Y0~AY1)t

3 + (~2AY 2
0 + Y 2

1 + 2~AY 2
0 )t

2 + (
1

6
~4A2Y1Y0

+
23

30
~2A2Y1Y0 +

2

3
~3A2Y1Y0)t

5 + (
2

3
Y 2
1 ~A+

1

3
Y 2
1 ~2A+

13

12
~2A2Y 2

0 + ~3A2Y 2
0 +

1

4
~4A2Y 2

0 )t
4

+ (
1

45
~4A3Y1Y0 +

2

45
~3A3Y1Y0)t

7 + (
1

36
~4A2Y 2

1 +
1

12
~3A3Y 2

0 +
23

180
~2A2Y 2

1 +
1

24
~4A3Y 2

0

+
1

9
~3A2Y 2

1 )t
6.

Then, by taking the expectation to the both sides of the foregoing equation, one can have

E[(x2(t))
2] = E[Y 2

0 ] + 2E[Y0Y1 ]t+
1

1440
~4E[A8]E[Y1Y0] t

9 + (
1

576
~4E[A8]E[Y 2

0 ]

+
1

360
~4E[A6]E[Y 2

1 ] +
1

180
~3E[A6]E[Y 2

1 ])t
8 +

1

14400
~4E[A8]E[Y 2

1 ]t
10

+ (
4

3
~2E[Y0]E[A2]E[Y1] +

8

3
~E[Y0]E[A2]E[Y1])t

3 + (~2E[A2]E[Y 2
0 ] + E[Y 2

1 ]

+ 2~E[A2]E[Y 2
0 ])t

2 + (
1

6
~4E[A4]E[Y1]E[Y0] +

23

30
~2E[A4]E[Y1]E[Y0]

+
2

3
~3E[A4]E[Y1]E[Y0])t

5 + (
2

3
~E[Y 2

1 ]E[A2] +
1

3
~2E[Y 2

1 ]E[A2] +
13

12
~2E[A4]E[Y 2

0 ]

+ ~3E[A4]E[Y 2
0 ] +

1

4
~4E[A4]E[Y 2

0 ])t
4 + (

1

45
~4E[A6]E[Y1]E[Y0] +

2

45
~3E[A6]E[Y1]E[Y0])t

7

+ (
1

36
~4E[A4]E[Y 2

1 ] +
1

12
~3A6E[Y 2

0 ] +
23

180
~2E[A4]E[Y 2

1 ] +
1

24
~4E[A6]E[Y 2

0 ] +
1

9
~3A2Y 2

1 )t
6.

Since A2 ∼ Be(α = 2, β = 1), then we have E[A2] = 2
3
, E[A4] = 1

2
, E[A6] = 2

5
, and E[A8] = 1

3
.

Also by using the initial conditions Y0 and Y1 which satisfy E[Yo] = 1, E[Y 2
o ] = 2, E[Y1] = 1,

E[Y 2
1 ] = 3, and E[Y0Y1] = 0, we have

V [x2(t)] = E[(x2(t))
2]− (E[x2(t)])

2

= 1 + 2t2 +
4

3
~t2 + 13

2700
~3t8 + 253

1620
~3t6 − 2

135
~3t7 − 8

27
~3t5 − 16

9
~t3

− 8

9
~2t3 − 187

540
~2t5 − 1

5760
~4t9 − 1

135
~4t7 − 2

27
~4t5 + 2

3
~2t2 + 5

9
~3t4

+
541

172800
~4t8 + 79

1620
~4t6 + 5

36
~4t4 + 8

9
~t4 + 25

24
~2t4 + 217

1620
~2t6 + 1

19200
~4t10 − 2t.

When ~ = −1, we have

V [x2(t)] = 1 +
4

3
t2 − 19

72
t4 +

43

1620
t6 − 97

57600
t8 +

1

19200
t10 +

8

9
t3 − 67

540
t5

+
1

135
t7 − 2t− 1

5760
t9,

and when N = 18, we have

E[x18] = 1 + t− 1

3
t2 − 1

9
t3 +

1

48
t4 +

1

240
t5 − 1

1800
t6 − 1

12600
t7 +

1

120960
t8 +

1

1088640
t9 + · · · ,

and

V [x18] = 1− 2t+
4

3
t2 +

8

9
t3 − 19

72
t4 − 67

540
t5 +

103

4050
t6 +

41

4725
t7 − 247

172800
t8 − 401

1088640
t9 + · · ·

The FINDAPR program described and listed in the Appendix was written to obtain the expectation
and the variance of the approximate solutions of this example.
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Fig. 1. Expectation approximation

solution for the HAM with n = 18. For

A2 ∼ Be(α = 2, β = 1)

Fig. 2. Variance approximation solution

for the HAM with n = 18. For

A2 ∼ Be(α = 2, β = 1)

3.2 Example 2

Consider the random initial value problem

d2X(t)

dt2
+AtX(t) = 0, X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.6)

where

A is a Beta random variable, A ∼ Be(α = 2, β = 3), and independently of the initial conditions Y0

and Y1 which satisfy E[Y0] = 1, E[Y 2
0 ] = 2, E[Y1] = 2, E[Y 2

1 ] = 5.

we follow a similar process to that of example 3.1 to obtain

E[x18] = 1 + 2t− 1

15
t3 − 1

15
t4 +

1

900
t6 +

1

1260
t7 − 1

113400
t9 − 1

198450
t10 + · · ·

V [x18] = 1 + t2 − 2

15
t3 − 1

15
t5 +

2

225
t6 +

1

450
t7 +

83

25200
t8 − 83

283500
t9 − · · ·

3.3 Example 3

Consider random the initial value problem

d2X(t)

dt2
+ 2A

dX(t)

dt
+A2 X(t) = 0, X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.7)

where

A is a Beta random variable, A ∼ Be(α = 2, β = 1), and independently of the initial conditions Y0

and Y1 which satisfy E[Y0] = 1, E[Y 2
0 ] = 2, E[Y1] = 1, E[Y 2

1 ] = 1.

we follow a similar process to that of example 3.1 to obtain

E[x18] = 1 + t− 11

12
t2 +

23

60
t3 − 13

120
t4 +

59

2520
t5 − 83

20160
t6 +

37

60480
t7 − 143

1814400
t8 + · · ·

7
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V [x18] = 1− 1

2
t2 +

4

15
t3 +

103

720
t4 − 649

2520
t5 +

8959

50400
t6 − 3133

37800
t7 +

517

17280
t8 − 5923

665280
t9 + · · ·

Fig. 3. Expectation approximation

solution for the HAM with n = 18. For

A ∼ Be(α = 2, β = 3)

Fig. 4. Variance approximation solution

for the HAM with n = 18. For

A ∼ Be(α = 2, β = 3)

Fig. 5. Expectation approximation

solution for the HAM with n = 18. For

A ∼ Be(α = 2, β = 1)

Fig. 6. Variance approximation solution

for the HAM with n = 18. For

A ∼ Be(α = 2, β = 1)

8
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3.4 Example 4

Consider the random initial value problem

d2X(t)

dt2
+AtX(t) = 0, X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.8)

where

A is a Uniform random variable, A ∼ U(α = 0, β = 1), and independently of the initial conditions
Y0 and Y1 which satisfy E[Y0] = 1, E[Y 2

0 ] = 2, E[Y1] = 1,
E[Y 2

1 ] = 1.

we follow a similar process to that of example 3.1 to obtain

E[x18] = 1 + t− 1

12
t3 +

1

120
t5 − 1

1344
t7 +

1

17280
t9 − 1

253440
t11 +

1

4193280
t13 − · · ·

V [x18] = 1 +
1

432
t6 − 1

1440
t8 +

131

1008000
t10 − 41

2177280
t12 +

71471

31294771200
t14 − · · ·

Fig. 7. Expectation approximation

solution for the HAM with n = 18. For

A ∼ U(α = 0, β = 1)

Fig. 8. Variance approximation solution

for the HAM with n = 18. For

A ∼ U(α = 0, β = 1)

3.5 Example 5

Consider the random initial value problem

d2X(t)

dt2
+AtX(t) = 0, X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.9)

where

A is a Uniform random variable, A ∼ U(α = 0, β = 2), and independently of the initial conditions

9
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Y0 and Y1 which satisfy E[Y0] = 1, E[Y 2
0 ] = 4, E[Y1] = 1,

E[Y 2
1 ] = 2.

we follow a similar process to that of example 3.1 to obtain

E[x18] = 1 + t− 1

2
t2 − 1

6
t3 +

1

18
t4 +

1

90
t5 − 1

360
t6 − 1

2520
t7 +

1

12600
t8 +

1

113400
t9 + · · ·

V [x18] = 3− 2t2 +
13

12
t4 +

1

18
t5 − 61

270
t6 − 2

135
t7 +

599

22680
t8 +

101

56700
t9 − 47

23625
t10 − · · ·

Fig. 9. Expectation approximation

solution for the HAM with n = 18. For

A ∼ U(α = 0, β = 2)

Fig. 10. Variance approximation solution

for the HAM with n = 18. For

A ∼ U(α = 0, β = 2)

3.6 Example 6

Consider the random initial value problem

d2X(t)

dt2
+AX(t) = −X(t) + sin(t), X(0) = Y0,

dX(t)

dt
|t=0 = Y1, (3.10)

where

A is a Uniform random variable, A ∼ U(α = 1, β = 2), and independently of the initial conditions
Y0 and Y1 which satisfy E[Y0] = 1, E[Y 2

0 ] = 2, E[Y1] = 1,
E[Y 2

1 ] = 6, E[Y0Y1] = 0.

we follow a similar process to that of example 3.1 to obtain

E[x18] = 1 + t− 5

4
t2 − 1

4
t3 +

19

72
t4 +

17

720
t5 − 13

576
t6 − 11

8640
t7 +

211

201600
t8 + · · ·

V [x18)] = 1− 2t+
5

2
t2 +

10

3
t3 − 293

144
t4 − 67

40
t5 +

185

288
t6 +

12221

30240
t7 − 198419

1814400
t8 − · · ·
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Fig. 11. Expectation approximation

solution for the HAM with n = 18. For

A ∼ U(α = 1, β = 2)

Fig. 12. Variance approximation solution

for the HAM with n = 18. For

A ∼ U(α = 1, β = 2)

4 Conclusion

The main aim of this article was to improve the work of Golmankhaneh et al. [1]. In particular
equation (10) in [1] which is used to compute the the expectation approximation and the variance
approximation of second-order random differential equations. It may be argued from the Fig. 4 and
Fig. 6 in [1], that there was an error in obtaining the variance approximation solutions using HAM
in [1]. Also, the rest of the results in [1] are not correct (the variance of the approximate solutions
is negative) compared with that found by Khalaf [2], Khudair et al. [3], and Khudair et al. [4]. In
this article, the homotopy analysis method is employed to obtain the expectation and the variance
of the approximate solutions involve the computation of the main statistical functions of the mean
square. This calculation is built in Maple software. Further, for all of the discussed examples, the
expectation approximation E[X(t)] plotted against the time in the Figs. 1, 3, 5, 7, 9, 11 and the
variance approximation V [X(t)] plotted against the time in the Figs. 2, 4, 6, 8, 10, 12. It has been
shown that from Figs. 1-12 that the results for the second-order random differential equations are
qualitatively exactly the same as those of Khalaf [2], Khudair et al. [3], and Khudair et al. [4].
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Appendix

Appendix - The program FINDAPR

restart :

with(Statistics) :

N := 18;

A := RandomVariable((′Beta′)(2, 1)) :

x[0] := Y[0] + Y[1] ∗ t :
h := −1;

for k from 0 to N do

x[k + 1] := int(int((1 + h) ∗ diff(eval(x[k], t = s), s, s) + h ∗A ∗ eval(x[k], t = s), s = 0..r), r = 0..t);

od :

for k from 0 to N do

Ex[k] := ExpectedValue(x[k]);

od :

expacted := sum(Ex[v], v = 0..N);

va := 0 :

for r from 0 to N do

for s from 0 to N do

variance := va + ExpectedValue(x[s] ∗ x[r]);
va := variance;

od :

od :

y0 := coeftayl(variance, [Y[0],Y[1]] = [0, 0], [1, 0]) :

y1 := coeftayl(variance, [Y[0],Y[1]] = [0, 0], [0, 1]) :

y0y1 := coeftayl(variance, [Y[0],Y[1]] = [0, 0], [1, 1]) :

y00 := coeftayl(variance, [Y[0],Y[1]] = [0, 0], [2, 0]) :

y11 := coeftayl(variance, [Y[0],Y[1]] = [0, 0], [0, 2]) :

vari := ((y0 ∗Y[0] + y1 ∗Y[1] + y00 ∗YY[0] + y11 ∗YY[1])) :

YY[0] := 2 :

YY[1] := 3 :

Y[0] := 1 :

Y[1] := 1 :

varia := varia− (expacted)2;

with(numapprox) :

with(plots) :

ExactEx := −(4 ∗ (2 ∗Y[1] ∗ t− 6 ∗Y[0] + 6 ∗Y[0] ∗ cos(t) + Y[1] ∗ t3 ∗ cos(t)
−3 ∗Y[0] ∗ t2 ∗ cos(t)− 2 ∗Y[1] ∗ t ∗ cos(t)− 2 ∗Y[1] ∗ t2 ∗ sin(t)
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+6 ∗Y[0] ∗ t ∗ sin(t)−Y[0] ∗ t3 ∗ sin(t)))/t4 :
ExactVx := 3t4 + 4− 6 ∗ cos(t) ∗ sin(t)t3 − 2 ∗ cos(t) ∗ sin(t)t + 3 ∗ cos(t)2t2

−3 ∗ cos(t)2/t4 − 16 ∗ (2 ∗ t− 6 + 6 ∗ cos(t) + t3 ∗ cos(t)
−3 ∗ t2 ∗ cos(t)− 2 ∗ t ∗ cos(t)− 2 ∗ t2 ∗ sin(t) + 6 ∗ t ∗ sin(t)− t3 ∗ sin(t))2/t8 :

G1 := plot(ExactEx, t = 0..15, linestyle = dash, color = red, legend = Exact solution,
labels = [Time,E[x(t)]]) :

F1 := plot(expacted, t = 0..15, linestyle = dot, color = black, legend = Approximate solution,
labels = [Time,E[x(t)]]) :

display({F1,G1});
G := plot(ExactVx, t = 0..15, linestyle = dash, color = red, legend = Exact solution,
labels = [Time, V [x(t)]]) :

F := plot(varia, t = 0..15, linestyle = dot, color = black, legend = Approximate solution,
labels = [Time, V[x(t)]]):

display({ F, G} );
——————————————————————————————————————————————–
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