Mean Square Solutions of Second-Order Random

Differential Equations by Using Variational

Iteration Method

Ayad R. Khudair
Department of Mathematics, Faculty of Science
Basrah University, Basrah, Iraq

Abdullah A. Ameen
Department of Mathematics, Faculty of Science
Basrah University, Basrah, Iraq
Sanaa L. Khalaf
Department of Mathematics, Faculty of Science
Basrah University, Basrah, Iraq
sanaasanaa1978@yahoo.com

Abstract

In this paper, the variational iteration method (VIM) is successfully applied for analytic (approximate) mean square solutions of the second-order random differential equations, homogeneous or inhomogeneous. Expectation and variance of the approximate solutions are computed. Several numerical examples are presented to show the ability and efficiency of this method .

Keywords: Random differential equations, Stochastic differential equation and Variational iteration method

1. Introduction

A random ordinary differential equations are an ordinary differential equations which contains random constants or random variables. Most scientific problems,
biology, engineering and physical phenomena occur in the form of random differential equations [1-3]. Recently, several first-order random differential models are solved using mean square calculus [4-11]. Many scientific models can be described as a second-order random differential equation in the following form

$$
\begin{equation*}
\mathrm{L}[\mathrm{X}(\mathrm{t})]+\mathrm{N}[\mathrm{X}(\mathrm{t}), \mathrm{A}]=\mathrm{g}(\mathrm{t}), \quad \mathrm{X}(0)=\mathrm{Y}_{0},\left.\quad \frac{\mathrm{dX}(\mathrm{t})}{\mathrm{dt}}\right|_{\mathrm{t}=0}=\mathrm{Y}_{1,} \tag{1}
\end{equation*}
$$

where $L[X(t)]=\frac{d^{2} X(t)}{d t^{2}}, \mathrm{~N}[\mathrm{X}(\mathrm{t}), \mathrm{A}]$ is a nonlinear operator and $g(t)$ is the source inhomogeneous term, as well as A, Y_{0} and Y_{1} are random variables. Within recent years, a special class of the initial value problem (1) has been treated under appropriate hypotheses on the data to evaluate the main statistical functions, such as the mean and the variance, of the approximate solution stochastic process generated by truncation of the exact power series solution[12-13].

In this paper, the VIM is used to find the mean square solutions for second-order random initial value problems. Several numerical examples are implemented to show the efficiency of the present method.

2. Variational Iteration Method

The variational iteration method (VIM) was first proposed by He [14,15] and systematically illustrated in 1999 [16]. The VIM is useful to obtain exact and approximate solutions of linear and nonlinear differential equations. In this method, general Lagrange multipliers are introduced to construct correction functional for the problems. The multipliers can be identified optimally via the variational theory.
To illustrate the basic concept of the VIM, we consider the second-order random differential equation (1). According to the VIM, we can construct a correction functional as follows

$$
\begin{equation*}
X_{n+1}(t)=X_{n}(t)+\int_{0}^{t} \lambda(t, s)\left(L\left[X_{n}(s)\right]+N\left[\tilde{X}_{n}(s), A\right]-g(s)\right) d s \tag{2}
\end{equation*}
$$

where $\lambda(t, s) \neq 0$ is a general multiplier, which can be identified optimally via the variational theory, the subscript n denotes the $n^{\text {th }}$ approximation, and \tilde{X}_{n} is considered as a restricted variation i.e., $\delta \tilde{X}_{n}=0$. The successive
approximation, $X_{n+1}, n \geq 0$, of the solution $X(t)$ can then be readily obtained by using the Lagrange multiplier determined and any selective function $X_{0}(t)$ satisfy the given conditions; consequently, the solution is given by $X(t)=\lim _{n \rightarrow \infty} X_{n}(t)$.
Under the restricted condition ($\delta \tilde{X}_{n}=0$), the stationary conditions of the above correction functional (2) can be expressed as follows:
$\frac{\partial^{2} \lambda(t, s)}{\partial s^{2}}=0$,
$1-\left.\frac{\partial \lambda(t, s)}{\partial s}\right|_{t=s}=0$,
$\left.\lambda(t, s)\right|_{t=s}=0$.
The Lagrange multiplier, $\lambda(t, s)$, can be identified as $\lambda(t, s)=s-t$, which leads to the iterative formula
$X_{n+1}(t)=X_{n}(t)+\int_{0}^{t}(s-t) \frac{d^{2} X_{n}(s)}{d s^{2}} d s+\int_{0}^{t}(s-t)\left(N\left[X_{n}(s), A\right]-g(s)\right) d s$
By using integration by parts to the first integral in the above equation, one can have
$\int_{0}^{t}(s-t)\left(\frac{d^{2} X_{n}(s)}{d s^{2}}\right) d s=X_{n}(0)+\left.\frac{d X_{n}(s)}{d s}\right|_{s=0} t-X_{n}(t)$
So that (3) reduce to
$X_{n+1}(t)=X_{0}(t)+h(t)+\int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s$
where $X_{0}(t)=Y_{0}+Y_{1} t$ and $h(t)=\int_{0}^{t}(t-s) g(s) d s$

3. Statistical Functions of the Mean Square Random VIM

This section concern with the computation of the main statistical functions of the m.s. solution of (1) given by the iteration formula (4).

$$
\begin{equation*}
E\left[X_{n+1}(t)\right]=E\left[X_{0}(t)\right]+h(t)+\int_{0}^{t}(s-t) E\left[N\left[X_{n}(s), A\right]\right] d s \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
E\left[X_{n+1}^{2}(t)\right] & =E\left[X_{0}^{2}(t)\right]+2 h(t) E\left[X_{0}(t)\right]+2 E\left[X_{0}(t) \int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s\right] \\
& +(h(t))^{2}+2 h(t) E\left[\int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s\right] \\
& +E\left[\left(\int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s\right)^{2}\right] \\
V\left[X_{n+1}(t)\right] & =V\left[X_{0}(t)\right]+2 \operatorname{Cov}\left[X_{0}(t), \int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s\right] \\
& +V\left[\int_{0}^{t}(s-t) N\left[X_{n}(s), A\right] d s\right]
\end{aligned}
$$

The following Lemma guarantee the convergent of the sequence $E\left[X_{n}(t)\right]$ to $E[X(t)]$ and the sequence $V\left[X_{n}(t)\right]$ to $V[X(t)]$ if the sequence the $X_{n}(t)$ converges to $X(t)$.
Lemma[5]: Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two sequences of 2-r.vs X and Y, respectively ,i.e., $\lim _{n \rightarrow \infty} X_{n}=X$ and $\lim _{n \rightarrow \infty} Y_{n}=Y$ then $\lim _{n \rightarrow \infty} E\left[X_{n} Y_{n}\right]=E[X Y]$ If $X_{n}=Y_{n}$, then $\lim _{n \rightarrow \infty} E\left[X_{n}^{2}\right]=E\left[X^{2}\right], \lim _{n \rightarrow \infty} E\left[X_{n}\right]=E[X]$ and $\lim _{n \rightarrow \infty} V\left[X_{n}\right]=V[X]$.

4. Test Examples

In this section, we adopt several examples to illustrate the using of variational iteration method for approximating the mean and the variance. The results are computed by using Maple 14 and compared to exact solution .
Example 1 [13] : Consider random initial value problem $\frac{d^{2} X(t)}{d t^{2}}+A^{2} X(t)=0$, $X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where $A^{2} \square B e(\alpha=2, \beta=1)$ and independently of the initial conditions Y_{0} and Y_{1} which satisfy $E\left[Y_{o}\right]=1, E\left[Y_{o}^{2}\right]=2$, $E\left[Y_{1}\right]=1, E\left[Y_{1}^{2}\right]=3$ and $E\left[Y_{0} Y_{1}\right]=0$.
$X_{0}(t)=Y_{0}+Y_{1} t$
$X_{1}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-\frac{1}{2} A^{2} Y_{0} t^{2}$

$$
\begin{aligned}
X_{2}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-\frac{1}{2} A^{2} Y_{0} t^{2}+\frac{1}{120} A^{4} Y_{1} t^{5}+\frac{1}{24} A^{4} Y_{0} t^{4} \\
X_{3}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-\frac{1}{2} A^{2} Y_{0} t^{2}+\frac{1}{120} A^{4} Y_{1} t^{5}+\frac{1}{24} A^{4} Y_{0} t^{4}-\frac{1}{5040} A^{6} Y_{1} t^{7}-\frac{1}{720} A^{6} Y_{0} t^{6} \\
X_{4}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-\frac{1}{2} A^{2} Y_{0} t^{2}+\frac{1}{120} A^{4} Y_{1} t^{5}+\frac{1}{24} A^{4} Y_{0} t^{4}-\frac{1}{5040} A^{6} Y_{1} t^{7}-\frac{1}{720} A^{6} Y_{0} t^{6} \\
& +\frac{1}{362880} A^{8} Y_{1} t^{9}+\frac{1}{40320} A^{8} Y_{0} t^{8} \\
X_{5}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-\frac{1}{2} A^{2} Y_{0} t^{2}+\frac{1}{120} A^{4} Y_{1} t^{5}+\frac{1}{24} A^{4} Y_{0} t^{4}-\frac{1}{5040} A^{6} Y_{1} t^{7}-\frac{1}{720} A^{6} Y_{0} t^{6} \\
& +\frac{1}{362880} A^{8} Y_{1} t^{9}+\frac{1}{40320} A^{8} Y_{0} t^{8}-\frac{1}{39916800} A^{10} Y_{1} t^{11}-\frac{1}{3628800} A^{10} Y_{0} t^{10}
\end{aligned}
$$

Fig.(1) : Comparison between the exact expectation and its approximation obtained from the VIM with $n=18$

Fig.(2) : Comparison between the exact variance and its approximation obtained from the VIM with $n=18$

Fig.(3) : Absolute Error of expectation with n=18

Fig.(4) : Absolute Error of variance with n=18

Example 2 [12]: Consider random initial value problem $\frac{d^{2} X(t)}{d t^{2}}+A t X(t)=0$ $X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where A is a Beta r.v. with parameters $\alpha=2$ and $\beta=3$, i.e. $A \square B e(\alpha=2, \beta=3)$ and the initial conditions Y_{o} and Y_{1} are independent r.v.'s such as $E\left[Y_{o}\right]=1, E\left[Y_{o}^{2}\right]=2, E\left[Y_{1}\right]=2, E\left[Y_{1}{ }^{2}\right]=5$.

$$
\begin{aligned}
X_{0}(t) & =Y_{0}+Y_{1} t \\
X_{1}(t) & =Y_{0}+Y_{1} t-\frac{1}{12} A Y_{1} t^{4}-\frac{1}{6} A Y_{0} t^{3} \\
X_{2}(t) & =Y_{0}+Y_{1} t-\frac{1}{12} A Y_{1} t^{4}-\frac{1}{6} A Y_{0} t^{3}+\frac{1}{504} A^{2} Y_{1} t^{7}+\frac{1}{180} A^{2} Y_{0} t^{6} \\
X_{3}(t) & =Y_{0}+Y_{1} t-\frac{1}{12} A Y_{1} t^{4}-\frac{1}{6} A Y_{0} t^{3}+\frac{1}{504} A^{2} Y_{1} t^{7}+\frac{1}{180} A^{2} Y_{0} t^{6}-\frac{1}{45360} A^{3} Y_{1} t^{10}-\frac{1}{12960} A^{3} Y_{0} t^{9} \\
X_{4}(t) & =Y_{0}+Y_{1} t-\frac{1}{12} A Y_{1} t^{4}-\frac{1}{6} A Y_{0} t^{3}+\frac{1}{504} A^{2} Y_{1} t^{7}+\frac{1}{180} A^{2} Y_{0} t^{6}-\frac{1}{45360} A^{3} Y_{1} t^{10} \\
& -\frac{1}{12960} A^{3} Y_{0} t^{9}+\frac{1}{7076160} A^{4} Y_{1} t^{13}+\frac{1}{1710720} A^{4} Y_{0} t^{12}
\end{aligned}
$$

$$
\begin{aligned}
X_{5}(t) & =Y_{0}+Y_{1} t-\frac{1}{12} A Y_{1} t^{4}-\frac{1}{6} A Y_{0} t^{3}+\frac{1}{504} A^{2} Y_{1} t^{7}+\frac{1}{180} A^{2} Y_{0} t^{6}-\frac{1}{45360} A^{3} Y_{1} t^{10}-\frac{1}{12960} A^{3} Y_{0} t^{9} \\
& +\frac{1}{7076160} A^{4} Y_{1} t^{13}+\frac{1}{1710720} A^{4} Y_{0} t^{12}-\frac{1}{1698278400} A^{5} Y_{1} t^{16}-\frac{1}{359251200} A^{5} Y_{0} t^{15}
\end{aligned}
$$

Fig.(5) : Comparison between the exact expectation and its approximation obtained from the VIM with $\mathrm{n}=18$

Fig.(7) : Absolute Error of expectation with n=18

Fig.(6) : Comparison between the exact variance and its approximation obtained from the VIM with $n=18$

Fig.(8) : Absolute Error of variance with $n=18$

Example 3: Consider the problem $\frac{d^{2} X(t)}{d t^{2}}+2 A \frac{d X(t)}{d t}+A^{2} X(t)=0, \quad X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where A is a Beta r.v. with parameters $\alpha=2$ and $\beta=1$, i.e. $A \square B e(\alpha=2, \beta=1)$ and independently of the initial conditions Y_{o} and Y_{1} which are independent r.v.' satisfy $E\left[Y_{o}\right]=1, E\left[Y_{o}^{2}\right]=2, E\left[Y_{1}\right]=1, E\left[Y_{1}^{2}\right]=1$.

$$
\begin{aligned}
X_{0}(t) & =Y_{0}+Y_{1} t \\
X_{1}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A^{2} Y_{1} t^{3}-t^{2} A Y_{1}-\frac{1}{2} t^{2} A^{2} Y_{0} \\
X_{2}(t) & =Y_{0}+Y_{1} t+\frac{1}{2} A^{2} Y_{1} t^{3}-t^{2} A Y_{1}-\frac{1}{2} t^{2} A^{2} Y_{0}+\frac{1}{120} A^{4} Y_{1} t^{5}+\frac{1}{6} t^{4} A^{3} Y_{1}+\frac{1}{24} t^{4} A^{4} Y_{0}+\frac{1}{3} A^{3} t^{3} Y_{0} \\
X_{3}(t) & =Y_{0}+Y_{1} t+\frac{1}{2} A^{2} Y_{1} t^{3}-t^{2} A Y_{1}-\frac{1}{2} t^{2} A^{2} Y_{0}-\frac{11}{120} A^{4} Y_{1} t^{5}-\frac{1}{6} t^{4} A^{3} Y_{1}-\frac{1}{8} t^{4} A^{4} Y_{0}+\frac{1}{3} A^{3} t^{3} Y_{0} \\
& -\frac{1}{5040} A^{6} Y_{1} t^{7}-\frac{1}{120} t^{6} A^{5} Y_{1}-\frac{1}{720} t^{6} A^{6} Y_{0}-\frac{1}{30} t^{5} A^{5} Y_{0} \\
X_{4}(t) & =Y_{1} t+Y_{0}+\frac{1}{2} A^{2} Y_{1} t^{3}-t^{2} A Y_{1}-\frac{1}{2} t^{2} A^{2} Y_{0}+\frac{1}{24} A^{4} Y_{1} t^{5}-\frac{1}{6} t^{4} A^{3} Y_{1}-\frac{1}{8} t^{4} A^{4} Y_{0}+\frac{1}{3} A^{3} t^{3} Y_{0} \\
& +\frac{1}{5040} t^{8} A^{7} Y_{1}+\frac{23}{5040} A^{6} Y_{1} t^{7}+\frac{13}{360} t^{6} A^{5} Y_{1}+\frac{11}{720} t^{6} A^{6} Y_{0}+\frac{1}{30} t^{5} A^{5} Y_{0}+\frac{1}{362880} A^{8} Y_{1} t^{9} \\
& +\frac{1}{40320} t^{8} A^{8} Y_{0}+\frac{1}{840} t^{7} A^{7} Y_{0} \\
X_{5}(t) & =Y_{1} t+Y_{0}+\frac{1}{2} A^{2} Y_{1} t^{3}-t^{2} A Y_{1}-\frac{1}{2} t^{2} A^{2} Y_{0}+\frac{1}{24} A^{4} Y_{1} t^{5}-\frac{1}{6} t^{4} A^{3} Y_{1}-\frac{1}{8} t^{4} A^{4} Y_{0}+\frac{1}{3} A^{3} t^{3} Y_{0} \\
& -\frac{1}{560} t^{8} A^{7} Y_{1}-\frac{19}{1680} A^{6} Y_{1} t^{7}-\frac{1}{120} t^{6} A^{5} Y_{1}-\frac{1}{144} t^{6} A^{6} Y_{0}+\frac{1}{30} t^{5} A^{5} Y_{0}-\frac{13}{120960} A^{8} Y_{1} t^{9} \\
& -\frac{23}{40320} t^{8} A^{8} Y_{0}-\frac{13}{2520} t^{7} A^{7} Y_{0}-\frac{1}{39916800} A^{10} Y_{1} t^{11}-\frac{1}{362880} t^{10} A^{9} Y_{1}-\frac{1}{3628800} t^{10} A^{10} Y_{0} \\
& -\frac{1}{45360} t^{9} A^{9} Y_{0}
\end{aligned}
$$

Fig.(9) : Comparison between the exact expectation and its approximation obtained from the VIM with $\mathrm{n}=16$

Fig.(10) : Comparison between the exact variance and its approximation obtained from the VIM with $n=16$

Fig.(11) : Absolute Error of expectation with n=16

Fig.(12) : Absolute Error of variance with $\mathrm{n}=16$

Example 4 : Consider the problem $\frac{d^{2} X(t)}{d t^{2}}+A t \frac{d X(t)}{d t}=0, X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where A is a Uniform r.v. with parameters $\alpha=0$ and $\beta=1$, i.e. $A \square U(\alpha=0, \beta=1)$ and independently of the initial conditions Y_{o} and Y_{1}
which are independent r.v.'s satisfy $E\left[Y_{o}\right]=1 \quad, E\left[Y_{o}^{2}\right]=2$, $E\left[Y_{1}\right]=1, E\left[Y_{1}{ }^{2}\right]=1$.
$X_{0}(t)=Y_{0}+Y_{1} t$
$X_{1}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}$
$X_{2}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}+\frac{1}{40} A^{2} Y_{1} t^{5}$
$X_{3}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}+\frac{1}{40} A^{2} Y_{1} t^{5}-\frac{1}{336} A^{3} Y_{1} t^{7}$
$X_{4}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}+\frac{1}{40} A^{2} Y_{1} t^{5}-\frac{1}{336} A^{3} Y_{1} t^{7}+\frac{1}{3456} A^{4} Y_{1} t^{9}$
$X_{5}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}+\frac{1}{40} A^{2} Y_{1} t^{5}-\frac{1}{336} A^{3} Y_{1} t^{7}+\frac{1}{3456} A^{4} Y_{1} t^{9}-\frac{1}{42240} A^{5} Y_{1} t^{11}$

Fig.(13) : Comparison between the exact expectation and its approximation obtained from the VIM with $n=20$

Fig.(14) : Comparison between the exact variance and its approximation obtained from the VIM with $\mathrm{n}=20$

Fig.(15) : Absolute Error of expectation $\mathrm{n}=20$

Fig.(16) : Absolute Error of variance with n=20

Example 5 : Consider the problem $\frac{d^{2} X(t)}{d t^{2}}+A X(t)=0, \quad X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where A is a Uniform r.v. with parameters $\alpha=0$ and $\beta=2$, i.e. $A \square U(\alpha=0, \beta=2)$ and independently of the initial conditions Y_{o} and Y_{1} which are independent r.v.'s satisfy $E\left[Y_{o}\right]=1 \quad, E\left[Y_{o}{ }^{2}\right]=4$, $E\left[Y_{1}\right]=1, E\left[Y_{1}^{2}\right]=2$.
$X_{0}(t)=Y_{0}+Y_{1} t$
$X_{1}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}-\frac{1}{2} A Y_{0} t^{2}$
$X_{2}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}-\frac{1}{2} A Y_{0} t^{2}+\frac{1}{120} A^{2} Y_{1} t^{5}+\frac{1}{24} A^{2} Y_{0} t^{4}$
$X_{3}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}-\frac{1}{2} A Y_{0} t^{2}+\frac{1}{120} A^{2} Y_{1} t^{5}+\frac{1}{24} A^{2} Y_{0} t^{4}-\frac{1}{5040} A^{3} Y_{1} t^{7}-\frac{1}{720} A^{3} Y_{0} t^{6}$
$X_{4}(t)=Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}-\frac{1}{2} A Y_{0} t^{2}+\frac{1}{120} A^{2} Y_{1} t^{5}+\frac{1}{24} A^{2} Y_{0} t^{4}-\frac{1}{5040} A^{3} Y_{1} t^{7}-\frac{1}{720} A^{3} Y_{0} t^{6}$
$+\frac{1}{362880} A^{4} Y_{1} t^{9}+\frac{1}{40320} A^{4} Y_{0} t^{8}$

$$
\begin{aligned}
X_{5}(t) & =Y_{0}+Y_{1} t-\frac{1}{6} A Y_{1} t^{3}-\frac{1}{2} A Y_{0} t^{2}+\frac{1}{120} A^{2} Y_{1} t^{5}+\frac{1}{24} A^{2} Y_{0} t^{4}-\frac{1}{5040} A^{3} Y_{1} t^{7}-\frac{1}{720} A^{3} Y_{0} t^{6} \\
& +\frac{1}{362880} A^{4} Y_{1} t^{9}+\frac{1}{40320} A^{4} Y_{0} t^{8}-\frac{1}{39916800} A^{5} Y_{1} t^{11}-\frac{1}{3628800} A^{5} Y_{0} t^{10}
\end{aligned}
$$

Fig.(17) : Comparison between the exact expectation and its approximation obtained from the VIM with $n=20$

Fig.(19) : Absolute Error of expectation with n=20

Fig.(18) : Comparison between the exact variance and its approximation obtained from the VIM with $n=20$

Fig.(20) : Absolute Error of variance with n=20

Example 6: Consider the problem $\frac{d^{2} X(t)}{d t^{2}}+A X(t)=-X(t)+\sin (t), \quad X(0)=Y_{0}$ and $\left.\frac{d X(t)}{d t}\right|_{t=0}=Y_{1}$ where A is a Uniform r.v. with parameters $\alpha=1$ and $\beta=2$, i.e. $A \square U(\alpha=1, \beta=2)$ and independently of the initial conditions Y_{o} and Y_{1} which satisfy $E\left[Y_{o}\right]=1, E\left[Y_{o}^{2}\right]=2, E\left[Y_{1}\right]=1, E\left[Y_{1}^{2}\right]=6$ and $E\left[Y_{0} Y_{1}\right]=0$.

$$
\begin{aligned}
X_{0}(t) & =Y_{0}+Y_{1} t \\
X_{1}(t)= & Y_{0}+Y_{1} t-\frac{1}{20} A Y_{1} t^{5}-\frac{1}{12} A Y_{0} t^{4} \\
X_{2}(t) & =Y_{0}+Y_{1} t-\frac{1}{20} A Y_{1} t^{5}-\frac{1}{12} A Y_{0} t^{4}+\frac{1}{1440} A^{2} Y_{1} t^{9}+\frac{1}{672} A^{2} Y_{0} t^{8} \\
X_{3}(t) & =Y_{0}+Y_{1} t-\frac{1}{20} A Y_{1} t^{5}-\frac{1}{12} A Y_{0} t^{4}+\frac{1}{1440} A^{2} Y_{1} t^{9}+\frac{1}{672} A^{2} Y_{0} t^{8}-\frac{1}{224640} A^{3} Y_{1} t^{13} \\
& -\frac{1}{88704} A^{3} Y_{0} t^{12} \\
X_{4}(t) & =Y_{0}+Y_{1} t-\frac{1}{20} A Y_{1} t^{5}-\frac{1}{12} A Y_{0} t^{4}+\frac{1}{1440} A^{2} Y_{1} t^{9}+\frac{1}{672} A^{2} Y_{0} t^{8}-\frac{1}{224640} A^{3} Y_{1} t^{13} \\
& -\frac{1}{88704} A^{3} Y_{0} t^{12}+\frac{1}{61102080} A^{4} Y_{1} t^{17}+\frac{1}{21288960} A^{4} Y_{0} t^{16} \\
X_{5}(t) & =Y_{0}+Y_{1} t-\frac{1}{20} A Y_{1} t^{5}-\frac{1}{12} A Y_{0} t^{4}+\frac{1}{1440} A^{2} Y_{1} t^{9}+\frac{1}{672} A^{2} Y_{0} t^{8}-\frac{1}{224640} A^{3} Y_{1} t^{13} \\
& -\frac{1}{88704} A^{3} Y_{0} t^{12}+\frac{1}{61102080} A^{4} Y_{1} t^{17}+\frac{1}{21288960} A^{4} Y_{0} t^{16}-\frac{1}{25662873600} A^{5} Y_{1} t^{21} \\
& -\frac{1}{8089804800} A^{5} Y_{0} t^{20}
\end{aligned}
$$

Fig.(21) : Comparison between the exact expectation and its approximation obtained from the VIM with n=10

Fig.(23) : Absolute Error of expectation with n=10

Fig.(22) : Comparison between the exact variance and its approximation obtained from the VIM with $\mathrm{n}=10$

Fig.(24) : Absolute Error of variance with n=10

References

[1] J. Chil`es, P. Delfiner, Geostatistics. Modelling Spatial Uncertainty, John Wiley, New York, 1999.
[2] J.C. Cortes, L. Jodar, L. Villafuerte, Random linear-quadratic mathematical models: computing explicit solutions and applications, Math. Comput. Simulat. 79 (2009), 2076-2090.
[3] T.T. Soong, Random Differential Equations in Science and Engeneering, Academic Press, New York, 1973.
[4] J.C. Cortés, L. Jódar, L. Villafuerte, Mean square numerical solution of random differential equations: Facts and possibilities, Computers and Mathematics with Applications 53 (2007) 1098-1106.
[5] J.C. Cortés, L. Jódar, L. Villafuerte, Numerical solution of random differential equations: A mean square approach, Mathematical and Computer Modelling 45 (2007) 757-765.
[6] J.C. Cortés, L. Jódar, L. Villafuerte, Mean square numerical solution of random differential equations: Facts and possibilities, Computers and Mathematics with Applications 53 (2007) 1098-1106.
[7] J.C. Cortés, L. Jódar, L. Villafuerte, Random linear quadratic mathematical models: computing explicit solutions and applications, Math. Comput. Simulation 79 (2009) 2076-2090.
[8] L. Villafuerte, C.A. Braumann, J.C. Cortés, L. Jódar, Random differential operational calculus: theory and applications, Comput. Math. Appl. 59 (2010), 115-125.
[9] G. Calbo ,J.C. Cortés, L. Jódar, Mean square power series solution of random linear differential equations, Computers and Mathematics with Applications 59 (2010), 559-572.
[10] J.C. Cortés, L. Jódar, R.-J. Villanueva, L. Villafuerte, Mean Square Convergent Numerical Methods for Nonlinear Random Differential Equations, Springer-Verlag Berlin Heidelberg, Lecture Notes in Computer Science, Volume 5890 (2010), 1-21.
[11] J.C. Cortés, L. Jódar, L. Villafuerte, R. Company, Numerical solution of random differential models, To appear in: Mathematical and Computer Modelling.
[12] J.C. Cortés , L. Jódar , F. Camachoa, L. Villafuerte, Random Airy type differential equations: Mean square exact and numerical solutions, Computers and Mathematics with Applications 60 (2010), 1237-1244.
[13] G. Calbo , J.C. Cortés , L. Jódar , L. Villafuerte, Analytic stochastic process solutions of second-order random differential equations, Applied Mathematics Letters, 23 (2010), 1421-1424.
[14] J.H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Computer Methods in Applied Mechanics and Engineering, 167(1-2) (1998), 69-73.
[15] J.H. He, Approximate analytical solution for seepage flow with
fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 167(1-2) (1998) 57-68.
[16] J.H. He, Variational iteration method - a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (4) (1999) 699-708.

Received: February, 2011

