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Abstract 

     The study of a nonlinear mathematical fractional SIR (Susceptible - Infected - 

Recovered) epidemiological model related to the delay in state and control variables 

in terms of time is the focus of this paper. The existence of a bounded solution for the 

fractional SIR epidemic model has been demonstrated, and it is unique. A new set of 

infection-free equilibrium points has been discovered, and their local stability has 

been investigated. In addition, using the next-generation matrix method, the basic 

reproductive number  was calculated. 
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1. Introduction 

      Infectious disease epidemiology is the study and forecasting of the occurrence, spread, and 

control of infectious diseases in populations. It deals with identifying the factors that effect to 

disease spread, and then improving the quality of care and health services by providing 

appropriate strategies for prevention, treatment, and preparation in order to increase the 

efficiency and efficacy of health services [1, 2]. However, developing and analyzing 

mathematical models is an important approach in biological mathematics for investigating 

development rules and determining effective control strategies. The classical susceptible-

infectious-recovered (SIR) model, which was inspired by the important papers of Ross [3] in 

1916 and Ross and Hudson [4, 5] in 1917, as well as the major contributions of Kermack and 

McKendrick [6, 7, 8] in 1927-1933, describes the transmission of infectious diseases between 

susceptible and infective individuals and serves as the basis for almost all subsequent epidemic 

modeling. Since then, epidemic models have been widely developed in a variety of situations, we 

mention to the monographs Bailey [9], Thieme [10], Muench [11], Busenberg and Cooke [12], 

Murray [13] for more information on these issues.                                                                                                                                         

     To focus on the dynamical behavior of infectious diseases, studies always ignore 

demography, such as the death and birth processes, as well as the immigration/emigration 

process. In this case, the epidemic model will be based on three main rules: contacts between 

individuals, transmission per contact, and infection development at the individual level [1, 11]. 

Because an infection does not develop instantly, the third rule can be described by introducing 

delay between the pathogen’s transmission and the moment at which an exposed individual 

becomes able of transmitting the infection. This delay can be defined using either an extra 

exposed class (when the period of delay follows an exponential law), resulting in SEIR models, 

or an age of infection, resulting in age-structured models; for more information on these topics, 

see [14, 15, 16]. In 2020 [17], M. A. Khan et al. demonstrated the dynamics of a fractional SIR 

model with a generalized incidence rate using two differential derivatives, the Caputo and the 

Atangana-Baleanu. 

       Wang (2006) [18] suggested a model of an epidemic with a restricted treatment budget to 

better understand the impact of treatment capacity. Driving the basic reproduction number 0R is 

not enough to eliminate the disease, as has been shown. In 2008 [19], a disease model with a 
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saturated occurrence rate and saturated treatment function was investigated, and it was found to 

be more accurate than the linear form model in describing the real system. In (2009) [20], a SIR 

epidemic model with nonlinear incidence rate and time delay was investigated. Meanwhile, the 

endemic equilibrium point's global asymptotic stability has been discussed. More recent research 

in (2010) [21] has demonstrated the global asymptotic stability by using fewer conditions than 

(2009) [20]. However, it's worth noting that most previously published works' mathematical 

models are primarily based on ordinary differential equations (ODEs).  Engineering [22, 23, 24, 

25] and biology [26, 27, 28] are two fields where fractional calculus has recently become 

popular. Fractional models of rabies and predator-prey have been investigated in (2007) [29], 

with the result that fractional differential equations (FDEs) are at least as more robust than their 

ODEs equivalents. Fractional calculus, as is well recognized, is naturally linked to many 

adaptive systems of memory and genetic properties that are found in biology. As a result, when 

utilizing FDEs to describe biological models, fractional derivatives can be fully utilized. Several 

fractional-order biological models have been proposed recently [30, 31]. The most common 

method for obtaining the stability conditions for an ODE's equilibrium point is Lyapunov's direct 

method, which is well known. The authors of [32, 33] developed the fractional Lyapunov direct 

method for FDEs by introducing the principle of Mittag–Leffler stability. Delavari et al., (2012) 

[34] suggested that FDEs have global uniform asymptotic stability as an extension. 

        The following is the layout of this paper: in section 2, we gave some preliminary definitions 

of divertive and integral in the fractional concept. Then, in order to discuss the stability analysis, 

some useful theorems and lemma were added. Section 3 depicts the Caputo fractional SIR model 

with delay in state and control variables. We confirmed that the model's solutions were unique 

and non-negative, and looked into their stability in section 4. Finally, came to a conclusion in 

section 5. 

2. Some Fractional Calculus Concepts 

The definitions of fractional derivative and fractional integral are presented in this section With 

some key properties and theorems. 

Definition 1 [35] The left and right Riemann-Liouville fractional (R-LF) integrals of order  are 

given by: 

http://creativecommons.org/licenses/by-nc/4.0/
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Where ( 1, ),m m m    . 

Properties [36] 

 1- Let 1 2, :[ , ]z z a b  . Then there are 1 2,    such that  

  
11 2 2 1 2 21( ( ( () )) () )C

a t at

C C

a tD z D zt z tt D z t        (7) 

2- Let K  is constant. Then   

 0C

a tD K    (8) 

 

Remark [37] R-LF derivative and CF derivative have the following relationship: 
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Consider the following generalized Caputo fractional differential equation [38]: 

                                   ( ) ( , ( )), 0 1C

a tD z t g t z t        (11) 

Subject to  

 0 0( )z t z  (12) 

The CF differential equation (11) has equilibrium point ( )z t
if and only if 

*( , z (t)) 0g t  . 

Theorem 1 [39] If all of the eigenvalues of the Jacobian matrix of system (11) satisfy the 

following condition at the equilibrium point, the Caputo fractional dynamic system (11) is 

locally asymptotically stable. 

                                  arg( )
2


                                                                                   (13)   

Definition 2 [40] Suppose that ( )s  is the Laplace transform of the function ( )t . Then ( )s  of 

the Caputo derivative is get as follow 
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Definition 3 [40] The function r,n ( )E t  for t   is defined by 
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Where r,n ( )E t is called the generalized Mittag-Leffler function and satisfies  
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Where L  is the Laplace transform of r,n ( )E t .   

3. Mathematical Fractional SIR Model 

     In this model, the inhabitance is divided into three parts of the disease:  ( )S represents people 

exposed to the disease; ( )I  represents people who carry the disease and they are able to transmit 

it to others; ( )R  represents people recovering from illness. One can contract the disease by 

coming into contact with people who have it, and once do, he will be immune to it for the rest of 

your life. 

     The next set of fractional differential equations with non-negative initial conditions describes 

the dynamics of people. 
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Such that 

                                               0 0 0(0) , (0) , (0)S S I I R R     (19) 

and  ( ) ( ) ( ) ( )N t S t I t R t    symbolize the universal people number at t time. Where the 

movement between the dissimilar states are qualified by the parameters found in the Table 1: 

 

Table 1: Represent parameters for SIR fractional model 

Parameter Description 

   The recruitment people rate of susceptible. 

  The rate efficient connect.  

d   The rate normal mortality. 

   The recovery rate. 

   The death rate resulting from disease. 
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    The aim of this study is to reduce the number of vulnerable and injured persons to a minimum 

and to maximize the number of patients who get remedies. After being exposed to injury, we 

include a control that shows the percentage of people who are vaccinated per time unit (see 

model 18). To obtain a more realistic model, bearing in mind that the movement of people 

exposed to infection who have been vaccinated from the susceptibility class to the recovered 

class is subject to delay. Therefore, we will enter the time delay in the model as follows: at time 

t  only a percentage of exposed peoples that have been taken the vaccine   time unit ago, that is, 

at time t  , are subtracted from the susceptible and added to the recovered group. The nonlinear 

fractional equations give model with time delay in state and control variables as follows: 
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For biological causes, we suppose, ( ), ( ), ( )S I R    are non-negative continuous functions and 

( ) 0u    for [ ,0]   . The control u  is presumed to be integrable, 0 1u b    and b  is a 

given constant. 

Theorem 2 The region 3{( , , ) : 0, 0, 0}S I R S I R     R  for system (20) is uniformly 

bounded. 

Proof: From (20) the total population satisfies 

 
0 ( ) ( ) ( )C

tD N t dN t I t      (21) 

Where ( ) ( ) ( ) ( )N t S t I t R t   . 

 
0 ( ) ( )C

tD N t dN t    (22) 

We can get Eq. (22) by applying the Laplace transform. 

 1{ ( )} (0) { ( )}s L N t s N d L N t
s
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  1( ) L{ ( )} (0)s d N t s N
s

 
    (24) 
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Then can deduce from Eqs. (17) and (16) that if ( , , )S I R  , then                 
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Solutions in the system (20) are restricted as follows 

 3{( , , ) : ( ) }S I R N t
d

 
   R    (30) 

Theorem 3 There is a unique solution for (20) satisfying 0, 0S I   and 0R  for 0t  . 

Proof Rewrite (20) in the following form: 
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The function (Y,Y )G   on the right-hand side of Eq. (31) satisfies 

 
1 1 2 2 1 1 2 2 1 2( ( ), ( )) ( ( ), ( )) ( ) ( ) ( ), ( )G Y t Y t G Y t Y t L Y t Y t L Y t Y t             (35) 

Where 1 2, 0L L  , independent of the ( ), ( )S t I t  and ( )R t  
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Also  
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Then from Eq. (31) we get    
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From Eq. (35) we get 
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therefore, we get 

 
1 1 2 2 1 2 1 2( ( ), ( )) ( ( ), ( )) ( ( ) ( ) ( ), ( ) )F Y t Y t F Y t Y t L Y t Y t Y t Y t                       (40) 

where  

                                                     
1 2max( ; )L A L L                                                           (41) 

Since the function F  is uniformly Lipschitz continuous. Then from the control definition ( )u t  

and the constraint on 0, 0S I   and 0R  , notice that a solution of the Eq. (31) exists [41]. 

4. Analysis of the Fractional SIR model's Stability 

The equilibrium points ( , , )S I R    of model (20) can get by solving the next equations 
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     We note that the model (20) has a disease-free equilibrium point 0 0 0 0( , , ) ( ,0,0)E S I R
d


  , 

which represents the removal of disease. 

4.1 The basic reproductive number 0R  

     In this section, we will introduce the base reproduction number using the next generation 

matrix method to investigate the local stability of disease-free homeostasis [35]. 

Now, calculate the base reproduction number 0R , where 0R  is the eigenvalue of the matrix 

1G FV   , where F indicates new infections, while V indicates the transmission of infection 

from one place to another. Both are calculated in an equilibrium-free equilibrium state and are 

thus derived as follows.  

Infectious compartments are found in the system (20) as follows. 
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At the disease-free equilibrium point 0E , we obtain the matrices F  and V  as follows: 
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Now, by multiplying matrices (47) and (49) we will get 
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The eigenvalues from the matrix (50) are 

                           

0
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                                                                                                (51) 

It is from eigenvalues the 0R   is essentially known as                                                                                       

                        0R
d



 


 
                                                                                                     (52) 
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     Note that when 0 1R  , then disease ends in the population and infection disappears. Also, 

when 0 1R   then disease will persist in the population. 

4.2 Local stability of the infection-free equilibrium 

Theorem 4 In the proposed fractional-order SIR epidemic model, the free equilibrium of disease 

0E  is locally asymptotically stable when 0 1R   and unstable when 0 1R  . 

Proof: From the Caputo fractional system (20), we can get the Jacobian matrix as follows:               
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                                               (53) 

We now use Eq. (53) to extract the Jacobian matrix's eigenvalues 

                                                1 d                                                                                  (54) 

                                                2 [0, ] ( )
fTd u t                                                                   (55) 

                                                
3 d                                       (56) 

    Note that 1  and 2  have a real negative part. Now, we will prove that 3  has a real negative 

part.  

 Suppose that 3 0  , we get 

                                                 0d       

                                                 d      

                                                 1
d



 


 
                                                                              (57) 
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Since
0R

d



 


 
, then from Eq. (57) we have 0 1R  . Then, in the absence of infection, 0E  is 

locally asymptotically stable. 

5. Conclusions 

     To investigate time delays in state and control variables, we used a Caputo fractional SIR 

epidemiological model. Then shown that the model's solutions are both bounded and positive. In 

the local condition that was checked in the stable model, also obtained the infection-free 

equilibrium point and the model was locally stable. The results of infection-free equilibrium of 

this model are locally asymptotically stable, depending on the reproduction number.    
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 هدير سوير فليح , خلف لفتت سناء

 العراق ، البصرة ، البصرة جاهعت ، العلوم كليت ، الرياضياث لسن

 الوستخلص

)حساط ، يصاب ، يتعافٌ( يتعهق  SIR كسشً دساست ًَورج وبائٌ سٍاضٌ غَش خطٌٍتًحوس هزا انبحث حول      

. تى اكتشاف حم وحَذوهو  كسشًان SIRنًُورج وباء  يقَذوجود حم  اثبتُافٌ يتغَشاث انحانت وانسَطشة. انضيٌُ ش َبانتأخ

انتحقَق فٌ استقشاسها انًحهٌ. بالإضافت إني رنك، باستخذاو  يٍ ثىيجًوعت جذٍذة يٍ َقاط انتواصٌ انخانَت يٍ انعذوى، و

  .0Rسقى انتكاثش الأساسٌ  حسابب قًُايصفوفت انجَم انتانٌ،  طشٍقت
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