DETECTION OF BRUCELLA SPECIES IN APPARENTLY HEALTHY COWS AND GOATS RAW MILK BY PCR Enas Ismael Al- Jaboury , Fawzia A. Abdullah Department of Microbiology, Veterinary Medicine Collage, University of Basrah ,Basrah, Iraq. (Received 4 November 2017, Accepted 13 November 2017) Key words: (PCR), Milk, Brucellosis. Corresponding author E.mail: fawziah.abd@uobasrah.edu.iq # **ABSTRACT** *Brucellos* is an intracellular pathogen capable of infecting animals and humans. The aim of this study was to identify *Brucella spp* in apparently healthy cow and goat raw milk samples by a polymerase chain reaction (PCR)-based method. A total of 75 cow milk samples(55 direct and 20 indirect) and 50 goat milk samples were examined by PCR. To establish a PCR protocol for diagnosis of brucellosis, DNA was extracted from the milk samples by using a commercial kit. PCR amplification was done for detection of Brucella DNA using BCSP31 target gene and IS711 locus. The PCR assay showed that an amplicon of 223 bp was obtained in 28% (21/75) and 8% (4/50) samples of cow and goat tested milk using primers (B4/B5) derived from aBCSP31gene encoding the 31-kDa Brucella abortus antigen. In another PCR, an amplicon of 498 bp was obtained in 100% (21/21) of the brucella genus BCSP31-PCR positive cow milk samples using Brucella abortus-specific primers derived from a locus adjacent to the 3'-end of IS711, and also an amplicon of 731 bp was produced in 100% (8/8) of the BCSP31-PCR positive goat milk samples using Brucella melitensis-specific primers.PCR positive results for brucella genus and brucella abortus species were observed in all (100%) cow's milk samples(n=11) with clinical history of abortion. As a single PCR product, no B. abortus was detected in goat milk samples also B. Melitensis was not detected in cow milk samples. #### INTRODUCTION Brucellosis is an important infectious re-emerging bacterial zoonosis of public health and economic significance. It affects the health and productivity of livestock as well as that of their owners and can have a deep economic impact (1). Brucellosis is classified among the top seven. world neglected zoonotic diseases (2). The highest annual incidence rates are reported from the Middle Eastern countries, such as Syria, Iraq, Iran, and Saudi Arabia (3; 4). The disease affects cattle, swine, sheep, goats, camels and dogs. It may also infect other ruminants and marine mammals It is an important zoonotic disease and causes significant reproductive losses in sexually mature animals with excretion of the organisms in uterine discharges and milk (5; 6). Brucellae are facultative intracellular coccobacilli belonging to the order Rhizobiales of the α-2 subgroup of Proteobacteria. (7). The genus Brucella encompasses 11 accepted nomo-species. Each species was named based on antigenic and biochemical characteristics and primary its host species specificity. The 'classical' six species are B. melitensis, B. abortus, B. suis, B. canis, B. ovis, and B. neotomae which are primarily isolated from small ruminants, bovines, pigs, dogs, sheep and desert wood rats, respectively(8). B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. Brucellosis can be transmitted either by direct contact with infected animals and animal excreta or indirect contact through ingestion of contaminated food and water containing large quantities of bacteria (9). The clinical picture of brucellosis is so strange and protean that it can be easily bewildered with other infectious and noninfectious diseases, leading to diagnostic delays and late onset of therapy (10). Therefore, laboratory confirmation is needed for de- tection of Brucella. There are currently three major approaches for the diagnosis of brucellosis including microbiological, serological, and molecular techniques (11). The diagnostic standard remains the isolation of Brucella from blood cultures or host tissues (12). However, in the absence of adequate culture facilitates the diagnosis of brucellosis depends on serological tests (11), but the specificity of these techniques are low in endemic areas, in persons exposed professionally to *Brucella* or in patients with relapse or a recent history of brucellosis (13). Alternatively, molecular techniques could be used for diagnosis of brucellosis, especially that these kinds of procedures are useful for diagnosis of several infectious diseases caused by fastidious or slowly growing bacteria and also have detected the small amounts of DNA in different samples (10;14;15). For these reasons, the aim of this study was to develop a one-stage diagnostic PCR test to detect brucellosis in previously aborted and apparently healthy cow milk samples. #### MATERIALS AND METHODS #### Sample collection The tested goats(n=50)and 75 cows raw milk samples composed of 55 direct samples(including 11 samples from cows having a history of abortion)and 20 indirect samples. These samples were collected in a sterile cup with a lid from different local markets and household animals in some regions of Basrah governorate during the period from October 2016 to May, 2017. The samples were brought to the laboratory as soon as possible, divided into 0.5 mL of sterile 2-mL Eppendorf tubes, and kept frozen until use (16;17). #### **Extraction of genomic DNA from milk samples** Total genomic DNA was extracted from milk using a modified method(18) of Favor Prep Genomic DNA Mini Kit(BioNeer, Korea) according to the manufacturer's instructions for blood samples. Concentration and purity of the DNA samples were determined spectrophotometrically (Quawell, USA) by reading A260 and A280. ## Brucella genus-specific DNA amplification To diagnose the Brucella positive samples, the first PCR amplification was carried out using primers designed to target fragment of the bcsp31 gene. A pair of primers described previously (19) specific for *Brucella* genus including, (B4: 5' - TGGCTCGGTTGCCAATATCAA-3')as forward primers andB5 reverse primers(B5: 5 ' -CGCGCTTGCCTTTCAGGTCTG-3) were obtained From(BioNeer, Korea).PCR reaction consisted of 12.5 μL 2x PCR master mixes (promega USA), 1 μg DNA template, 100 nM of each primers, and nuclease free water up to 25 μL. PCR profile was performed on a thermocycler (Techne, UK) using the following parameters: Denaturation primal for 5 minutes 95 °C, 35 cycles of template denaturation for 1 minutes 94 °C, 30 s of primer annealing at 64 °C, and 60 s of primer extension at 72 °C with a final extension cycle for 7 minutes 72 °C. PCR product was visualized on a 1% agarose gel stained with safety dye (Green-DNA DYE; Biotech, USA). # species-specific Brucella DNA amplification All samples positive using the B4/B5 primers were subjected other primers described previously (20) specific for *Brucella* spp designed to target a 498 and 731bp fragments including, forward primers(F: 5' -TGCCGATCACTTAAGGGCCTTCAT-3') which were derived from insertion sequence 711 (IS711) unique to identification of Brucella species but the reverse primers are different and were derived from B. abortus(F: 5' -GAC GAACGGAATTTTTCCAATCCC-3')and B. melitensis (R: 5' -AAA TCGCGTCCTTGCTGGTCTGA-3')specific locus on chromosomal DNA. IS711-PCR assay were done in a total volume of25 μL containing the same mixture were used forBCSP31-PCR.The amplification programs for B. abortus and B.melitensis consisted of initial DNA denaturation for 3 min at 95 °C and then cycled 35 times for 90 sat 95 °C, for 1 min at65 °C, and for 1 min at72 °C. Final extension step of 5 min at 72 °C was performed. The reaction products (5 μL)were detected by electrophoresis on 1.5% agarose gel and visualized with UV transilluminator after staining with Safety dye (Green-DNA DYE;Biotech,USA) to determine the size of amplified products. #### Statistical analysis To demonstrate any association between results, the exact Fisher test and Pearson'schi-squared test with 1 Yates correction were used with the limit of significance being setlat 5%. Statistical analysis is done by using SPSS software ersion 11. #### **RESULTS** # PCR detection of Brucella spp in animals milk samples Cow milk Total of 55 and 20 direct and indirect cow milk samples respectively were collected from the different regions of Basrah province city to use in this study. The PCR assays resulted in the amplification of 223- bp bands from the targeted *bcsp*31 gene of the *Brucella* are shown in Figure 1. Nineteen direct (34.5%) and Two indirect(10%) milk samples were found to be positive for brucellosis. The association between type of milk sample and brucella genus positive results is considered to be statistically significant(P<0.05).(Table.1). DNA from these Brucella positive milk samples were subjected to the IS711-PCR Brucella species-specific PCR. PCR electrophoresis results were shown in Figure (2,3)., which illustrates the presence of 498 bp bands specific The number of single product *B. abortus* detected by IS711-PCR was 19(100%) and 2(100%) from respectively direct and indirect milk samples were found to be positive for *B. abortus* only. Among the 19 and 2 direct and indirect milk samples respectively, *B. abortus* alone was evident in all of these tested milk samples (100%) and *B. melitensis* alone was not detected in any of these samples(Table.1). There was no significant difference(P>0.05)inBrucella species distribution **Figure 1** - Identification of DNA amplified fragments by agarose gel electrophoresis and Green-DNA DYE. An amplicon size of 223 bp was obtained by PCR using Baily's primers (B4, B5) and template DNA cow and goat milk. Lanes: 1, 1 kb Ladder; 2, 3, 4,5,cow milk; 6, 7, 8, goat milk. **Figure 2** - Identification of DNA amplified fragments by agarose gel electrophoresis and Green-DNA DYE staining. An amplicon of 498 bp was obtained by PCR using *B. abortus*- specific primers and *cow milk* DNA extract as template. Lanes: 1, 1 kb Ladder;2-8, *positive B. abortus*. **Figure 3** - Identification of DNA amplified fragments by agarose gel electrophoresis and Green-DNA DYE staining. An amplicon size of 731 bp was obtained by PCR using *B. melitensis*- specific primers and *goat milk* DNA as template. Lanes: 1, 1 kb Ladder; 2, 3, 4, 5, *positive B. melitensis*. Table-1 PCR amplification for Brucella of the *BCSP31* and IS711 target gene with respect to source of cow milk sample | Source of milk | PCR for Brucellagenus | | | PCR for Brucellaspecies | | | |-----------------|------------------------------------|------------------------------------|------------|----------------------------------|--|---------| | sample
s | -ve
amplificati
on
n. (%) | +ev
amplificati
on
n. (%) | P
value | Single product B. abortus n. (%) | Single product <i>B.meliten</i> sis n. (%) | P value | | Direct
n.=55 | 36(65.5) | 19(34.5) | 0.043 | 19(100) | 0 | 1.0000 | | Indirect n.= 20 | 18(90) | 2(10) | 8 | 2(100) | 0 | | | Total
n.= 75 | 54(72) | 21(28) | | 21(100) | 0 | | #### Effect of clinical status on PCR results The relationship between positive PCR results and abortion in tested cow was displayed in Table (2) . All milk sample 11(100%) obtained from aborted cow showed higher detectable PCR positive result for each of brucella genus and *B. abortus* compared with. non aborted animals 8(18.2%) . There was highly significant (P<0.01) in the association between PCR positive results and abortion. Table-2 The relationship between positive PCR results and abortion | PCR results | Source of milk samples | | | | |---|------------------------|-------------------|------------------------------------|-------------------| | | Aborted cow tested n. | Positive
n.(%) | Non
aborted
cow tested
n. | Positive
n.(%) | | Brucella
genus | 11 | 11(100%) | 44 | 8(18.2) | | B. abortus | 11 | 11(100%) | 8 | 8(100%) | | Test of significance X ² =:40.95:D | | | | 5:DF : 3; P=0 | #### Goat milk Conventional PCR confirmed that 4(8%)out of 50 goat milk samples were diagnosed as Brucella positive. No *B. abortus* was detected in these samples DNA from the 4Brucella positive milk samples were subjected to the species-specific IS711PCR. PCR electrophoresis results are shown in Figure (3)which illustrates the presence of 223 bp and 731 bp bands specific for Brucella genus and *B. melitensis*, respectively. *B. melitensis* amplification product was detected in all four(8%) Brucella genus positive milk sample. There was no significant difference(P>0.05)in Brucella species distribution. Table-3 PCR amplification for Brucella of the BCSP31 and IS711 target gene in goat milk sample | Milk samples | PC | Total | | | |----------------------|--------------------------------------|---------------|---------|--| | lok | -ve | +ev | | | | | amplification | amplification | | | | PCR for | 46(92) | 4(8) | 50(100) | | | Brucellagenus | | | | | | Single | 0 | 0 | 0 | | | product <i>B</i> . | | | | | | abortus | | | | | | Single | 46(92) | 4(8) | 50(100) | | | product | | | | | | B.melitensis | | | | | | Test of | X ² =:2.41:DF: 2; P=0.299 | | | | | significance | | | | | | | | | | | #### **DISCUSSION** Molecular diagnosis of brucellosis by PCR techniques has increasingly been used as a supplementary method (21). Genus-specific PCR assays are inexpensive tests for screening and have the capability to detect low concentrations of DNA (14). The current study is the first Iraqi study using the *Bcsp31* and and *IS711* target gens for the detection of *Brucella genus and* spp respectively in the milk samples compare to other one Iraqi study using these primers set particularly on blood and serum(22) and other studies previously conducted in different countries used these primers for the detection of *Brucella genus and* spp on the reference strains and clinical samples such as blood and serum (23; 24; 25). On the other hand many studies supporting the usage of these primers in the detection of *Brucella genus and* spp in raw milk (14;26-29). Total of 55 and 20 direct and indirect cow milk samples respectively were collected from the different regions of Basrah province city used in this study. The PCR assays resulted in the amplification of 223- bp bands from the targeted *bcsp*31 gene of the *Brucella*. Nineteen direct (34.5%) and Two indirect (10%) milk samples were found to be positive for brucellosis. The present data showed that these assays can be used for risk analysis investigation during routine control of milk, especially as they were able to detect *Brucella* DNA in clinical samples. The current results demonstrate higher percentage for Genus-specific *bcsp*31 PCR positivity compare with previous study(30) in which that the Genus-specific *bcsp*31 PCR amplified *Brucella*-specific DNA from 9/72(12.5%) and 1/15(6.7%) milk samples obtained from cows, and a milk tank, respectively. Other studies also recorded lower PCR positive results compare to the present study. In Pakistan (31) identified *Brucella spp.* at a rate of 9.5% in bovine raw milk, in (32) identified it in cow milk at a rate of 5.31%, and in Turkey (33) identified it in bovine raw milk at a rate of 2%. (34) have been found that only 4 /215 (1.86%) samples was *Brucella* positive. On the other hand the present results were lower than previous study(14) in which the number of brucellosis positive samples detected by *bcsp*31-PCR was 317 (94.9%) out of 334 milk samples. Also Romero *et al.* (35) determined that 87.5% of the milk samples were positive for *Brucella* DNA. This conflict in the results may be explained by different PCR programs, sample type and preparation, storage conditions, and DNA extraction procedures. Beside that the current study found the prevalence of *Brucella* in indirect milk samples was determined to be low (10%) compare with 34.5% of direct milk samples. This may not mean that all of these animals are healthy or not infected with *Brucella* spp. The pathogen *Brucella* can be located in the lymph nodes of animals and may not be transferred or reach the milk during the time is sample taken, or there may be a low number of bacteria present in these milk samples (36). Shedding in milk can be prolonged or lifelong or may be intermittent (37). Among the 19 and 2 direct and indirect milk samples respectively, *B. abortus* alone was evident in all of these tested millk samples (100%) and B. melitensis alone was not detected in any of these samples. Based on previous publication about brucellosis in Iraq, this study is the first to record direct detection for *B. abortus* DNA in milk samples of cows. This finding dis agreement with previous (38,30,15)in which that the *B. Melitensis* DNA can be PCR amplified from bovine milk samples, the present study confirmed negative *B. melitensis* DNA amplification. Brucella organisms were not isolated in this study. Brucella culturing is hazardous,. Isolation rate is very low even in experienced laboratories(30). The probability of successful isolation of B. abortusis markedly reduced when a few organisms are present in the samples or the material is heavily contaminated. Negative culture results cannot exclude infection with Brucella (37). Nevertheless, clinical presentation, abortion and strong seropositive results finally led to the diagnosis of brucellosis. Serological diagnosis from freshly aborted animals may fail because antibody titers against *B. abortus* rise only 1–2 weeks after infection (39), however circulating *Brucella* DNA may be detected with molecular techniques. Cows infected with B. abortus usually abort only once, and following that give birth to healthy or weak calves. Some cows may not exhibit any clinical signs of the disease and give birth to healthy calves (40). Those animals can be the source of continual infection (41). In infected herds, PCR may be a very valuable tool in reducing the time to eradicate the disease by identifying anergic shedders or newly infected animals that should be removed from the herds immediately. As such in the current study although all tested milk samples obtained from apparently healthy cows, PCR positive results for brucella genus and brucella species were observed in all (100%) previously aborted 11cows. The current result is in agreement with the previous study(15) in which that all serum samples collected from aborted cows (n=10), buffaloes (n=5), ewe (n=1) and goats (n=9) were positive with the genus specific bcsp31 real-time PCR assays. But other results of (15) oppose the the present results concerning the identification of B. abortus DNA in all serum samples collected from cows, buffaloes, ewe and goats The present results also is in agreement with previous study(29)in which that out of 273 cow milk samples 18(6.6%) samples were positive with the genus and spp (B abortus) specific bcsp31 and IS711PCR assays andno B. melitensis was detected in cow milk samples. Conventional PCR confirmed that 4(8%) out of 50 milk samples collected from apparently healthy goat diagnosed as Brucella positive. The *B. melitensis* amplification product was detected in all four(8%) brucella genus positive milk sample. The present results demonstrate agreement with previous study(29)in which thatout of 90 goat milk samples 3(3.3%) samples were positive with the genus and spp (*B melitensis*) specific bcsp31 and *IS711*PCR assays and *B. abortus* was detected in goat milk samples also *B. melitensis* was not detected in cow milk samples. However Ali *et al*(.42) study who provides first evidence that *Brucella abortus* the causative agent of brucellosis in small ruminants in Pakistan .In addition 17/24 (71%) were positive in the *Brucella* genus-specific (bcsp31) and *Brucellaabortus*-specific (IS711) qRT-PCR. Furthermore(43) found species-specific PCR assays have a lower analytical sensitivity than do genus-specific PCRs and. *B. abortus* was confirmed as the causative agent of ovine and caprine brucellosis in previous studies using PCR assays. This conflict may be explained by different PCR programs, sample type and preparation, storage conditions, and DNA extraction procedures. .B melitensisis one of the major causes of abortion in small ruminants; other ruminants may be infected occasionally (44). It is also the main agent responsible for brucellosis in humans, as it is highly virulent for humans. Circulation of this species in goats milk is of special concern to public health; control ore radication programs have to be adapted to this special situation accordingly. As such, species-specific PCRs are valuable tools in screening programs to identify the prevalentBrucella species. Transmission of Brucella through contaminated milk and milk products is an increasing threat not only for individuals, but also for whole families in urban and rural settings of endemic countries (45). In these areas, trade of non-pasteurized fresh milk and raw dairy products should be strictly controlled and limited to certified Brucella-free farms The presnt results showed that PCR is a sensitive tool for the control of brucellosis in raw milk. Basic health. #### **CONCLUSIONS** the present study adds to the data available regarding *B. abortus* and *Brucella melitensis* infections in cattle and goats and highlights the effectiveness and advantages of PCR in detection of brucellosis in raw milk. # الخلاصه البروسيلا كائن ممرض داخل خلوي يصيب الانسان والحيوان ان الهدف من هذه الدراسه هو تعيين نوع البروسيلا في عينات حليب الابقار والمعزبواسطة طريقة تفاعل البلمره المتسلسل فحصت عينات حليب الحيوانات السليمه من المرض ظاهريا وبمجموع خمسه و سبعون عينة (55عينه مباشره و 20 عينه غير مباشره)من حليب الابقار و50عينه من حليب المعزبطريقةتفاعل البلمره المتسلسلPCR ولتاسيس نظام PCR مباشره)من حليب الابقار و50عينه من حليب المعزبطريقةتفاعل البلمره المتسلسلDNA ولتاسيس نظام PCR خاص بتشخيص مرض الحمى المتموجه تم استخلاص الحامض النووي DNA باستخدام عدة استخلاص تجاريه الكشف عن البروسيلا بطريقة PCR تم تضخيم الحامض النووي DNA باستهداف الموورث BCSP31والموقع IS71 اظهرت نتائج فحص PCR ان ناتج التضخيم ذو الحجم BCSP31 في (21/75) %8 من عينات حليب الابقار والمعز على التوالي وباستعمال البادئات (21/75) %8 من عينات حليب الابقار والمعز على التوالي وباستعمال البادئات (B4/B5)المشتقه من المورث الذي يشفر لمستضد البروسيلا ذو الوزن الجزيئي BCSP31-PCR الخهر BCSP31-PCR اخر اجري على عينات حليب الابقار التي اظهرت نتائج ايجابيه في فحص 3'-enda المنات الخاصه بنوع Brucellaabortu المنتقه من موقع IS711 بالقرب من النهايه المائة المنتقة من موقع 18711 بالقرب من النهايه النهاية تضخيم الناتج تضخيم بحجم 498 bp قد لوحظ في (21/21) %100 من عينات الحليب وكذلك ظهر ناتج تضخيم بحجم 100% (8/8) %100 من عينات حليب المعز الموجبه بفحصBCSP31-PCR وباستعمال الباديئات الخاصه بنوع Brucellamelitensis النتائج الموجبه لجنس ونوع الروسيلا لوحظت في جميع عينات حليب الابقار (100%; n=11) التي لها تاريخ سريري للاجهاض لم يتم الكشف عن وجود B. abortus في حليب الابقار وكذلك لم يكشف عن وجود B. melitensis في حليب الابقار #### REFERENCES - 1- Pal1, M.; Fikru Gizaw2, Gelane Fekadu2, Gezahagn Alemayehu2, Venkataramana Kandi (2017). Public Health and Economic Importance of Bovine BrucellosisAn Overview American Journal of Epidemiology and Infectious Disease, Vol. 5, No. 2, 27-34 - 2-Gorvel, J., 2014. "If you bring an alarm, we will destroy it," said *Brucella* to the host cell. Virulence 5, 1-3. - 3-Najafi N, Ghassemian R, Davoody AR, Tayebi A (2011) An unusual - complication of a common endemic disease: clinical and laboratory aspects of patients with brucella epididymoorchitis in the north of Iran. BMC Res Notes 4:286. - 4-Garshasbi, M., Ramazani, A., Sorouri, R., Javani, S. and Moradi, S. (2014) Molecular detection of *Brucella* species in patients suspicious of Brucellosis from Zanjan, Iran. Brazilian Journal of Microbiology 45, 2, 533-538 - 5-England T, L Kelly, R D Jones, A MacMillan and M Wooldridge, 2004. Asimulation model of brucellosis spread in British cattle under several testing regimes. Prev Vet Med, 63: 63-73. - 6-Wadood F, M Ahmad, A Khan, ST Gul and N Rehman, 2009. Seroprevalence of brucellosis in horses in and around Faisalabad. Pak Vet J, 29: 196-198 - 7-Ficht, 2009. The *Brucellaabortus*S19 Delta vjbR live vaccine candidate is safer than S19 and confers protection against wild type challenge in BALB/c mice when delivered in sustained-release vehicles. Infect Immun, 77: 877-884. - 8-Corbel, M., Brinley, M.W., 1984. Genus *Brucella*. In: Bergey's manual of systematic bacteriology. . Krieg NR, & Holt JG, Eds. Baltimore: Williams & Wilkins, 397. - 9- Zhang, J., Sun, G.Q., Sun, X.D., Hou, Q., Li, M., Huang, B., Wang, H., Jin, Z., 2014. Prediction and control of brucellosis transmission of dairy cattle in zhejiang province, china. PloS one 9, e108592. - 10-Al Dahouk S and Nockler K (2011) Implications of laboratory diagnosis on brucellosis therapy. Expert Rev Anti Infect Ther 9:833-845 - 11-Alves CJ, Figueiredo SM, Azevedo SS, Clementino IJ, Keid LB, Vasconcellos SA, Batista CSA, Rocha VCM, Higino SS., (2010) Detection of *Brucella ovis* in ovine from ParaíbaState, in the Northeast region of Brazil. Brazilian Journal of Microbiology 41:365-367. - 12-Queipo-Ortuno MI Colmenero JD, Reguera JM, Garcia-Ordonez MA, Pachon ME, Gonzalez M and Morata P., (2005). Rapid diagnosis of human brucellosis by SYBR Green I-based real timePCR assay and melting curve analysis in serum samples. ClinMicrobiol Infect 11:713-718. - 13-Christopher S, Umapathy BL, Ravikumar KL., (2010) Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians 2:55-60 - 14-Arasoğlu,T.; G-LL-CE2, M.; O ZKAN H.; ADIG-ZEL, A. and ŞAHİN, F. (2013).PCR detection of *Brucella abortus* in cow milk samples collected from Erzurum, Turkey Turk J Med Sci 43: 501-508 - 15-Wareth G;Melzer F.; Tomaso H; Roesler U. and Neubauer H. (2015). Detection of *Brucella abortus* DNA in aborted goats and sheep in Egypt by real-time PCR. *BMC Res Notes* 8:212 - 16-Gupta VK, Verma DK, Rout PK, Singh SV and Vihan VS.(2006)Polymerase chain reaction for detection of *Brucella melitensis* in goat milk. Small Ruminant Res 2006; 65: 79–84. - 17-O'Leary S, Sheahan M and Sweeney T. (2006) *Brucella abortus* detection by PCR assay in blood, milk and lymph tissue of serologically positive cows. Res Vet Sci; 81: 170–6. - 18-Machado, S.G; Bazzolli, D.M.S. and Vanetti, M.C.D. (2013) Development of a PCR method for detecting proteolytic psychrotrophic bacteria in raw milk. International Dairy Journal 29.8-14 - 19- Baily GG, Krahn JB, Drasar BS, Stoker NG (1992) Detection of *Brucella melitensis* and *Brucella abortus* by DNA amplification. J Trop Med Hyg 95:271-275. - 20-Bricker BJ (2002) Diagnostic strategies used for the identification of Brucella. Vet Microbiol 90: 433-434 - 21-Guarino A, Serpe L, Fusco G, Scaramuzzo A and Gallo P (2000) Detection of *Brucella* species in buffalo whole blood by gene-specific PCR. Vet Rec 147: 634-636. - 22- **Al-BayattiS.and Al-Thwani A** (2009) Evaluation of PCR, ELISA, and culture methods for the diagnosis of animal brucellosis. Diyala Agri Sci J 1: 1-17. - 23-Ilhan Z, Aksakal A, Ekin IH, Gülhan T, Solmaz H, Erdenlig S.(2008) Comparison of culture and PCR for the detection of *Brucella melitensis* in blood and lymphoid tissues of serologically positive and negative slaughtered sheep. Lett Appl Microbiol; 46: 301–6. - 24-Romero C and Lopez-Goni I.(1999) Improved method for purification of bacterial DNA from bovine milk for detection of *Brucella* spp. by PCR. Appl Environ Microbiol; 65: 3735–7 - 25-Rijpens PN, Jannes G, Asbroeck MV, Rossau R. and Herman LMF.(1996).Direct detection of *Brucella* spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes. Appl EnvironMicrobiol; 62: 1683–8. - 26-Kamal ,I. H.; Al Gashgari, B., Moselhy, S. S.; Kumosani, T. A. and Abulnaja. K. O.(2013) Two-stage PCR assay for detection of human brucellosis in endemic areas. BMC Infectious Diseases, 13:145 - 27-Izadi A, Moslemi E, TabatabaeiPanah A, KheiriManjili H (2014) *Brucella*spp. detection in dairy products using Nested and Hemi Nested PCR techniques. Ann Biol Res 5: 124-131. - 28-Al-Mariri, A., 2015. Isolation of *Brucella melitensis* strains from Syrian bovine milk samples. *Bulg. J. Vet. Med.*, 18, No 1, 40-48. - 29-Lesley-Anne C.; Nwodo, U. U.; Okoh, A. I.; Green , E. (2017) Molecular characterization of *Brucella* species in cattle, sheep and goats obtained from selected municipalities in the Eastern Cape, South Africa. *Asian Pac J Trop Dis*; 7(5): 293-298 - 30-WarethG;Hikal A; Refai M; Melzer F; RoeslerU.and Neubauer H (2014) Animal brucellosis in Egypt. J Infect Dev Ctries 8(11):1365–1373. doi:10.3855/jidc.4872 - 31-Ali S, Ali Q, Melzer F, Khan I, Akhter S, Neubauer H, Jamal SM (2014). Isolation and Identification of Bovine Brucella Isolates from Pakistan by Biochemical Tests and PCR. Trop Anim Health Prod 46(1):73-78. - 32-Mugizi DR, Muradrasoli S, Boqvist S, Erume J, Nasinyama GW, Waiswa C, Mboowa G, Klint M, Magnusson U (2015). Isolation and molecular characterization of Brucella isolates in cattle milk in Uganda. Biomed Res Int 2:1-9. - 33-Kaynak-Onurdag F, Okten S, Sen B (2016) Screening Brucella spp. in Bovine Raw Milk by Real-time Quantitative PCR and Conventional Methods in a Pilot Region of Vaccination, Edirne, Turkey. J Dairy Sci S0022-0302(16)30061-3. doi: 10.3168/jds.2015-10637. - 34-Gulbaz. and Kamber U. (2016). ,The Detection of *Brucella*Bacteria with PCR and Bacteriological Method in Raw Milk and Some of the Dairy Products Which Are Consumed in Kars.Bulletin UASVM Veterinary Medicine 73 (1) - 35-Romero C, Pardo M, Grillo MJ, Diaz R, Blasco JM, Lopez-Goñi I (1995). Evaluation of PCR and indirect enzyme-linked immunosorbent assay on milk samples for diagnosis of brucellosis in dairy cattle. J ClinMicrobiol 33:3198-3200. - 36-O'Leary S, Sheahan M(2006). Sweeney T. *Brucella abortus* detection by PCR assay in blood, milk and lymph tissue of serologically positive cows. Res Vet Sci; 81: 170–6. - 37-Bercovich Z.(1998) Maintenance of Brucella Abortus free herds: A review with emphasis on the epidemiology and the problems in diagnosing brucellosis in areas of low prevalence. Vet Q. 1998;20(3):81-8. - **38-Hamdy MR and Amin AS** (2002) Detection of *Brucella* species in the milk of infected cattle, sheep, goats and camels by PCR. Vet J 163: 299-305. - 39-Poester FP, Nielsen K, Samartino LE, Yu WL., (2010) Diagnosis of brucellosis. Open Vet Sci 4:46–60 - 40- Xavier MN, Costa ÉA, Paixão TA, Santos RL., (2009) The genus *Brucella* and clinical manifestations of brucellosis. Ciência Rural 39: 2252-2260. - 41-**DíazAparicio E**., (2013) Epidemiology of brucellosis in domestic animals caused by *Brucella melitensis*, *Brucella suis* and *Brucella abortus*. Rev Sci Tech 32: 43-51 - 42- Ali ,S.; Akhter S.; Neubauer H.; Melzer F.; Khan, Iahtasham.; Ali Q.; Irfan, M. (2015). Serological, cultural, and molecular evidence of *Brucella* infection in small ruminants in Pakistan. *Infect Dev Ctries*; 9(5):470-475 - 43-**Dehkordi F S, Saberian S and Momtaz H**., (2013) Detection and Segregation of *Brucella abortus* and *Brucella melitensis* in Aborted Bovine, Ovine, Caprine, Buffaloes and Camelid Fetuses by Application of Conventional and Real-time Polymerase Chain Reaction. Thai J Vet Med 42: 13-20. - 44-Blasco J and Molina-Flores B., (2011) Control and eradication of *Brucella melitensis* infection in sheep and goats. Vet Clin North Am Food Anim Pract 27: 95-104. - 45- Chen S, Zhang H, Liu X, Wang W, Hou S, Li T, Zhao S, Yang Z, Li C., (2014) Increasing threat of brucellosis to low-risk persons in urban settings, china. Emerg Infect Dis 20:126-130