The Principle IndecomposableProjective Characters of The Symmetric
 Groups S_{22} Modulo $p=19$
 JenanAbdAlredaResen ${ }^{a}$,ShereenJamel Abbas ${ }^{b}$,Haneen J. Sadiq ${ }^{c}$
 $a_{\text {Department of Mathematics,College of Science, University of Basrah,Basrah,Iraq, }}$ Email:Jenanabdalreda8@gmail.com,Jenan.resean@uobasrah.edu.iq
 ${ }^{b}$ Department of Mathematics, College of Science,University of Basrah, Basrah,Iraq, Email:Shereenjamelabbas@gmail.com, Shereen.abbas@uobasrah.edu.iq
 ${ }^{\text {c Department of Mathematics, College of Science,University of Basrah, Basrah, Iraq, }}$ Email:Han.mah2010@gmail.com, Haneen.sadiq@uobasrah.edu.iq

ARTICLEINFO

Article history:
Received: 13 /06/2020
Rrevised form: //
Accepted: 23/06/2020
Available online: 10 /07/2020

Keywords:

Spin(Projective) Characters
,Modular Characters, Principle Characters, principle indecomposablespin characters, and Irreducible Modular projective Characters.

ABSTRACT

In this paper we invention all the principle indecomposablespin(projective) characters of the symmetric group S_{n}, when $n=22$ and the characteristic of the field is 19 . The principle indecomposable spincharacters of the symmetric group S_{22}, also can get it by determine all irreducible spin characters for $S_{22}, p=19$, and all irreducible modular spin characters for $S_{22}, \mathrm{p}=19$, the sum of multiplication of these characters it represents the principle indecomposable spin(projective) characters of the symmetric group S_{22}. For their more can get on the irreducible spin characters for $S_{22}, p=19$ by fixing all bar partitions for S_{22}, also we can get on all the irreducible modular spin characters for $S_{22}, p=19 \mathrm{by}(r, \bar{r})$ inducing method, finally induce the principal indecomposable characters(P.i.s)from S_{21} (see creek*) give usprincipal indecomposable characters (P.i.s) or principal characters (P.s) of S_{22}.

MSC: 15C15,15C20,15C25

1. Introduction

The principle indecomposablespin(projective) characters is represent the sum of multiplication for irreducible projective characters and irreducible modular projective characters[1].In General characters is known modular or ordinary corresponding to the characteristic of the field is prime or zero, respectively[2] . Every finite group has covering group[3] ,then S_{n} has as this group. The characters of the covering group which are identical the characters of S_{n} are called modular or ordinary characters of S_{n}, the survival characters are called projective(spin) of S_{n} [4].The irreducible projective characters are described by the bar partitions of n, also these characters are recognize double or associate corresponding to the result $n-m$ is even or odd, respectively where m is the number of parts for the bar partition of

[^0]Email address:Jenan.resean@uobasrah.edu.iq
n [3]. A lot of researchersactivate in this field like A. K..Yaseen, S. A.Taban, A. H.Jassimand M. M.Jawad[5],[7].In this paper the principle indecomposablespin(projective) characters of S_{22} modulo $p=19$ have been calculated by using (r, \bar{r})-inducing method, we induce the principal indecomposable characters of S_{21} (see creek*) to have the principal indecomposable characters or principal characters of S_{22}.

2. Rudiments

1-The spin characters of S_{n} can be written as a linear combination, with non-negative integer coefficients, of the irreducible spin characters[8].
2- Projective characters $\langle\omega\rangle=\left\langle\omega_{1}, \ldots, \omega_{u}\right\rangle$ for S_{z} have degree which is equal $2^{\left[\frac{z-u}{2}\right]} \frac{z!}{\prod_{i=1}^{u}\left(\omega_{i}!\right)} \prod_{1 \leq i<j \leq u} \frac{\left(\omega_{i}-\omega_{j}\right)}{\left(\omega_{i}+\omega_{j}\right)}$ where u it represents the number of parts [9].
3-The values of associate characters $\langle\omega\rangle,\langle\omega\rangle^{\prime}$ are same on the class except on the class corresponding to ω they have values $\pm i^{\frac{z-u+1}{2}} \sqrt{\left(\frac{\omega_{1}, \ldots, \omega_{u}}{2}\right)}$ [9].
4-The inducing from group or restriction from the subgroup of the projective characters are also projective characters [1].
5- If z is even and $p \nmid(z)$, then $\langle z\rangle$ and $\langle z\rangle^{\prime}$ are distinctirreducible modular spin charactersI.m.s of grade $2^{\left[\frac{(z-1)}{2}\right]}$ which are denoted by $\omega\langle z\rangle$ and $\omega\langle z\rangle^{\prime}[9]$.
6 - Let p be an odd prime and let μ, ω be a bar partition of z which are not p-bar core. Then $\langle\mu\rangle$ (and $\langle\mu\rangle^{\prime}$ if μ is odd) and $\langle\omega\rangle$ (and $\langle\omega\rangle^{\prime}$ if ω is odd) are in the same p-block $\leftrightarrow \widetilde{\langle\mu\rangle}=\widetilde{\langle\omega\rangle}$ (where $\widetilde{\langle\mu\rangle}, \widetilde{\omega \omega}\rangle$ are represents p-bar core for μ, ω respectively). If α be a bar partition of z and $\mu=\widetilde{\langle\mu\rangle}$, then $\langle\mu\rangle$ (and $\langle\mu\rangle^{\prime}$ if σ is odd) forms a p-block of defect 0 [4].
7 - Let p be an odd prime and $\omega=\left(\omega_{1}, \ldots, \omega_{u}\right)$ be a bar partition of z,then allirreducible modular spin characters I.m.s in the block B are double(associate), if ($z-u-u_{0}$) is even(odd), where u_{0} the number of parts of ω divisible by $p[4]$.
8 -Each block of defect zero contains exactly one irreducible ordinary characters τ, one irreducible modular characters ϵ and one principal indecomposable character ∂ such that $\tau=\epsilon=\partial[10]$.
9- If C is a principal character for an odd prime p and all the entries in C are divisible by positive integer q , then $(1 / \mathrm{q}) \mathrm{C}$ is a principal character[1].

3-The projective block of S_{22}

The number of the principle indecomposablespin(projective) characters of $S_{22}, p=19$ is 130 which is equal to the $(19, \alpha)$-regular classes [10].
From preliminaries (6) ,there are 103 blocks of $S_{22}, p=19$, theses blocks are j_{3}, \ldots, j_{105} of defect zero except the block j_{1}, j_{2} of defect one.
The blocks of defect zero j_{3}, \ldots, j_{105} includes
$\langle 1,3,5,6,7\rangle,\langle 1,3,5,6,7\rangle^{\prime},\langle 2,3,4,6,7\rangle,\langle 2,3,4,6,7\rangle^{\prime},\langle 4,5,6,7\rangle^{*}$,

$$
\langle 1,2,3,4,5,6,7\rangle^{*},\langle 1,2,5,6,8\rangle,\langle 1,2,5,6,8\rangle^{\prime},\langle 3,5,6,8\rangle^{*},\langle 2,3,4,5,8\rangle
$$

$\langle 2,3,4,5,81\rangle^{\prime},\langle 1,3,4,6,8\rangle,\langle 1,3,4,6,8\rangle^{\prime},\langle 2,5,7,8\rangle^{*},\langle 3,4,7,8\rangle^{*}$,
$\langle 1,2,4,7,8\rangle,\langle 1,2,4,7,8\rangle^{\prime},\langle 1,6,7,8\rangle^{*},\langle 1,3,4,5,9\rangle,\langle 1,3,4,5,9\rangle^{\prime}$,
$\langle 1,2,4,6,9\rangle,\langle 1,2,4,6,9\rangle^{\prime},\langle 3,4,6,9\rangle^{*},\langle 2,5,6,9\rangle^{*},\langle 1,2,3,7,9\rangle$,
$\langle 1,2,3,7,9\rangle^{\prime},\langle 2,4,7,9\rangle^{*}\langle 1,5,7,9\rangle^{*}\langle 6,7,9\rangle,\langle 6,7,9\rangle^{\prime}$,
$\langle 2,3,8,9\rangle^{*},\langle 1,4,8,9\rangle^{*},\langle 5,8,9\rangle,\langle 5,8,9\rangle^{\prime},\langle 1,2,4,5,10\rangle$,
$\langle 1,2,4,5,10\rangle^{\prime},\langle 3,4,5,10\rangle^{*},\langle 1,2,3,6,10\rangle,\langle 1,2,3,6,10\rangle^{\prime}$,
$\langle 2,4,6,10\rangle^{*},\langle 1,5,6,10\rangle^{*},\langle 2,3,7,10\rangle^{*},\langle 1,4,7,10\rangle^{*},\langle 5,7,10\rangle$,
$\langle 5,7,10\rangle^{\prime},\langle 1,3,8,10\rangle^{*},\langle 4,8,10\rangle,\langle 4,8,10\rangle^{\prime},\langle 1,2,3,5,11\rangle$,
$\langle 1,2,3,5,11\rangle^{\prime},\langle 2,4,5,11\rangle^{*},\langle 2,3,6,11\rangle^{*},\langle 1,4,6,11\rangle^{*}$,
$\langle 5,6,11\rangle,\langle 5,6,11\rangle^{\prime},\langle 1,3,7,11\rangle^{*},\langle 4,7,11\rangle,\langle 4,7,11\rangle^{\prime}$
$\langle 2,9,11\rangle,\langle 2,9,11\rangle^{\prime},\langle 1,10,11\rangle,\langle 1,10,11\rangle^{\prime},\langle 1,2,3,4,12\rangle,\langle 1,2,3,4,12\rangle^{\prime},\langle 2,3,5,12\rangle^{*},\langle 1,4,5,12\rangle^{*},\langle 1,3,6,12\rangle^{*}$, $\langle 4,6,12\rangle,\langle 4,6,12\rangle^{\prime},\langle 2,8,12\rangle,\langle 2,8,12\rangle^{\prime},\langle 1,9,12\rangle,\langle 1,9,12\rangle^{\prime}$,
$\langle 10,12\rangle^{*},\langle 2,3,4,13\rangle^{*},\langle 1,3,5,13\rangle^{*}$,

$$
\langle 4,5,13\rangle,\langle 4,5,13\rangle^{\prime},\langle 2,7,13\rangle,\langle 2,7,13\rangle^{\prime},\langle 1,8,13\rangle,\langle 1,8,13\rangle^{\prime},
$$

$\langle 9,13\rangle^{*},\langle 1,3,4,14\rangle^{*},\langle 2,6,14\rangle,\langle 2,6,14\rangle^{\prime}$,
$\langle 1,7,14\rangle,\langle 1,7,14\rangle^{\prime},\langle 8,14\rangle^{*},\langle 2,5,15\rangle,\langle 2,5,15\rangle^{\prime},\langle 1,6,15\rangle,\langle 1,6,15\rangle^{\prime},\langle 7,15\rangle^{*},\langle 2,4,16\rangle,\langle 2,4,16\rangle^{\prime}$,
$\langle 1,5,16\rangle,\langle 1,5,16\rangle^{\prime},\langle 6,16\rangle^{*},\langle 1,4,17\rangle,\langle 1,4,17\rangle^{\prime},\langle 5,17\rangle^{*},\langle 1,3,18\rangle,\langle 1,3,18\rangle^{\prime},\langle 4,18\rangle^{*}$
.respectively ,these characters areprinciple indecomposablespin characters (preliminaries 6).
The block j_{2} contains the projective characters $\langle 1,21\rangle^{*},\langle 2,20\rangle^{*},\langle 1,2,19\rangle,\langle 1,2,19\rangle,\langle 1,2,3,16\rangle^{*}$, $\langle 1,2,4,15\rangle^{*},\langle 1,2,5,14\rangle^{*},\langle 1,2,6,13\rangle^{*}$,
$\langle 1,2,7,12\rangle^{*},\langle 1,2,8,11\rangle^{*},\langle 1,2,9,10\rangle^{*}$.
The principle block j_{1} contains the remaining projective characters.

4-The principle indecomposable spin(projective) characters for the block \boldsymbol{j}_{2} of defect one

From preliminaries $(7,3)$ allirreducible modular spin characters I.m.s. for the block \boldsymbol{j}_{2} are double and $\langle\omega\rangle=\langle\omega\rangle$ on $(19, \omega)$-regular classes respectively.
Theorem(4.1):The required characters of $S_{22} \operatorname{are} x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$.
Proof:Through technique and the method (r, \bar{r})-inducing ofprinciple indecomposable spin charactersP.i.s. of $S_{21}, p=19$ (see creek ${ }^{*}$) to S_{22} we have
$y_{1} \uparrow^{(2,18)} S_{22}=x_{1}, y_{2} \uparrow^{(1,0)} S_{22}=x_{2}, y_{3} \uparrow^{(17,3)} S_{22}=x_{3}$,
$y_{4} \uparrow^{(15,5)} S_{22}=x_{4}, y_{5} \uparrow^{(14,6)} S_{22}=x_{5}, y_{6} \uparrow^{(12,8)} S_{22}=x_{6}$,
$y_{7} \uparrow^{(12,8)} S_{22}=x_{7}, y_{8} \uparrow^{(13,7)} S_{22}=x_{8}, y_{9} \uparrow^{(12,8)} S_{22}=x_{9}$.
Issue(4.1.1): x_{3} is not subtracted from x_{1}
Suppose x_{3} is subtracted from x_{1}, then $x_{3}-x_{1}=\langle 1,21\rangle^{*}+2\langle 2,20\rangle^{*}$, and we have $2\langle 1,21\rangle^{*}$ -
$\langle 2,20\rangle^{*}+\langle 1,2,19\rangle$
Is m.s for S_{22}, but $\left(2\langle 1,21\rangle^{*}-\langle 2,20\rangle^{*}+\langle 1,2,19\rangle\right)_{\downarrow} S_{21}=\langle 1,2,18\rangle^{*}-\langle 21\rangle^{*}$ is not m.s for S_{21}, so, x_{3} is not subtracted from x_{1}.
Issue(4.1.2): $1 / 2 x_{2}$ is not P.i.sfor S_{22}
Suppose $1 / 2 x_{2}$ is P.i.s for S_{22}, then $\langle 1,21\rangle^{*}-\langle 2,20\rangle^{*}+\langle 1,2,19\rangle$
Is m.s for S_{22}, but $\left(\langle 1,21\rangle^{*}-\langle 2,20\rangle^{*}+\langle 1,2,19\rangle\right)_{\downarrow} S_{21}=\langle 1,2,18\rangle^{*}-\langle 21\rangle^{*}$ is not m.s for S_{21}, so, $1 / 2$ x_{2} is not P.i.s for S_{22}.
Issue(4.1.3): x_{3} is not subtracted from x_{2}

Suppose x_{3} is subtracted from x_{2}, then $x_{3}-x_{2}=2\langle 2,20\rangle^{*}\langle 1,2,19\rangle+\langle 1,2,19\rangle^{\prime}$ and we have 2 $\langle 1,21\rangle^{*}-\langle 2,20\rangle^{*}+\langle 1,2,19\rangle$
Is m.s for S_{22}, but $\left(2\langle 1,21\rangle^{*}-\langle 2,20\rangle^{*}+\langle 1,2,19\rangle\right)_{\downarrow} S_{21}=\langle 1,2,18\rangle^{*}-\langle 21\rangle^{*}$ is not m.s for S_{21}, so x_{3} is not subtracted from x_{2}.
So, the characters required for this block are given as:
$x_{1}=\langle 1,21\rangle^{*}+2\langle 2,20\rangle^{*}+\langle 1,2,19\rangle+\langle 1,2,19\rangle^{\prime}, x_{4}=\langle 1,2,4,15\rangle^{*}+\langle 1,2,5,14\rangle^{*}$,
$x_{2}=2\langle 2,20\rangle^{*}+2\langle 1,2,19\rangle+2\langle 1,2,19\rangle^{\prime} \quad, x_{5}=\langle 1,2,4,15\rangle^{*}+\langle 1,2,5,14\rangle^{*}$
$x_{3}=\langle 1,2,19\rangle+\langle 1,2,19\rangle^{\prime} \quad, x_{6}=\langle 1,2,5,14\rangle^{*}+\langle 1,2,6,13\rangle^{*}$
$x_{7}=\langle 1,2,6,13\rangle^{*}+\langle 1,2,7,12\rangle^{*} \quad, x_{8}=\langle 1,2,7,12\rangle^{*}+\langle 1,2,8,11\rangle^{*}, x_{9}=\langle 1,2,8,11\rangle^{*}+\langle 1,2,9,10\rangle^{*}$.

5-The principle indecomposable spin characters for the principle block j_{1} of defect one

From preliminaries $(7,3)$ allirreducible modular spin characters I.m.s. for the block $\boldsymbol{j}_{\mathbf{1}}$ are associate and $\langle\omega\rangle \neq\langle\omega\rangle^{\prime}$ on $(19, \omega)$-regular classes respectively.
Theorem(5.1):The required characters for this block are $x_{10}, x_{11}, \ldots, x_{27}$

Proof:Through technique and the method (r, \bar{r})-inducing of P.i.s. of $S_{21}, p=19$ (see creek *) to $S_{22},\langle\omega\rangle \neq\langle\omega\rangle^{\prime}$ on $(19, \omega)$-regular classes and rudiments 5 we have:
$y_{1} \uparrow^{(2,18)} S_{22}=x_{10}, y_{1} \uparrow^{(1,0)} S_{22}=x_{11}, y_{2} \uparrow^{(1,0)} S_{22}=x_{12}, y_{2} \uparrow^{(1,0)} S_{22}=x_{13}, y_{3} \uparrow^{(17,3)} S_{22}=x_{14}$ $y_{3} \uparrow^{(17,3)} S_{22}=x_{15}, y_{4} \uparrow^{(17,3)} S_{22}=x_{16}, y_{4} \uparrow^{(17,3)} S_{22}=x_{17}, y_{5} \uparrow^{(17,3)} S_{22}=x_{18}, y_{5} \uparrow^{(17,3)} S_{22}=x_{19}$ $y_{6} \uparrow^{(17,3)} S_{22}=x_{20}, y_{6} \uparrow^{(17,3)} S_{22}=x_{21}, y_{7} \uparrow^{(17,3)} S_{22}=x_{22}, y_{7} \uparrow^{(17,3)} S_{22}=x_{23}, y_{8} \uparrow^{(17,3)} S_{22}=x_{24}$ $y_{8} \uparrow^{(17,3)} S_{22}=x_{25}, y_{9} \uparrow^{(17,3)} S_{22}=x_{26}, y_{9} \uparrow^{(17,3)} S_{22}=x_{27}$.
So, the characters required for this block are:
$x_{10}=\langle 22\rangle+\langle 3,19\rangle^{*}, x_{11}=\langle 22\rangle^{\prime}+\langle 3,19\rangle^{*}, x_{12}=\langle 3,19\rangle^{*}+\langle 1,3,18\rangle, x_{13}=\langle 3,19\rangle^{*}+\langle 1,3,18\rangle^{\prime}$
$x_{14}=\langle 1,3,18\rangle+\langle 2,3,17\rangle, x_{15}=\langle 1,3,18\rangle^{\prime}+\langle 2,3,17\rangle^{\prime}, x_{16}=\langle 2,3,17\rangle+\langle 3,4,15\rangle, x_{17}=\langle 2,3,17\rangle^{\prime}+$ $\langle 3,4,15\rangle^{\prime}$
$x_{18}=\langle 3,4,15\rangle+\langle 3,5,14\rangle, x_{19}=\langle 3,4,15\rangle^{\prime}+\langle 3,5,14\rangle^{\prime}, x_{20}=\langle 3,4,14\rangle+\langle 3,6,13\rangle, x_{21}=\langle 3,4,14\rangle^{\prime}+$ $\langle 3,6,13\rangle^{\prime}$
$x_{22}=\langle 3,6,13\rangle+\langle 3,7,12\rangle, x_{23}=\langle 3,6,13\rangle^{\prime}+\langle 3,7,12\rangle^{\prime}, x_{24}=\langle 3,7,12\rangle+\langle 3,8,11\rangle, x_{25}=\langle 3,7,12\rangle^{\prime}+$ $\langle 3,8,11\rangle^{\prime}$
$x_{26}=\langle 3,8,11\rangle+\langle 3,9,10\rangle, x_{27}=\langle 3,8,11\rangle^{\prime}+\langle 3,9,10\rangle^{\prime}$

Creek(*)

The grade of the projective characters	The projective characters	$H_{21,19}^{1}$								
1024	$\langle 21\rangle^{*}$	1								
193536	<19,2>	1	1							
193536	$\langle 19,2\rangle^{\prime}$	1	1							
487424	$\langle 18,2,1\rangle^{*}$		1	1						
62899200	$\langle 16,3,2\rangle^{*}$			1	1					
253338624	$\langle 15,4,2\rangle^{*}$				1	1				
684343296	$\langle 14,5,2\rangle^{*}$					1	1			
1316044800	$\langle 13,6,2\rangle^{*}$						1	1		
1809561600	$\langle 12,7,2\rangle^{*}$							1	1	
1663334400	$\langle 11,8,2\rangle^{*}$								1	1
684343296	$\langle 10,9,2\rangle^{*}$									1
		y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}

Conclusion and Future work

We characterize allprinciple indecomposable spin characters P.i.s. for S_{22} modulo $p=19$ by method (r, \bar{r})-inducing.Our proof strongly depends on theorems (4.1) and (5.1). In future work we can find the principle indecomposablespin(projective) characters for the symmetric group S_{23} modulo $p=19$.

References

[1] G.D.James and A.Kerber :The representation theory of the symmetric group , Reading , Mass, Aaddiso-Wesley, (1981).
[2] B.M.Puttas and J.D.Dixon ,modular representation of finite groups, Academic press, (1977)
[3] A.O.Morris, The spin representation of the symmetric group, Proc. London Math. Soc. 12 (1962), 55-76.
[4] C.Bessenrodt, A.O.Morris, J.B.Olsson, Decomposition matricesfor spin characters of symmetric groups at characteristic 3 ,j. Algebra 164, (1994), 146-172.
[5] A. K.A.Yaseen ,The Brauer trees of the symmetric group S_{21} modulo $p=13$ Basrah Journal of Science Vol. 37 (1),(2019), 126-140.
[6] S. A.Taban and A. H.Jassim, irreducible modular spin characters of the symmetric group S_{19} modulo $p=11$ Basrah Journal of Science(A)Vol. 31(3), (2013), 59-74.
[7] S.A.Taban and M. M. Jawad,13-Brauer trees for spin characters of $S_{n}, 13 \leq n \leq 20$ modulo

[8] M.Issacs, Character theory of finit groups, Academic press, (1976).
[9] A.O.Morris and A.K.Yassen :Decomposition matrices for spin characters of symmetric group, proc. Of Royal society of Edinburgh, 108 A, (1988), 145-164.
[10] C.W.Curtis, I.Reiner, Representation theory of finite groups and associative algebras, Sec.printing(1966).

[^0]: Corresponding author: Jenan Abdlreda Resen

