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Abstract In this paper we has determined the decomposition matrices of the symmetric group 

�	
, ���   modulo  = 19 ,which is equivalent  determined the irreducible modular  

spin(projective) characters. 

Key words spin(projective) characters , modular characters , decomposition matrix , AMS 

2010,15C15,15C20,15C25. 

 

1- Introduction  
Characters of the finite group is recognized modular when the characteristic of the field is p>0, and 

is known ordinary when the characteristic of the field is zero[1].Every finite group has a covering 

group (representation group),the symmetric group ��  has like that group and the number of the 

elements of this group is  2(�!) ,when � ≥ 4[2].The characters for the covering group either 

corresponding the characters for �� or not , when these characters are not corresponding to the 

characters for �� ,these characters are known projective(spin) characters ,also the projective characters 

is known modular or ordinary corresponding to the characteristic of the filed  p [3]. The characters for 

��   which is described by bar partition of � are irreducible spin characters [3]. In this paper 

decomposition matrices �	
 , ���   modulo  = 19 have been calculated by using (�, �̅)-inducing 

method and technique for finding decomposition matrices , where every spin(projective) characters of 

�	�  modulo  = 19 are located in blocks of defect zero , that is mean theses blocks contains exactly 

one irreducible projective(spin)character (I.s.),one irreducible modular projective(spin)character 

(I.m.s.) and one principal indecomposable character(P.i.s.) all these characters(I.s ,I.m.s, P.i.s) are 

equals.  

 
2-  Rudiments 
1-The spin characters of  S� can be written as a linear combination , with non-negative integer 

coefficients , of the irreducible spin characters[4]. 

2- Projective characters  〈β〉 = 〈β	, … , β�〉  have degree which is equal 2����
� � �!

∏ ("#!)�#$%
∏ &"#'"*+

&"#-"*+	./03.5   

[5]. 

3-The values of associate characters  〈β〉, 〈β〉6 are same on the class  except on the class corresponding 

to  α they have values ±i���8%
� :;<%…<�

� > [5]. 

4-Let H be a subgroup of S�   ,if  θ is a projective character of  S� (  H) ,then the restriction ( inducing 

)of  θ is a spin character of H (S� ) [6]. 

5-If n is odd and p ∤ (n − 1) ,then 〈n − 1,1〉 and 〈n − 1,1〉6 are distinct I.m.s of grade  2�(��A)
� � ×

(k − 2) which are denoted by γ〈k − 1,1〉 and γ〈k − 1,1〉6 [5]. 
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6- Let p be an odd prime and let  α, β be a bar partition of n which are not  p-bar core. Then 〈σ〉(and 

〈σ〉6 if  α is odd) and 〈β〉(and 〈β〉6 if  β is odd) are in the same  p-block↔  〈σ〉E =  〈β〉E .If  α be a bar 

partition of  k and  〈σ〉=  〈σ〉E  , then 〈σ〉(and 〈σ〉6 if  α is odd) forms  a p-block of defect 0 [3]. 

7- Let p be an odd prime and β = (β	, … βF) be a bar partition of  n ,then  all I.m.s  in the block B are 

double(associate) , if (k − l − m�) is even(odd), where  m�  the number of parts of  β divisible by  p 

[3]. 

8- If k is even and p ∤ (k) ,then 〈k〉 and 〈k〉6 are distinct I.m.s of grade  2�(G�%)
� �  which are denoted by 

γ〈k〉 andγ〈k〉6 [5]. 

 

3-  The spin block of  ��� 
The matrix required  of the projective( spin) characters  of  S	
, p = 19 has 80 rows and 79 columns 

since the group    S	
  has 80 irreducible spin characters and 80 (19, α)-regular classes respectively [8]. 

From preliminaries (6)   ,there are 62 blocks of  S	
, p = 19, theses blocks are B	, … , BJ� of defect 

zero except the block  B	 of defect one. 

The blocks of defect zero B�, … , BJ� includes  

〈16,2,1〉∗, 〈15,3,1〉∗〈14,4,1〉∗, 〈14,3,2〉∗〈13,5,1〉∗, 〈13,4,2〉∗, 〈13,3,2,1〉, 〈13,3,2,1〉6,  
〈12,6,1〉∗, 〈12,5,2〉∗, 〈12,4,3〉∗〈12,4,2,1〉, 〈12,4,2,1〉6, 〈11,7,1〉∗, 〈11,6,2〉∗, 〈11,5,3〉∗,  
〈11,5,2,1〉, 〈11,5,2,1〉6, 〈11,4,3,1〉, 〈11,4,3,1〉6 , 〈10,8,1〉∗, 〈10,7,2〉∗, 〈10,6,3〉∗,  
〈10,6,2,1〉, 〈10,6,2,1〉6, 〈10,5,4〉∗, 〈10,5,3,1〉, 〈10,5,3,1〉6, 〈10,4,3,2〉, 〈10,4,3,2〉6,  
〈9,7,3〉∗, 〈9,7,2,1〉, 〈9,7,2,1〉6, 〈9,6,4〉∗, 〈9,6,3,1〉, 〈9,6,3,1〉6, 〈9,5,4,1〉, 〈9,5,4,1〉6, 〈9,5,3,2〉  

, 〈9,5,3,2〉6, , 〈9,4,3,2,1〉∗, 〈8,7,4〉∗, 〈8,7,3,1〉, 〈8,7,3,1〉6, 〈8,6,5〉∗, 〈8,6,4,1〉, 〈8,6,4,1〉6,  
〈8,6,3,2〉, 〈8,6,3,2〉6, 〈8,5,4,2〉6, 〈8,5,4,2〉6, 〈8,5,3,2,1〉∗, 〈7,6,5,1〉, 〈7,6,5,1〉6, 〈7,6,4,2〉,  
〈7,6,4,2〉6, 〈7,6,3,2,1〉∗, 〈7,5,4,3〉, , 〈7,5,4,3〉6, 〈7,5,4,2,1〉∗, 〈6,5,4,3,1〉∗    
respectively ,these characters are irreducible modular spin character  (preliminaries 6).The principle 

block  B	contains  the remaining projective characters. 

 

4-  The decomposition matrix for the block R� of defect one 
From preliminaries (7,3)   all I.m.s. for the block  T	 are associate and   〈U〉 ≠ 〈U〉6 on (19, U)-

regular classes  respectively.  

 

Theorem(4.1): 
The matrix required  of the projective( spin) characters  of  �	
  is  

W	
,	
 = W	
,	

(	) ⨁ … ⨁W	
,	


(J�)
  

Proof: 
Through technique and the method (�, �̅)-inducing of  P.i.s.  of  �	�,  = 19(all blocks of 

decomposition matrix of  �	�,  = 19  of defect 0) to �	
 we have  

〈18〉 ↑(	�,�) �	
 = Z	,  〈18〉6 ↑(	�,�) �	
 =Z�,  〈17,1〉∗ ↑(	[,\) �	
=]\  ,  〈16,2〉∗ ↑(	J,^) �	
=]^ ,  

〈15,3〉∗ ↑(	_,_) �	
=]_  ,  〈14,4〉∗ ↑(	^,J) �	
=]J  ,  〈13,5〉∗ ↑(	\,[) �	
=][  ,  〈12,6〉∗ ↑(	�,�) �	
=]�  

, 〈11,7〉∗ ↑(		
) �	
=]
  ,  〈10,8〉∗ ↑(	�,	�) �	
=]	� .  

From the (preliminaries 5) we have  ]\  must be split to  Z\  and  Z^ . 

Now since each  〈16,3〉 ≠ 〈16,3〉6 ,  〈15,4〉 ≠ 〈15,4〉6 , 〈14,5〉 ≠ 〈14,5〉6 , 〈13,6〉 ≠ 〈13,6〉6 
, 〈12,7〉 ≠ 〈12,7〉6 , 〈11,8〉 ≠ 〈11,8〉6 , 〈10,9〉 ≠ 〈10,9〉6  on (19, U)-regular classes ,then  ]^     

should  be divided to Z_  and ZJ ,]_   must be split to Z[  and  Z� , ]J     must be split to  Z
  and  Z	� 

,][     must be split to  Z		  and  Z	�,  ]�     must be split to  Z	\  and  Z	^,]
     must be split to Z	_  

and  Z	J ,]	�     must be split to  Z	[  and  Z	�, respectively  (preliminaries 5). 

So, the matrix required  for this block is as given in creek(1). 
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Creek(1) 

is the matrix for this block 

 

5-  The spin block of  ��� 
The matrix required  of the projective characters  of   ���,  = 19 has 96 rows and 95 columns since 

the group    ���  has 80 irreducible spin characters and 80 (19, U)-regular classes respectively [8]. 

From preliminaries (6)   ,there are 77  blocks of  ���,  = 19, theses blocks are T	, … , T[[ of defect 

zero except the block  T	 of defect one. 

The blocks of defect zero T�, … , T[[ includes  

〈18,2〉∗, 〈17,3〉∗〈16,4〉∗, 〈15,5〉∗, 〈15,3,2〉, 〈15,3,2〉6, 〈14,6〉∗, 〈14,4,2〉, 〈14,4,2〉6, 〈14,3,2,1〉∗, 〈13,7〉∗, 
〈13,5,2〉, 〈13,5,2〉6, 〈13,4,3〉, 〈13,4,3〉6 , 〈13,4,2,1〉∗, 〈12,8〉∗, 〈12,6,2〉, 〈12,6,2〉6 , 〈12,5,3〉, 〈12,5,3〉6 ,  
〈12,5,2,1〉∗, 〈12,4,3,1〉∗, 〈11,9〉∗, 〈11,7,2〉6, 〈11,7,2〉6, 〈11,6,3〉, 〈11,6,3〉6, 〈11,6,2,1〉∗, 〈11,5,4〉, 〈11,5,4〉6 
, 〈11,5,3,1〉∗, 〈11,4,3,2〉∗, 〈10,8,2〉6, 〈10,8,2〉6, 〈10,7,3〉, 〈10,7,3〉6, 〈10,7,2,1〉∗, 〈10,6,4〉, 〈10,6,4〉6, 
〈10,6,3,1〉∗, 〈10,5,4,1〉∗, 〈10,5,3,2〉∗, 〈10,4,3,2,1〉6, 〈10,4,3,2,1〉6, 〈9,8,3〉, 〈9,8,3〉6, 〈9,8,2,1〉∗, 〈9,7,4〉′, 
〈9,7,4〉6, 〈9,7,3,1〉∗, 〈9,6,5〉, 〈9,6,5〉6, 〈9,6,4,1〉∗, 〈9,6,3,2〉∗, 〈9,5,4,2〉∗, 〈9,5,3,2,1〉, 〈9,5,3,2,1〉6, 〈8,7,5〉, 
〈8,7,5〉6, 〈8,7,4,1〉∗, 〈8,7,3,2〉∗, 〈8,6,5,1〉∗, , 〈8,6,4,2〉∗, 〈8,6,3,2,1〉6, 〈8,6,3,2,1〉6 〈8,5,4,3〉∗, 〈8,5,4,2,1〉6, 
〈8,5,4,2,1〉6, 〈7,6,5,2〉∗, 〈7,6,4,3〉∗, 〈7,6,4,2,1〉6, 〈7,6,4,2,1〉6, 〈7,5,4,3,1〉, 〈7,5,4,3,1〉6, 〈6,5,4,3,2〉′, 
〈6,5,4,3,2〉6. , 
 respectively ,these characters are I.m.s.(preliminaries 6).The principle block  T	contains  the 
remaining projective characters. 

6-  The decomposition matrix for the block R� of defect one 
From preliminaries (7,3)   all I.m.s. for the block  T	 are associate and   〈U〉 ≠ 〈U〉6 on (19, U)-regular 

classes  respectively.  

Theorem(6.1): 
The matrix required  of the projective characters  of �	
  is   

The grade 

of the 
projective 

characters 

The 

projective 
characters 

W	
,	
	  

512 〈19〉∗ 1 1                 

4352 〈18,1〉 1  1                

4352 〈18,1〉6  1  1               

34560 〈17,2〉   1  1              

34560 〈17,2〉6    1  1             

169728 〈16,3〉     1  1            

169728 〈16,3〉6      1  1           

574464 〈15,4〉       1  1          

574464 〈15,4〉6        1  1         

1410048 〈14,5〉         1  1        

1410048 〈14,5〉6          1  1       

2558976 〈13,6〉           1  1      

2558976 〈13,6〉6            1  1     

3394560 〈12,7〉             1  1    

3394560 〈12,7〉6              1  1   

3055104 〈11,8〉               1  1  

3055104 〈11,8〉6                1  1 

1244672 〈10,9〉                 1  

1244672 〈10,9〉6                  1 

  Z	 
 

Z� 
 

Z\ 
 

Z^ 
 

Z_ 
 

ZJ 
 

Z[ 
 

Z� 
 

Z
 
 

Z	� 
 

Z		 
 

Z	� 
 

Z	\ 
 

Z	^ 
 

Z	_ 
 

Z	J 
 

Z	[ 
 

Z	� 
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W��,	
 = W��,	

(	) ⨁ … ⨁W��,	


([[)
  

Proof: 
Through technique and the method (�, �̅)-inducing of  P.i.s.  of  �	�,  = 19(all blocks of 

decomposition matrix of  �	�,  = 19  of defect 0) to �	
 we have  

Z	 ↑(�,	) ��� = ]	  ,  Z\ ↑(	[,\) ��� =b\   ,  Z^ ↑(	[,\) ���=b^, Z_ ↑(	J,^) ���=b_ ,    ZJ ↑(	J,^) ���=bJ,   
Z[ ↑(	_,_) ���=b[,  Z� ↑(	_,_) ���=b�  Z
 ↑(	^,J) ���=b
  ,Z	� ↑(	^,J) ���=b	�,Z		 ↑(	\,[) ��� =b		   ,   
Z	� ↑(	\,[) ���=b	�  ,  Z	\ ↑(	�,�) ���=b	\,  Z	^ ↑(	�,�) ���=b	^,  Z	_ ↑(		,
) ���=b	_,   
Z	J ↑(		,
) ���=b	J,  Z	[ ↑(	�,	�) ���=b	[  , Z	� ↑(	�,	�) ���=b	�  .  

From the (preliminaries 8 ) we have  ]	  must be split to  b	  and b�. 
Highly, the matrix required  for this block is as given in creek(2). 

Creek(2) 

is the matrix for this block 
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  b	 
 

b� 
 

b\ 
 

b^ 
 

b_ 
 

bJ 
 

b[ 
 

b� 
 

b
 
 

b	� 
 

b		 
 

b	� 
 

b	\ 
 

b	^ 
 

b	_ 
 

b	J 
 

b	[ 
 

b	� 
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