PAPER • OPEN ACCESS

Decomposition numbers of the decomposition matrices for the projective characters of the symmetric groups S $_{19}$, S $_{20}$ modulo p = 19

To cite this article: Jenan Abd Alreda Resen and Asmaa Jabbar Mathkhoor 2020 J. Phys.: Conf. Ser. 1530 012099

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Decomposition numbers of the decomposition matrices for the projective characters of the symmetric groups S_{19}, S_{20} modulo p = 19

Asmaa Jabbar Mathkhoor* Jenan Abd Alreda Resen*

*Mathematical Science - Basrah university _Iraq

E mail: Jenanabdalreda8@gmail.com

Abstract In this paper we has determined the decomposition matrices of the symmetric group S_{19}, S_{20} modulo p = 19, which is equivalent determined the irreducible modular spin(projective) characters.

Key words spin(projective) characters, modular characters, decomposition matrix, AMS 2010,15C15,15C20,15C25.

1-Introduction

Characters of the finite group is recognized modular when the characteristic of the field is p>0, and is known ordinary when the characteristic of the field is zero[1]. Every finite group has a covering group (representation group), the symmetric group S_n has like that group and the number of the elements of this group is 2(n!), when $n \ge 4[2]$. The characters for the covering group either corresponding the characters for S_n or not, when these characters are not corresponding to the characters for S_n , these characters are known projective(spin) characters, also the projective characters is known modular or ordinary corresponding to the characteristic of the filed p [3]. The characters for S_n which is described by bar partition of n are irreducible spin characters [3]. In this paper decomposition matrices S_{19} , S_{20} modulo p = 19 have been calculated by using (r, \bar{r}) -inducing method and technique for finding decomposition matrices, where every spin(projective) characters of S_{18} modulo p = 19 are located in blocks of defect zero, that is mean these blocks contains exactly one irreducible projective(spin)character (I.s.), one irreducible modular projective(spin)character (I.m.s.) and one principal indecomposable character(P.i.s.) all these characters(I.s., I.m.s, P.i.s) are equals.

2- Rudiments

1-The spin characters of S_n can be written as a linear combination , with non-negative integer coefficients, of the irreducible spin characters[4].

2- Projective characters $\langle \beta \rangle = \langle \beta_1, ..., \beta_k \rangle$ have degree which is equal $2^{\left\lfloor \frac{k-1}{2} \right\rfloor} \frac{k!}{\prod_{i=1}^{l} (\alpha_i)} \prod_{1 \le i < j \le m} \frac{(\alpha_i - \alpha_j)}{(\alpha_i + \alpha_i)}$ [5].

3-The values of associate characters $\langle \beta \rangle$, $\langle \beta \rangle'$ are same on the class except on the class corresponding to α they have values $\pm i \frac{k-l+1}{2} \sqrt{\left(\frac{\beta_1 \dots \beta_l}{2}\right)} [5].$

4-Let H be a subgroup of S_n , if θ is a projective character of S_n (H), then the restriction (inducing) of θ is a spin character of H (S_n) [6].

5-If n is odd and p \nmid (n - 1), then $\langle n - 1, 1 \rangle$ and $\langle n - 1, 1 \rangle'$ are distinct I.m.s of grade $2^{\left[\frac{(k-3)}{2}\right]} \times$ (k-2) which are denoted by $\gamma(k-1,1)$ and $\gamma(k-1,1)'$ [5].

IOP Publishing

6- Let p be an odd prime and let α , β be a bar partition of n which are not p-bar core. Then (σ) (and $\langle \sigma \rangle'$ if α is odd) and $\langle \beta \rangle$ (and $\langle \beta \rangle'$ if β is odd) are in the same p-block $\leftrightarrow \langle \overline{\sigma} \rangle = \langle \overline{\beta} \rangle$. If α be a bar partition of k and $\langle \sigma \rangle = \langle \widetilde{\sigma} \rangle$, then $\langle \sigma \rangle$ (and $\langle \sigma \rangle'$ if α is odd) forms a p-block of defect 0 [3].

7- Let p be an odd prime and $\beta = (\beta_1, \dots, \beta_l)$ be a bar partition of n, then all I.m.s in the block B are double(associate), if $(k - l - m_0)$ is even(odd), where m_0 the number of parts of β divisible by p [3].

8- If k is even and p \nmid (k), then $\langle k \rangle$ and $\langle k \rangle'$ are distinct I.m.s of grade $2^{\left[\frac{(n-1)}{2}\right]}$ which are denoted by $\gamma(k)$ and $\gamma(k)'$ [5].

3- The spin block of S_{19}

The matrix required of the projective(spin) characters of S_{19} , p = 19 has 80 rows and 79 columns since the group S_{19} has 80 irreducible spin characters and 80 (19, α)-regular classes respectively [8]. From preliminaries (6) , there are 62 blocks of S_{19} , p = 19, theses blocks are B_1 , ..., B_{62} of defect zero except the block B_1 of defect one.

The blocks of defect zero B₂, ..., B₆₂ includes

(16,2,1)*, (15,3,1)*(14,4,1)*, (14,3,2)*(13,5,1)*, (13,4,2)*, (13,3,2,1), (13,3,2,1)', (12,6,1)*, (12,5,2)*, (12,4,3)*(12,4,2,1), (12,4,2,1)', (11,7,1)*, (11,6,2)*, (11,5,3)*, (11,5,2,1), (11,5,2,1)', (11,4,3,1), (11,4,3,1)', (10,8,1)*, (10,7,2)*, (10,6,3)*, (10,6,2,1), (10,6,2,1)', (10,5,4)*, (10,5,3,1), (10,5,3,1)', (10,4,3,2), (10,4,3,2)', (9,7,3)*, (9,7,2,1), (9,7,2,1)', (9,6,4)*, (9,6,3,1), (9,6,3,1)', (9,5,4,1), (9,5,4,1)', (9,5,3,2) , (9,5,3,2)', , (9,4,3,2,1)*, (8,7,4)*, (8,7,3,1), (8,7,3,1)', (8,6,5)*, (8,6,4,1), (8,6,4,1)', (8,6,3,2), (8,6,3,2)', (8,5,4,2)', (8,5,4,2)', (8,5,3,2,1)*, (7,6,5,1), (7,6,5,1)', (7,6,4,2), (7,6,4,2)', (7,6,3,2,1)*, (7,5,4,3), , (7,5,4,3)', (7,5,4,2,1)*, (6,5,4,3,1)* respectively, these characters are irreducible modular spin character (preliminaries 6). The principle block B₁ contains the remaining projective characters.

4- The decomposition matrix for the block B_1 of defect one

From preliminaries (7,3) all I.m.s. for the block B_1 are associate and $\langle \alpha \rangle \neq \langle \alpha \rangle'$ on $(19, \alpha)$ regular classes respectively.

Theorem(4.1):

The matrix required of the projective(spin) characters of S_{19} is $D_{19,19} = D_{19,19}^{(1)} \oplus ... \oplus D_{19,19}^{(62)}$

Proof:

Through technique and the method (r, \bar{r}) -inducing of P.i.s. of $S_{18}, p = 19$ (all blocks of

decomposition matrix of S_{18} , p = 19 of defect 0) to S_{19} we have $\langle 18 \rangle \uparrow^{(18,2)} S_{19} = t_1$, $\langle 18 \rangle' \uparrow^{(18,2)} S_{19} = t_2$, $\langle 17,1 \rangle^* \uparrow^{(17,3)} S_{19} = k_3$, $\langle 16,2 \rangle^* \uparrow^{(16,4)} S_{19} = k_4$, $\langle 15,3 \rangle^* \uparrow^{(15,5)} S_{19} = k_5$, $\langle 14,4 \rangle^* \uparrow^{(14,6)} S_{19} = k_6$, $\langle 13,5 \rangle^* \uparrow^{(13,7)} S_{19} = k_7$, $\langle 12,6 \rangle^* \uparrow^{(12,8)} S_{19} = k_8$, $(11,7)^* \uparrow^{(119)} S_{19} = k_9$, $(10,8)^* \uparrow^{(10,10)} S_{19} = k_{10}$.

From the (preliminaries 5) we have k_3 must be split to t_3 and t_4 . Now since each $(16,3) \neq (16,3)'$, $(15,4) \neq (15,4)'$, $(14,5) \neq (14,5)'$, $(13,6) \neq (13,6)'$, $(12,7) \neq (12,7)'$, $(11,8) \neq (11,8)'$, $(10,9) \neq (10,9)'$ on $(19,\alpha)$ -regular classes ,then k_4 should be divided to t_5 and t_6 , k_5 must be split to t_7 and t_8 , k_6 must be split to t_9 and t_{10} k_7 must be split to t_{11} and t_{12} , k_8 must be split to t_{13} and t_{14} , k_9 must be split to t_{15} and t_{16} , k_{10} must be split to t_{17} and t_{18} , respectively (preliminaries 5). So, the matrix required for this block is as given in creek(1).

Journal of Physics: Conference Series

IOP Publishing

The grade of the projective characters	The projective characters	D ¹ _{19,19}																	
512	(19)*	1	1																
4352	(18,1)	1		1															
4352	(18,1)′		1		1														
34560	(17,2)			1		1													
34560	(17,2)′				1		1												
169728	(16,3)					1		1											
169728	(16,3)′						1		1										
574464	(15,4)							1		1									
574464	(15,4)'								1		1								
1410048	(14,5)									1		1							
1410048	(14,5)'										1		1						
2558976	(13,6)											1		1					
2558976	(13,6)′												1		1				
3394560	(12,7)													1		1			
3394560	(12,7)′														1		1		
3055104	(11,8)															1		1	
3055104	(11,8)′																1		1
1244672	(10,9)																	1	
1244672	(10,9)′																		1
		t_1	t ₂	<i>t</i> ₃	t_4	<i>t</i> ₅	t ₆	<i>t</i> ₇	t ₈	t9	<i>t</i> ₁₀	<i>t</i> ₁₁	<i>t</i> ₁₂	<i>t</i> ₁₃	<i>t</i> ₁₄	<i>t</i> ₁₅	<i>t</i> ₁₆	<i>t</i> ₁₇	<i>t</i> ₁₈

Creek(1) is the matrix for this block

5- The spin block of S_{20}

The matrix required of the projective characters of S_{20} , p = 19 has 96 rows and 95 columns since the group S_{20} has 80 irreducible spin characters and 80 (19, α)-regular classes respectively [8]. From preliminaries (6) ,there are 77 blocks of S_{20} , p = 19, theses blocks are B_1 , ..., B_{77} of defect zero except the block B_1 of defect one.

The blocks of defect zero B_2, \dots, B_{77} includes

 $\begin{array}{l} \langle 18,2\rangle^*, \langle 17,3\rangle^*\langle 16,4\rangle^*, \langle 15,5\rangle^*, \langle 15,3,2\rangle, \langle 15,3,2\rangle', \langle 14,6\rangle^*, \langle 14,4,2\rangle, \langle 14,4,2\rangle', \langle 14,3,2,1\rangle^*, \langle 13,7\rangle^*, \\ \langle 13,5,2\rangle, \langle 13,5,2\rangle', \langle 13,4,3\rangle, \langle 13,4,3\rangle', \langle 13,4,2,1\rangle^*, \langle 12,8\rangle^*, \langle 12,6,2\rangle, \langle 12,6,2\rangle', \langle 12,5,3\rangle, \langle 12,5,3\rangle', \\ \langle 12,5,2,1\rangle^*, \langle 12,4,3,1\rangle^*, \langle 11,9\rangle^*, \langle 11,7,2\rangle', \langle 11,7,2\rangle', \langle 11,6,3\rangle, \langle 11,6,3\rangle', \langle 11,6,2,1\rangle^*, \langle 11,5,4\rangle, \langle 11,5,4\rangle', \\ \langle 11,5,3,1\rangle^*, \langle 11,4,3,2\rangle^*, \langle 10,8,2\rangle', \langle 10,8,2\rangle', \langle 10,7,3\rangle, \langle 10,7,3\rangle', \langle 10,7,2,1\rangle^*, \langle 10,6,4\rangle, \langle 10,6,4\rangle', \\ \langle 10,6,3,1\rangle^*, \langle 10,5,4,1\rangle^*, \langle 10,5,3,2\rangle^*, \langle 10,4,3,2,1\rangle', \langle 10,4,3,2,1\rangle', \langle 9,8,3\rangle, \langle 9,8,3\rangle', \langle 9,8,2,1\rangle^*, \langle 9,7,4\rangle', \\ \langle 9,7,4\rangle', \langle 9,7,3,1\rangle^*, \langle 9,6,5\rangle, \langle 9,6,5\rangle', \langle 9,6,4,1\rangle^*, \langle 9,6,3,2\rangle^*, \langle 9,5,4,2\rangle^*, \langle 9,5,3,2,1\rangle, \langle 9,5,3,2,1\rangle', \langle 8,7,5\rangle, \\ \langle 8,7,5\rangle', \langle 8,7,4,1\rangle^*, \langle 8,7,3,2\rangle^*, \langle 8,6,5,1\rangle^*, , \langle 8,6,4,2\rangle^*, \langle 8,6,3,2,1\rangle', \langle 8,6,3,2,1\rangle', \langle 8,5,4,3\rangle^*, \langle 8,5,4,2,1\rangle', \\ \langle 8,5,4,2,1\rangle', \langle 7,6,5,2\rangle^*, \langle 7,6,4,3\rangle^*, \langle 7,6,4,2,1\rangle', \langle 7,6,4,2,1\rangle', \langle 7,5,4,3,1\rangle, \langle 7,5,4,3,1\rangle', \langle 6,5,4,3,2\rangle', \\ \langle 6,5,4,3,2\rangle'. \end{array}$

respectively ,these characters are I.m.s.(preliminaries 6). The principle block B_1 contains the remaining projective characters.

6- The decomposition matrix for the block B_1 of defect one

From preliminaries (7,3) all I.m.s. for the block B_1 are associate and $\langle \alpha \rangle \neq \langle \alpha \rangle'$ on (19, α)-regular classes respectively.

Theorem(6.1):

The matrix required of the projective characters of S_{19} is

Journal of Physics: Conference Series

1530 (2020) 012099 doi:10.1088/1742-6596/1530/1/012099

 $D_{20,19} = D_{20,19}^{(1)} \oplus \dots \oplus D_{20,19}^{(77)}$ *Proof:*

Through technique and the method (r, \bar{r}) -inducing of P.i.s. of $S_{18}, p = 19$ (all blocks of decomposition matrix of $S_{18}, p = 19$ of defect 0) to S_{19} we have $t_1 \uparrow^{(0,1)} S_{20} = k_1$, $t_3 \uparrow^{(17,3)} S_{20} = z_3$, $t_4 \uparrow^{(17,3)} S_{20} = z_4, t_5 \uparrow^{(16,4)} S_{20} = z_5$, $t_6 \uparrow^{(16,4)} S_{20} = z_6$, $t_7 \uparrow^{(15,5)} S_{20} = z_7$, $t_8 \uparrow^{(15,5)} S_{20} = z_8$ $t_9 \uparrow^{(14,6)} S_{20} = z_9$, $t_{10} \uparrow^{(14,6)} S_{20} = z_{10}, t_{11} \uparrow^{(13,7)} S_{20} = z_{11}$, $t_{12} \uparrow^{(13,7)} S_{20} = z_{12}$, $t_{13} \uparrow^{(12,8)} S_{20} = z_{13}$, $t_{14} \uparrow^{(12,8)} S_{20} = z_{14}$, $t_{15} \uparrow^{(11,9)} S_{20} = z_{15}$, $t_{16} \uparrow^{(11,9)} S_{20} = z_{16}$, $t_{17} \uparrow^{(10,10)} S_{20} = z_{17}$, $t_{18} \uparrow^{(10,10)} S_{20} = z_{18}$. From the (preliminaries 8) we have k_1 must be split to z_1 and z_2 . Highly, the matrix required for this block is as given in creek(2).

The	The	D ¹ _{20,19}																	
grade of	projective																		
nroiactivo	characters																		
character																			
512	(20)	1																	
512	(20)	-	1																
9216	(19.1)*	1	1	1	1														
204800	(17.2.1)			1		1													
204800	(17.2.1)'				1		1												
1497600	(16,3,1)					1		1											
1497600	(16,3,1)'						1		1										
6031872	(15,4,1)							1		1									
6031872	(15,4,1)'								1		1								
16293888	(14,5,1)									1		1							
16293888	(14,5,1)'										1		1						
31334400	(13,6,1)											1		1					
31334400	(13,6,1)'												1		1				
43084800	(12,7,1)													1		1			
43084800	(12,7,1)'														1		1		
39603200	(11,8,1)															1		1	
39603200	(11,8,1)′																1		1
16293888	(10,9,1)																	1	
16293888	(10,9,1)'																		1
		Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7	Z_8	Z_9	Z_{10}	Z_{11}	Z_{12}	Z ₁₃	<i>z</i> ₁₄	Z_{15}	Z_{16}	Z ₁₇	Z ₁₈
1																			

Creek(2)

is the matrix for this block

Reference

- [1] B.M.Puttas and J.D.Dixon Modular representation of finite groups- Academic press (1977)
- [2] A.O.Morris The spin representation of the symmetric group Proc. London Math. Soc.12 (1962) 55-76.
- [3] C.Bessenrodt A.O.Morris J.B.Olsson Decomposition matrices for spin characters of symmetric groups at characteristic 3 -j. Algebra 164 (1994) 146-172.
- [4] M.Issacs Character theory of finit groups-Academic press (1976).
- [5] A.O.Morris and A.K.Yassen Decomposition matrices for spin characters of symmetric group proc. Of Royal society of Edinburgh 108 A-(1988) 145-164.
- [6] G.D.James and A.Kerber The representation theory of the symmetric group-Reading-Mass-Aaddiso-Wesley- (1981).
- [7] A.K.Yassen Modular spin representation of the symmetric groups-Ph.D thesis-Aberywyth-(1987).

Journal of Physics: Conference Series

1530 (2020) 012099 doi:10.1088/1742-6596/1530/1/012099

[8] C.W.Curtis-I.Reiner Representation theory of finite groups and associative algebras-Sec.printing(1966).